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Synchrotron hard X-ray spectroscopy with focussing optics allows recording X-ray fluorescence (XRF) maps
at energies around element specific X-ray absorption edges. Stacking multiple XRF maps along the energy
axis yields chemical images that contain spatially resolved information on the speciation of the absorber in
the sample matrix at the micrometre scale. Short dwell times needed to keep measurement time and
radiation-induced sample changes within acceptable limits result in spectral noise that affects the
uncertainty in data analysis. In this study, we develop a model to quantify the uncertainty associated with
the processing of XRF image stacks using Bayesian inference. To demonstrate the potential of our
approach, the model is applied to stacks of XRF maps collected around the copper (Cu) K-edge (pixel
size: 3 x 3 um?, map sizes: 500 x 500 pm?). The investigated samples include digested sewage sludge
spiked with either CuO nanoparticles (NP) or dissolved CuSO,4 and their corresponding ashes obtained
through incineration. The chemical imaging data reveal differences in species distribution between
sludge spiked with CuO NP or dissolved Cu. These differences disappear during the incineration process
and the resulting ashes exhibit almost identical Cu species distribution. The uncertainty analysis
approach developed in this study can be used for data interpretation, but can also be used for the
planning of chemical imaging experiments at synchrotron beamlines.

1 Introduction

X-ray absorption spectroscopy (XAS) is widely used to investigate
the speciation of major and trace elements in a wide range of
sample matrices, including complex environmental samples.*™
With XAS, the average speciation of selected elements in homo-
genised samples can be evaluated using wide spread X-ray beams
with lateral and horizontal extensions of hundreds of micro-
metres to a few millimetres.* Over the last two decades, advanced
synchrotron light sources and beamlines providing higher photon
fluxes and the ability to focus the beam to small sizes enabled
investigations of chemical (speciation) heterogeneities at the
micrometre scale.” Based on elemental distribution maps (micro
X-ray fluorescence (XRF) spectroscopy) that provide information
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on the elemental distributions and their correlations, points of
interest (POI) can be selected to investigate the speciation of
individual elements by micro-focused X-ray absorption near-edge
structure (XANES) or extended X-ray absorption fine structure
(EXAFS) spectroscopy, e.g.°® The further development of dedi-
cated beamlines capable of focussing hard (>4.5 keV) X-rays' and
the advancement of detection systems' meanwhile allow to
perform chemical imaging analyses. In this approach, XRF maps
of the same area are recorded at multiple energies around an
absorption edge to obtain spatially resolved speciation informa-
tion at the micrometre scale.”" In micro-focused X-ray experi-
ments for chemical imaging (sometimes also called ‘Chemical-
state maps’, e.g.*®), a large fraction of the beam is focused onto
a micrometre sized spot on the sample using slits and/or Kirk-
patrick-Baez (KB) mirrors.>*® High photon flux densities allow
users to obtain chemical images of absorbers at low concentra-
tions in complex matrices such as environmental samples within
a few hours."*'*"> However, the complex and heterogeneous
matrices and the redox sensitivity of certain absorber atoms may
lead to radiation-induced speciation changes in the sample
commonly referred to as beam damage, which has previously
been reported for, e.g,, Cu.**® To limit beam-induced trans-
formation of the sample/absorber, the exposure time to the beam
can be reduced and the sample can be cooled to cryogenic
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temperatures. Further, the exposure of the sample to the X-ray
beam can be reduced by collecting data only at selected ener-
gies of interest containing diagnostic spectral features instead of
scanning over the whole absorption edge at high energy resolu-
tion. The most relevant energies of interest are commonly iden-
tified based on the XAS data of reference materials.'®

The new possibilities offered by the chemical imaging
attracted increased attention in environmental sciences****7~>*
where elements of interest often occur at low concentrations
(e.g., Cu in digested sewage sludge 480-700 mg kg ') and
unevenly distributed in the sample matrix.'* Because of the
potential beam damage induced by high photon flux densities,
only a limited number (typically ranging from 3-10)**>'” of XRF
maps around an X-ray absorption edge of a specific element of
interest may be recorded to derive the chemical speciation of
the absorber atom at the micrometre scale.”* Nevertheless,
caused by the short dwell times (few milliseconds) and low
element concentrations, data acquired with even the most
advanced detector systems® contains increased amounts of
noise compared to spectra recorded on bulk samples using
longer dwell times (up to seconds).”” Therefore, speciation
information may be limited to the oxidation state of the
absorber, or to major species classes rather than individual
chemical forms. XAS and chemical imaging data processing,
including the determination of the appropriate number of
spectral components using principle component analysis, have
considerably improved over the last decades.”**® Furthermore,
strategies and guidelines to reduce uncertainty by optimizing
measurement conditions are available in the literature.””**
Studies investigating the uncertainty associated with species
information extracted from hard X-ray of chemical image stacks
are still lacking, however. In this study, we therefore developed
a model/algorithm to quantitatively assess the impact of
uncertainty on the interpretability of chemical images derived
from spatially resolved XRF maps. The usefulness of the model/
algorithm was demonstrated based on chemical images recor-
ded on digested sewage sludge that had been spiked with
copper oxide nanoparticles (CuO-NP) or dissolved Cu** (CuSO,)
as well as on their corresponding ashes. These samples that
have previously been examined by bulk XAS, but information on
the spatial distribution of Cu and of individual Cu species in the
sludge and corresponding ashes may be relevant as well for the
risk and life cycle assessment of engineered nanomaterials
(details in the ESI Section S17).

