Lab on a Chip

View Article Online

CORRECTION

Correction: Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects

Putong Kang,^a Zhenhua Tian,^b Shujie Yang,^a Wenzhuo Yu,^a Haodong Zhu,^a Hunter Bachman,^a Shuaiguo Zhao,^a Peiran Zhang,^a Zeyu Wang,^a Ruoyu Zhong^a and Tony Jun Huang^{*a}

DOI: 10.1039/d0lc90089c

Correction for 'Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects' by Putong Kang *et al.*, *Lab Chip*, 2020, **20**, 987–994, DOI: 10.1039/ C9LC01124B.

rsc.li/loc

A relevant conflict of interest statement was not disclosed in the original article. The corrected conflict of interest statement for this article is shown below.

Conflicts of interest

T. J. H. has co-founded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustofluidics and acoustic tweezers.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA. E-mail: tony.huang@duke.edu

^b Department of Aerospace Engineering, Mississippi State University, Starkville, MS 39762, USA