Turning on/off satellite droplet ejection for flexible sample delivery on digital microfluidics†
Abstract
Digital microfluidics has the potential to minimize and automate reactions in biochemical labs. However, the complexity of drop manipulation and sample preparation on-chip has limited its incorporation into daily workflow. In this paper, we report a novel method for flexible sample delivery on digital microfluidics in a wide volume range spanning four orders of magnitude from picoliters to nanoliters. The method is based on the phenomenon of satellite droplet ejection, triggered by a sudden change in the strength of the electric field across a drop on a hydrophobic dielectric surface. By precisely modulating the actuation signal with convenient external electric controls, satellite droplet ejection can be turned on to dispense samples or turned off to transport picking-up drops. A pico-dosing design is presented and validated in this work to demonstrate the direct and flexible on-chip sample delivery. This approach could pave the way for the acceptance of microfluidics as a common platform for daily reactions to realize lab-on-a-chip.