2 Materials and methods

2.1 Sample preparation and characterization of
experimental samples

Two digested sludge samples were spiked with either CuO-NP
(SLG NP) or dissolved CuSO, (SLG AQ) and kept under anaer-
obic conditions for 24 h to allow for a sulfidation of the Cu. The
sludge was dewatered, dried at 105 °C and incinerated in a pilot
scale bubbling bed type fluidized bed reactor resulting in the
ashes ASH NP from SLG NP and ASH AQ from SLG AQ. A
detailed description of the samples and their generation can be
found in Wielinski et al.>® The samples SLG NP, SLG AQ, ASH NP
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and ASH AQ correspond to D-NP, D-AQ, D-NP-ap and D-AQ-ap,
in Wielinski et al.>® The sludge and ash samples (ASH NP and
ASH AQ) were dried, embedded into an epoxy resin (one part
EpoFix Hardener and seven parts EpoFix Resin, both Struers) at
180 mbar (Citovac, Struers), allowed to harden for 24 h, cut into
thin sections (d = 30 um) and mounted on 1 x 1 cm® pre-cut
250 um-thick Si Wafers (TED PELLA, Inc.). Bulk Cu concentra-
tions were determined using inductively coupled plasma mass
spectrometry (ICP-MS, 7500cx, Agilent Technologies, Inc.) after
acid digestion of 10 to 20 mg of sample (2 mL H,0, and 9 mL
aqua regia for the sludge samples or 9 mL HNO; and 200 pL HF
for the ash samples) in a microwave system (ETHOS 1, MLS
GmbH) for the sludge samples and in an ultraclave (MLS
GmbH) for the ash samples. The visibly clear digests were
diluted to 50 mL in DI water. The limit of quantification (LOQ)
in the digests was 0.02 ppb, resulting in a LOQ of 0.05 mg Cu per
kg sample. Chemicals for the acid digestions (37% HCl and 40%
HF, both Merck, 69% HNO;, Roth and 30% H,0,, Sigma-
Aldrich) were used as received.

2.2 Synchrotron experiments

Synchrotron X-ray experiments were conducted at the X05LA
beamline (‘microXAS’) at the Swiss Light Source (SLS) in Vil-
ligen, Switzerland.'® A double crystal monochromator (Si(111))
was used to select the energy of the X-ray beam produced by
a minigap in-vacuum undulator. KB mirrors focused the beam
toa 3 x 3 um?” spot on the sample. The flux at the beamline is
around 2 x 10"* photons per s at a beam current of 400 mA. A
16-element (2048 channel) Silicon Drift detector (Ketek
GmbH) was used to record the XRF signals. A total of seven Cu-
K, XRF maps recorded around the Cu K-edge were collected in
‘on-the-fly’ mode for each sample (area: 500 x 500 pm?
resolution: 3 x 3 um? for the samples SLG NP, SLG AQ and
ASH AQ and of 350 x 350 um” at the same pixel resolution for
ASH NP). An additional Ti-K, XRF map was recorded from the
same areas for aligning the individual XRF maps. In the on-
the-fly acquisition mode, the sample stage was moved in the
horizontal direction perpendicular to the beam at a constant
velocity and the fluorescence detector was set to accumulate
the XRF signal over a time of 100 ms. The fluorescence
detector and the sample were placed at 90° and 10° with
respect to the incoming beam, respectively. For the normali-
zation of the spectra, one XRF map was collected below (8950
eV) and one above (9080 eV) the Cu K-edge (E, = 8979 eV). The
remaining five maps were collected at energies representing
diagnostic features observed in XANES reference spectra
(8981.0, 8986.5 8995.0, 9007.0 and 9051.5 eV) (Fig. S11). In
total, each pixel was exposed to the beam for 0.7 s.
Complementary XAS measurements of small areas
(3 x 3 um®) referred to as point-XANES (pXANES) were con-
ducted on selected points of interest (POI). POI were identified
based on the Cu distribution maps. pXANES spectra were
recorded from 8958 eV to 9060 eV corresponding to —21 eV pre-
and 81 eV post-edge. The step size was 2 eV up to 10 eV before
the edge, 0.5 eV up to 60 eV past the edge and 1.5 eV up to 81 eV
above the edge. The integration time was 400 ms per energy
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step, leading to 88 s total exposure time per POI. Three spectra
were recorded on each POIL

Reference materials (CuS (covellite), CuFeS, (chalcopyrite),
CuO (tenorite), CuSO, (copper sulphate), CuFe,O, (cuprospinel)
and Cu,O (cuprite)) were prepared as 7 mm pellets in a cellulose
matrix and measured in transmission mode using an ion
chamber (/) and a X-ray diode (I,). Reference materials of Cu(+1/
+1I) bound to humic acid were frozen into ceramic windows (4
x 8 mm) and stored in liquid nitrogen. An aliquot of the CuO-
NP that were spiked to the digested sewage sludge® were
prepared as 7 mm pellet and XAS data was acquired in trans-
mission mode. The XANES data was identical to the tenorite
XANES, which was therefore used for further evaluations.

All samples (XRF maps and pXANES) and reference materials
were measured at cryogenic temperatures using a liquid
nitrogen cryo jet (Oxford Instruments plc.) and setting the
temperature at the nozzle to 100 K.

2.3 Data treatment

XRF peak intensities (counts within regions of interest (ROI)) and
ion chamber currents were stored for each position (pixel) in
a text file. All XRF maps of each sample were aligned to the same
spatial grid using linear interpolation. The new grid was set very
close to the old grid to preserve the shape of the data as good as
possible and to keep the ROI count changes through interpola-
tion to a minimum. This alignment was necessary due to slight
variations in the acceleration and velocity of the sample stage,
which were not always correctly captured by the triggering mode
of the detector. Additionally, changes in the incident beam
energy led to sub-pixel vertical changes in the beam position. To
account for these shifts, the Ti-K, XRF maps recorded at each
energy were used to calculate the shift, which was then applied to
the Cu XRF maps.” A map typically contained around 28000
pixels ((500 x 500 um?)/(3 x 3 um? per pixel) = 27'778 pixels).
The spatial distribution of Cu was obtained by plotting the
difference between the XRF intensity at the post- and pre-edge
energy. If not stated otherwise, XRF Cu peak intensities were
pixel-wise normalized by subtracting the intensity recorded
before the absorption edge (8950.0 eV) and dividing by the
intensity recorded at the highest energy above the edge (9080 eV).
Often a first-order polynomial is used to approximate the back-
ground, which is especially relevant for measurements conducted
in transmission mode. However, our measurements were con-
ducted in fluorescence mode and we, thus, used a constant
function defined by the absorption measured close to the
absorption edge for the background removal. In some cases, at
low absorber concentrations and consequently small edge-
jumps, the pre- and post-edge background is better character-
ized by a second-order polynomial compared to a linear regres-
sion. To avoid evaluating and subsequently misinterpreting such
cases, only pixels with associated signal intensities satisfying
certain quality criteria (e.g, if the post-edge Cu-K,, XRF intensity
was at least ten times the pre-edge intensity) were considered for
further evaluation of the Cu speciation.

The spectra of the reference materials and pXANES spectra
were imported into Athena® for merging and normalization.

This journal is © The Royal Society of Chemistry 2020
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For linear combination fits (LCF) to XRF maps, the reference
material spectra were treated as described for the XRF maps.
For LCFs to the pXANES spectra data treatment was done as for
bulk XANES. LCFs were performed over the entire energy range
(—21 eV = E, < 81 eV). If not indicated otherwise, data pro-
cessing and evaluation was performed using Matlab R2017b.

2.4 Model for chemical imaging

The experimental XAS spectra can be decomposed into variable
fractions of selected reference spectra using linear combination
fitting (LCF), a technique well established in the analysis of XAS
data.’ These linear combinations are generally expressed by:

Msample = MreferencesX + g (1)

where figample contains the normalized X-ray absorption coeffi-
cients at different energies Ey, ..., E;:

ﬁsample = [/J'sample(El)s/d‘sample(EZ)s cees /J‘sample(E7)] T' (2)

The matriX MUreferences 1S @ 7 X 6 matrix containing the
normalized X-ray absorption coefficients at different energies
Ey, ..., E; of the six selected reference materials (Fig. S11). The
vector X contains the fitting parameters (with Vx; = 0) in the
experimental spectrum (fisample) Where & = [y, ..., &,]" cumu-
lates the experimental errors. The vector ¥ represent the frac-
tions of the respective spectral components (reference spectra)
best reproducing the experimental spectrum. In XAS data
analyses, multiple regression tools or least square methods
embedded in different software packages are routinely
employed to solve such mathematical problems.**** In
a previous study, we used principle component analysis and
target transform to show that our samples were best described
by a linear combination of six reference spectra.> We assumed
that the error term & contained all elements of figampie that were
not represented by the six references. The entries of the error
term were considered as noise, although they may include
contributions of additional unidentified spectral components.

2.5 Observation model for the uncertainty evaluation of
chemical images

X-ray absorption data can be measured in transmission or
fluorescence mode.* In fluorescence mode, (energy dispersive)
XRF detectors convert incoming photons into digital signals,
whose integration over time (and energy) leads to a fluorescence
spectrum that can be used to derive physical-chemical char-
acteristics of the sample under investigation.”” For the devel-
opment of an observation model describing the noise in the
data and its discussion we only consider the fluorescence mode.

Abe et al.”® recommended categorizing the noise related to
beamline properties and detection systems into (i) stochastic
noise, (ii) electronic noise, (iii) X-ray instability and (iv)
mechanical motion of sample and optics. These recommenda-
tions were not specifically drafted for chemical imaging but X-
ray absorption fine structure (XAFS) measurements in general.
For further simplification of the present computations, we
combined the points (i) and (ii) and points (iii) and (iv) and refer
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to them by the uncertainty resulting from the electronics/
detection system and the sample matrix-beam-interactions,
respectively. The former will be referred to by o@ (d:
detector), the latter one by aj(m) (m: matrix). The matrix uncer-
tainty cumulates all uncertainties related to the sample and the
sample stage, e.g., uncertainty derived from the linear interpo-
lation assumption (Section 2.3) correcting for the imprecision
of the stage setting (in micrometre) compared to the heteroge-
neities within the sample and the dimension of the beam
(here 3 x 3 pm?). Time dependencies were neglected as all
measurements were performed with constant integration times.
By ‘uncertainty’ we refer to the standard deviation of a normal
distribution with the mean at the determined value of the
normalized X-ray absorption coefficient. This will be discussed
in detail in the following paragraphs.

To derive the distribution of the uncertainty we evaluated
a Cu-K,; and Cu-K,, emission spectra recorded by an energy-
dispersive fluorescence detector. While the Cu-K,;, emission
spectrum can be described by multiple narrow Lorentzians,**
the geometry of the recorded fluorescence peak is mainly
determined by the energy resolution of the detector® (black
curve, Fig. 1a, in more detail in Fig. S37).

The detector noise can never be smaller than zero counts and
the detection system is tuned such that most likely zero counts
occur during a blank measurement. Non-zero measurements
are induced through, e.g., background scatter.?® Therefore, we
can approximate the distribution of counts by an exponential
distribution. To represent the detector induced uncertainty,
a random sample drawn from an exponential distribution
parameterized by A is added at each point in E; (or each channel
of the detector, compare Fig. 1a, grey curve).

Signaldetector(Ei) ~ A CXP(_/\ X y) (3)
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Note that we use the tilde ‘~’ to indicate that a random
sample was drawn from a distribution. The expected signal can
now be described as a function of E; (Fig. 1a, red curve):

Signalexpected(Ei) = Signalcalculated(Ei) + Signaldetector(Ei) (4)

Signalcajculatea refers to the calculated signal as a function of the
energy E; (black curve, Fig. 1a). The energies included in the
data evaluation, often referred to as regions of interest (ROI) can
be selected by the user (grey vertical lines, Fig. 1a). The ROI
comprised a specific number of XRF detector channels Nge N.
To obtain the intensity of the measurement (I, the index k
represents the k-th measurement on the same spot), we sum
over the measured signal at the discrete energies E; 5 n.:

Ng
I = Z Signalexplectedﬁk(E,-) (5)
i=1

i=

The intensity I; (red shaded area, Fig. 1a) can be converted to
the normalized X-ray absorption coefficient for evaluation.
Further, the intensity I, can be separated into a contribution
from the absorber in the matrix ™) and a contribution from the
detection system If(d), where usually If(m) > If(d). However, If(d) can
still be relevant in very dilute samples.?

Ng Ne
d : .
Ik = Ilim) + 115 ) = Z Slgnalcalculatedtk (EI) + Z Slgnaldeleclor.k (E')
i=1 i=1
(6)
According to our model, and assuming that the measure-

ment is repeated k times at the exact same spot on the sample
and neglecting beam damage, I{™ of each repetition will have

b | [F=smulated data P o< I

Frequency
B

Intensity (1)) (or fyeasured)

(@) Graphical representation of the observation model. The black curve represents the calculated Cu Ko fluorescence signal

(Signaleaicuated) reproduced from Sun et al.,*® the grey curve represents the signal related to detector noise (Signalgetector) @nd the red curve
represents the expected signal (Signalexpected = SigNalcaicutated + SigNalgetector)- The red shaded area between the two vertical grey lines £; and En,
represents the intensity /, which corresponds to the integration of the expected signal (Signaleypectea) OVer all detector channels between £; and
Ey,. (b) Histogram of the frequency of occurrence of intensities /. Contributions to /, were balanced between 1™ and 19 thus neither
contribution dominated the other. The dotted lines indicate the mean value and 4+ one standard deviation. Although the computation was done
for I, the distribution also represents the distribution of pmeasured. PECaUSE, 1 x [, where the mean is umean and the standard deviation is a}m) +9
(compare egn (8)).
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the exact same value (fluorescence is a stochastic process as
well, however its variance is small compared to the processes
discussed further down and not considered here). In contrast,
1Y (contains stochastic and electronic noise) will vary slightly
as this value was sampled from an exponential distribution in
each detector bin. In practice, however, the monochromator is
set to a specific energy and the stage is moved with a given
velocity line by line. I; is obtained by integrating the signal
over a selected time period. The ‘width’ of a pixel is calculated
as the product of the scan speed and the integration time
(VstageAtintegration = Whpixel)- After completion of one XRF map at
a certain energy, the energy is changed and an additional XRF
map is recorded, etc. Ideally, the stage should be located at the
exact same position at time ¢ for every energy map. However,
the locations of the stage will vary slightly, and even the
smallest deviations between positions of consecutive energy
maps will result in different ‘absorber environments’ of
a specific location (pixel) at different energies. These differ-
ences, unfortunately, cannot be corrected entirely (Section
2.3). This situation is comparable to XAS at standard XAS
beamlines at advanced synchrotron facilities with beam
extensions of a few hundreds of micrometres, where the X-ray
beam may slightly shift or change spatial flux density as
a function of the energy and even tiny heterogeneities,
diffraction artefacts or ‘pinholes’ in the sample can distort the
absorption spectrum.

Furthermore, minor variations in Iﬂcm) may arise from, e.g.,
resonant X-ray inelastic scattering (RIXS) at the absorber or
elastic and inelastic scattering at any matrix element.”®***” In
RIXS, the splitting of the photon emission energy at pre-edge
energies of conventional XANES measurements as previously
observed for CuO*® may eventually increase the uncertainty in
the pre-edge region. However, the distortion introduced by the
RIXS contributions is small compared to the intensity of the
absorption edge and further obscured by the energy resolution
of the XRF detector.**®* The removal of spectra distorted with
contributions from elastic and inelastic scattering is discussed
in Section 2.7. Differently, the change in the mean X-ray pene-
tration depth before and after the absorption edge at spots with
strong absorber concretions that extend into the Z direction,
e.g., over the total thin section height, might artificially enhance
the contribution of the XRF intensity on the low energy side of
the edge. This may be important, especially if the speciation
changes in Z direction.

The resulting distribution of I; to some extent depends on
the assumption for the variation of I{™. However, the tendency
towards a normal distribution is imposed by the variation of
1Y, The spatial deviations of the stage position from the
intended position between consecutive energy maps can be
approximated by a normal distribution indicating a close to
zero mean displacement (7 x 10”7 um) and a standard devia-
tion of 3 x 10~* um (Fig. S21). Thus, for 95% of all pixels, the
displacement is less than 1/2300 of the side length of a pixel.
However, X-ray absorption is extremely sensitive to the absorber
concentration and coordination. Therefore, larger displace-
ments from the exact location of the pixel relative to the beam
induce larger uncertainties. This consideration qualifies the

This journal is © The Royal Society of Chemistry 2020
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selection of a normal distribution to describe the uncertainty in
1™, Also, a normal distribution is most suitable to capture the
sum of all uncertainties of the processes that were deemed
relevant previously but cannot be assessed in detail. *® In plain
language, the size of the area underneath the black curve
between the grey horizontal lines is sampled from a normal
distribution (Fig. 1a). The result of the listed effects can be
illustrated if k = 1,2, ..., 10" synthetic replicate measurements at
one pixel are simulated and one arrives at another normal
distribution (Fig. 1b).

By collecting sufficient repetitions of 15{") + ISCd), the mean of I,
and sum of two parameters oj(m) and ¢'9 can be obtained (red
dotted lines, Fig. 1b). These describe the most likely and mean
values of the uncertainty introduced by different elements of the
beamline. The uncertainty aj(m) will be different for each map j,
but ¢@ will be the same as long as the experimental setup
remains unaltered. The uncertainty in the X-ray absorption
coefficient (u) can be derived as outlined below.

I
Iuocl—zoc]k (7)

The value of I, is obtained using an ion chamber and thus
the uncertainty in the measurement of I, is very small and can
thus be neglected here. Due to the linear relationship between u
and I; the uncertainty in u can also be described by a normal
distribution. Thus, any measured normalized X-ray absorption
coefficient (Umeasurea) caN be sampled from a normal distribu-
tion (N) where the mean is the corresponding, (presumably)
true normalized X-ray absorption coefficient (#mean) and the
standard deviation reflects the sum of the normalized uncer-
tainties introduced by the matrix and the detector:

i
Mmeasured ™~ N(ﬂmeana [J§m) + O'(L )]) (8)

Eqn (8) indicates that the total uncertainty (aj(m] +0@)is an
absolute quantity. However, in the present study, the X-ray
absorption coefficients u were normalized to values between
0 and 1, hence uncertainties obtained for different datasets are
comparable.

Due to practical constraints (e.g. available beam time, beam
damage), XRF maps at a given energy were only recorded once.
This, however, hampers the determination of the measurement
uncertainty through assessing the standard deviations. Conse-
quently, we cannot determine the uncertainty directly related to
the XRF intensities, only the uncertainty relative to a LCF result.
Therefore, a proper choice of spectra from reference materials is
critical for capturing the XAS signal originating from Cu species
in the sample (compare Section 2.4 and eqn (1)). In this section,
we argued that the uncertainty related to XRF signal production
is comparable for each XRF measurement at every energy for all
pixels. Thus, Bayesian inference can be used to evaluate the
uncertainties according to eqn (8). We performed Markov Chain
Monte Carlo (MC) Simulations using JAGS (“Just Another Gibbs
Sampler”) Version 4.3.0, based on BUGS (“Bayesian inference
Using Gibbs Sampling”),* through the R library “rjags”*® in
RStudio Version 1.1.456 under R Version 3.4.4 (ref. 41) to
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quantify a}m) and o9, Details of the computation and the
computer code are available in the ESI (Section S57). Briefly, in
the MC, the standard deviations aj(m) and 0@ (eqn (8)) are
treated as two normal distribution that are each characterized
by a mean and standard deviation, which are to be determined
(eqn S3 and S4+).

2.6 Synthetic data for model testing and calibration of the
data interpretability

For model testing a synthetic dataset was prepared that covered
a large variety of combinations of the six reference spectra. For
each synthetic dataset, we created 1000 pixels (measurements
or data points) where the (input) fractions were sampled from
a Dirichlet distribution.

Zx,- =1 with Vx;=0 9

i=1
A linear combination reconstruction of the normalized X-ray
absorption coefficient was performed (eqn (1) without ¢) at
the seven energies at which XRF maps were recorded (Fig. S17).
Finally, the normalized X-ray absorption coefficients were
modified by the introduction of variable magnitudes of noise
according to eqn (8).

2.7 Quality criteria and benchmarking

Fit quality benchmarking was performed using the previously
described synthetic datasets augmented with specific quantities
of uncertainty (noise) (Fig. S71). Thereafter, LCFs were per-
formed to each pixel in each dataset, resulting in output frac-
tions. The larger the uncertainty added to a dataset, the lager
the expected discrepancy between the input and the output
fractions. The generated input fractions of each data point
(pixel) were sorted by their weight and compared to the
computed output fractions, which were equally sorted. A score
ranging from 0 to 6 was assigned to each pixel reflecting the
agreement between the sorted input and the output fractions. A
zero means that the first (largest) fractions is wrongly assigned,
an one means that the largest fraction is correctly assigned, etc.
Finally, a six means that the fractions of the reference spectra
used for the LCF fits decreased in the same order for the input
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and for the output fractions. The scores of the total dataset were
then averaged. Furthermore, the percentage of pixels was
calculated, for which the reference spectra with the largest
spectral component (reference material spectrum) contributing
to the LCF fit was correctly identified (score = 1). The scores and
the percentage of pixels (Correct largest Spectral Component
Identified: CSCI) as described above can be used to assess the
quality of the fits at different levels of uncertainty. Arguments in
the favour of the introduction of the score and CSCI are given in
the ESI (Section S67).

3 Results and discussion
3.1 Validation of the uncertainty analysis technique

3.1.1 Recovery of the uncertainty from synthetic data. A
synthetic dataset with four times 1000 pixels (or spectra) was
compiled according to Section 2.6 with ¢/ = 0.1 and aj(m) =0,
0.01, 0.1, 0.2]. In this way, 1000 pixels contained an uncertainty
of ¢ + ¢{™ = 0.1 + 0 = 0.1, the following 1000 pixels of ¢‘¥ +
o™ = 0.1 + 0.01 = 0.11, etc. Distributions of the noise (aj(m) and
o@) and the LCF fractions of reference materials (¥;) were
recovered with the MC approach by sampling 10° times from
the model per pixel after initiating the model for 2 x 10° iter-
ations. The long initiation phase ensured sampling under
constant conditions. With this approach, the introduced
uncertainties in synthetic spectra were successfully reproduced
(Fig. 2), although the recovered values for the noise were slightly
higher compared to the noise in the synthetic dataset (=5%).
Also, a correlation between o9 and a}m) was evident: lower
values of ¢'¥ led to higher values of aj(m) and vice versa (Fig. S87).
This is caused by the linear dependence of these two parame-
ters, which add up to the same uncertainty (eq. (8)). As
a consequence, all aj(m) and ¢'¥) were subsequently combined to
@+ oj(m) = 0;. Recovering g; from four additional datasets with
a; = [0, 0.01, 0.1, 0.2] during 10 repetitions yielded o; = [0.0014
+ 8 x 10°% 0.0103 + 10™*, 0.0988 £+ 2 x 10~ %, 0.2032 + 5 X
10~*]. The standard error varied between 1.87 x 10~ and 1.38
x 1072 These results demonstrate that our approach recovers
uncertainties in the synthetic dataset with high precision
(standard error = 1.4%) and accuracy (relative deviation =
1.6%). The dataset o; = 0 was not included in the evaluation of

0.30 T T T T T
025 M- 1
] et
-
S 0.15F o
s
[
0.05 H
0.00 LR - alne | asatlln

c@=01 o™ =0.00

oM =0.10 o™ =0.20

Fig. 2 The introduced uncertainty (x-axis) versus the recovered uncertainty (y-axis). Data shown are the result of ten replicates of the identical
experiment. Each shade of grey is associated with one replicate. In each replicate experiment, the introduced uncertainties ¥ =0.1and a}”" =
[0, 0.01, 0.1, 0.2] were recovered for four times 1000 pixels. The horizontal, dotted lines indicate the introduced uncertainties of ¢4 = 0.01,

¥ and ¢'¥ = 0.10 and ¢y = 0.20.
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the accuracy of the uncertainty as relative deviations were
difficult to calculate.

3.1.2 Recovery of the input fractions from synthetic data.
In this section the recovery of the correct spectral components
of the synthetic XAS spectra with a well-defined uncertainty
ranging from 0 to 0.20 (g, levels according to Fig. 3 abscissa
and Table S1}) were evaluated. The procedure follows the
previously discussed workflow (Sections 2.6 and 2.7, outlined
in Fig. S77). In the absence of noise, and using the same
reference spectra as in the synthetic data, the score reached
1.742 and the CSCI was 72.4% of the pixels (Fig. 3a and b,
black circles). Performing LCF using a sequential quadratic
programming (sqp) method*** (implemented through the
function fimincon in Matlab, only constraint: Vx; = 0) the
score for the noise-free data increased to about 3 (Fig. 3, black
triangles) but the CSCI decreased to about 60%. Other
commonly used algorithms, e.g., simplex,** yielded much
lower scores (data not shown). At noise levels in the synthetic
spectra of 0.01 or higher, the scores and CSCI values resulting
from the MC approach and the sqp method were almost
identical (Fig. 3). However, both the score (a) and the CSCI (b)
exponentially decreased with increasing noise. Due to the
similarity of the Cu(u)-O spectra (tenorite, cuprospinel and
copper sulphate) and the Cu-S spectra, (covellite, chalcopy-
rite and the amorphous cupper sulphide*®), the respective
spectra were treated interchangeably and referred to as
‘Cu(n)-0’ and ‘Cu-S’ combined. Through this procedure, the
scores and the CSCIs significantly increased (Fig. 3). Although
the score still showed a decreasing trend with increasing
uncertainty, it remained above 1.5 at the highest uncertainty
(¢ = 0.2). Comparable results were observed to the CSCI, and
in around 70% of all ‘measurements’, the most important
spectral component was identified correctly. This indicates
that the quality of the spectra allow to discriminate between
Cu(u)-O and Cu-S species in the experimental samples,
however, a further differentiation into individual Cu(u)-O and
Cu-S species may not be possible. To some extent this is
related to the spectral similarity of different Cu(un)-O/Cu-S

3.5
a —©— Individual references (MC)
f —&— Cu(ll)-O and Cu-S combined (MC)

= 3.0 —P— Individual references (sqp)
2 —>— Cu(11)-O and Cu-S combined (sqp)
o
» 2.5
c
o
g 2.0
&=
B
O 15F
S
=
o 1.0
Q
*

0.5

0.0 8 + y

0.00 0.05 0.10 0.15 0.20

Uncertainty, o

Fig. 3
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reference materials which may be compensated by recording
additional XRF maps at different energies. We propose to use
the described procedure to evaluate expected score/CSCIs at
variable energies and levels of uncertainties when planning
synchrotron chemical imaging experiments.

3.2 The uncertainty in the case study datasets

The uncertainties in four experimental datasets recorded on
digested sewage sludge spiked with CuO-NP or CuSO, and the
resulting ashes were assessed using the approach described
above. The levels of uncertainty were then compared to those in
Section 3.1.2 and information on the quality of the extracted
LCF fits were obtained. Briefly, XRF maps of the CuO spiked
sludge (SLG NP), the CuSO, spiked sludge (SLG AQ) and ash
derived from SLG AQ (ASH AQ) were 500 x 500 um? in size with
a 3 pm lateral resolution. The map of the ash derived from SLG
NP (ASH NP) was 350 x 350 um”® with the same lateral
resolution.

For initial and comparative analyses, all pixels with a non-
normalized (NN) post edge XRF intensity of at least three
times the NN pre-edge XRF intensity were included in the
analysis. The correlation between aj(m) and ¢@, previously
observed in the synthetic data, was also observed in the exper-
imental data (Fig. S9). Therefore, we combined these uncer-
tainties into crj(cr(d) + O’J(m) = ;) and found o; = [0.18, 0.17, 0.13,
0.33] for the experimental datasets SLG NP, SLG AQ, ASH NP
and ASH AQ, respectively (Fig. S1071). Similar to the analysis of
the synthetic datasets, the uncertainty was represented by
a normal distribution around the values of g;. The uncertainty
estimated for the two sludge samples was almost identical,
likely due to the comparable sample matrix and Cu concentra-
tions. The larger o; of ASH AQ may be explained by the granular
texture of the ASH AQ sample resulting in an investigated area,
dominated by an ash grain with rather low Cu concentrations.

Based on the results obtained with the synthetic dataset,
uncertainties in the range of 0.13-0.18 as obtained for the
experimental dataset translate into Cu(u)-O and Cu-S
combined scores of around 1.5 and CSCI between 65 and

100

CSCI (%)

20
0.00

0.10 0.15

Uncertainty, o

0.05 0.20

(a) The score (number of correct fractions/pixel) and (b) CSCI (Correct largest Spectral Component Identified) versus the uncertainty

introduced to the data. Black lines indicate that each reference was treated individually, grey lines indicate that each Cu(i)-O and Cu-S reference
was treated as interchangeable as discussed in the text. Circles indicate that the score and CSCI was determined using the Markov Chain (MC),
triangles represent data determined using sequential quadratic programming (sqp).
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Table 1 Characteristics of the chemical images displayed in Fig. 4. Scores and CSCls were determined by linear interpolation from values

displayed in Fig. 3

Map SLG NP
Threshold type Relative (¢)
Level (¢ or x) 10

# pixels included 24 278
Pixels included, % 87.05
Uncertainty 0.18
Score (individual references) 0.36
CSCI (individual references) (%) 25.2
Score (combined references) 1.51
CSCI (combined references) (%) 68.22

70%. An uncertainty of 0.33, leading to a score of <1.5 and
a CSCI < 60% (ASH AQ), however, is too large to make reliable
statements concerning the speciation of Cu in the sample
(Section 3.1.2).

To obtain more reliable datasets associated with a lower
uncertainty, we introduced a second criterion for the inclusion
of individual pixels. In addition to the ‘relative threshold’ (NN
post edge XRF intensity = ¢ times NN pre edge XRF intensity),
where ¢ varied between 3 and 50, an ‘absolute threshold’ (NN
post-edge XRF intensity = x) was introduced and varied
between 500 and 1000.

The uncertainties determined at different levels of ¢ or x are
reported in Fig. S11 and Table S2.1 Our results suggest that it is
important to quantify the uncertainty as a function of different
pixel inclusion criteria when analysing different samples. In
each dataset, we had to make a compromise between the
number of included pixels (spectra) and the resulting uncer-
tainty by trying to include as many pixels as possible while
keeping the uncertainty as low as possible. The results of this
evaluation are tabulated (Table 1) and the chemical images
based on the selected inclusion criteria are visualized (Fig. 4)
and discussed in the following section.

Furthermore, it can be shown using the results from SLG NP
that binning multiple pixels into larger pixels reduces the
uncertainty in the dataset (Table S3t). Binning of 2 x 2 = 4
pixels reduces the uncertainty drastically (Ac = 0.04). A further
increase of the binning from 2 x 2 = 4 to 4 x 4 = 16 pixels
results in a linear decrease of o (Fig. S127). Increasing the pixel
binning to 5 x 5 = 25, however, only results in a moderate
decrease in uncertainty. The large initial decrease of the
uncertainty observed when 2 x 2 pixels were binned may be
explained by the smoothing of residual shifts from the sample
stage setting and from the beam location shift that are now
small relative to the (binned) pixel size. The further decrease
with increasing binning of pixels results from the improved
counting statistics, which however, is associated with a decrease
in the lateral resolution and in agreement with the dose limited
resolution criteria.*®

3.3 The spatial distribution of the Cu speciation in sludge
samples and corresponding ashes

Cu concentrations in the samples SLG NP, SLG AQ, ASH NP and
ASH AQ were 1120 ppm, 1340 ppm, 1860 ppm and 2400 ppm,
respectively. Based on the difference between the non-

574 | J Anal At. Spectrom., 2020, 35, 567-579

SLG AQ ASH NP ASH AQ
Relative (¢) Absolute (x) Absolute (x)
10 1000 3000
15 305 9198 6048
56.01 64.95 21.68
0.18 0.09 0.13
0.36 0.45 0.39
25.2 32.48 28.00
1.51 1.77 1.62
68.22 78.80 72.76

normalized intensities at the post- and pre-edge energy (AL),
the distribution patterns of Cu were obtained (Fig. 5). In the
sludge samples, the Cu distribution was uneven and textural
differences were observed between the SLG NP and the SLG AQ
samples. The Cu concentration pattern of SLG NP appeared
dotted with spot sizes between 10 and 20 um (yellow/orange
spots against the green/blue background, Fig. 5a). In contrast,
the Cu distribution in the SLG AQ followed Schlieren-like
structures with a few larger objects with diameters up to 70
um (red circles, Fig. 5b). These observations are consistent with
results from previous studies investigating the spatial Cu
distribution in fresh biosolids, which also showed an uneven
Cu distribution.”* The Cu distribution patterns in the sludge
are in stark contrast to the Cu distribution patterns observed in
both ash samples, where Cu was more evenly distributed in the
ash grains (Fig. 5c¢ and d). Therefore, the textural differences
observed in the sludge samples largely disappeared during the
incineration process.

LCF to bulk-EXAFS on the same samples indicated that SLG
AQ can be described by 80% Cu,S (amorphous) and 20% chal-
copyrite (Table 2).* For SLG NP, identical analyses returned
a similar fraction of Cu,S (81%), but in addition to chalcopyrite
(11%) a comparable fraction (8%) was associated with Cu(u)-O
references (tenorite and copper sulphate).? To compare the
integrated LCF fractions determined from the spatially resolved
XAS data with the fractions derived from bulk EXAFS LCF, the
spatially resolved XAS data were weighted with the intensity
difference between the pre- and post-edge (AL).

Using the selected criteria for including individual XANES
spectra (Table 1), chemical images that discriminate between
Cu(u)-O (yellow pixels) and Cu-S (blue pixels) were extracted
from each dataset (Fig. 4) and their integrated LCF fractions
were evaluated (Table 2). In general, the integrated LCF
results of SLG NP and SLG AQ were comparable, with 78 and
80% of the integrated experimental spectra assigned to the
Cu-S reference spectra and 22% and 20% assigned to Cu(u)-O
reference spectra, respectively (Table 2). If each pixel is binary
associated with either Cu-S or Cu(u)-O spectra (Fig. 4) the
fractions of Cu-S were 96% (SLG NP) and 95% (SLG AQ),
respectively (Table 2).

In the chemical images of both sludge samples Cu was
dominantly coordinated to sulphide, represented by the blue
colour (Fig. 4a and b). However, the LCF analyses of the bulk
spectra, returned a higher fraction of Cu(u)-O species for the

This journal is © The Royal Society of Chemistry 2020
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sludge samples spiked with CuO-NP and it was previously
speculated that either the formation of Cu,S coatings pro-
tected the CuO core from further sulfidation and/or that the
agglomeration of CuO-NP substantially decreased the sulfi-
dation kinetics.*® The resolution (3 x 3 pum?®) used in the
present experiments does not allow to assess whether CuO-
Cu,S core-shell structures formed on an individual particle
level, however, agglomerates of several particles in the sludge
were well within the resolution limit of the experimental
setup. In SLG NP, round Cu(u)-O objects were observed
within the Cu-S matrix (red circles, Fig. 4a). Two of these
objects were also associated with elevated Cu concentrations
relative to the background Cu (red circles, Fig. 5a). We
interpret these structures as agglomerates of CuO-NP that
remained untransformed during the anaerobic digestion
process. The other two objects were not associated with
significantly elevated Cu concentrations (black circles,
Fig. 5a) and may, therefore, represent CuO-NP, where Cu
remained untransformed due to locally limited/restricted
availability of bisulfide or Cu bound to O functional groups

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
X-Coord., [mm]

Y-Coord., [mm]
o
»
(5]

2.50 2.55 2.60
X-Coord., [mm]

2.40
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from the organic matrix of the sludge. A chemical image with
binned pixels (3 x 3 = 9) confirmed these observations at
a lower resolution but with higher score and CSCI (Fig. S137).
The three prominent spots observed on the sample SLG AQ
reflecting locally elevated Cu concentrations (red circles,
Fig. 5b) did not translate into local Cu(u)-O clusters (red
circles, Fig. 4b) and may thus likely reflect agglomerates of
Cus particles precipitated during the CuSO, spiking.

The locations of recorded pXANES are indicated by a series of
red ‘x’ (Fig. 5 and 4). The spectra, reference material spectra,
LCFs, resulting fractions and an in-depth analysis and discus-
sion are given in the ESI (Section S8t). Briefly, the results
derived from the evaluation of pXANES were consistent with the
observations made on the chemical images (Fig. 4). In SLG NP,
the pXANES p53-p55 showed coordination of Cu(u) to O, all
other pXANES recorded on this sample revealed coordination of
Cu to S. In SLG AQ, all recorded pXANES suggest Cu associated
with S. In both ash samples the pXANES revealed strong local
variations of the Cu oxidation state.

100 pm

-2.45 -2.40 -2.35 -2.30 -2.25 -2.20 -2.15 -2.10 -2.05
X-Coord., [mm]

Fig.4 Chemicalimages of the experimental samples ((a): SLG NP, (b): SLG AQ, (c): ASH NP and (d): ASH AQ) using combined references (yellow:
fraction (Cu(i)-0) > fraction (Cu-S), blue: fraction (Cu(i)-S) > fraction (Cu-0)) and applying the exclusion criteria listed in Table 1. White pixels
reflect excluded data points. The CSCls were 68, 68, 79 and 73% for SLG NP, SLG AQ ASH NP and ASH AQ, respectively. The coordinates (in mm)
represent the coordinates relative to the beam in the centre of the sample. The red crosses and labels indicate the locations of the recorded
pXANES. For their assignment to individual spectra, refer to Fig. 5. LCF was performed using a sequential quadratic programming (sqp)

method.*243
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Transmission electron microscopy and dynamic light
scattering measurements did not show agglomeration at the
micrometre scale (10-20 um) in the spiking dispersion.?
Therefore, the results of the present study support the
hypothesis that the agglomeration occurred after CuO-NP
were spiked to the digested sludge. Furthermore, the results
showed that although the speciation of Cu in the two sludge
samples was comparable, important textural differences
based on the Cu concentrations (dotted versus Schlieren-type
structures and large agglomerates) remained. Such differ-
ences were only observed in the sludge and were absent in the
ash samples.

The Cu speciation in sludge samples spiked with either
CuO-NP or CuSO, converged with the speciation of Cu related
to presence of Cu in unspiked sludge within hours.*® Never-
theless, spatial heterogeneities caused by different forms of
Cu (nanoparticles vs. dissolved) added to the wastewater
stream might outlive wastewater treatment including anaer-
obic digestion. A similar convergence of speciation has been
observed for Zn during anaerobic sludge digestion.*® A recent
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study showed that lysimeter aged sludge obtained from a pilot
wastewater treatment plant (WWTP) spiked with ZnO-NP
inhibited the reproduction of earthworms to a higher degree
compared to sludge produced by spiking dissolved Zn>" to the
same pilot WWTP.** The Zn speciation as well as the total Zn
concentrations were almost identical in both sludges. The
authors, therefore, speculated that the morphological or
spatial differences between the ZnS phases formed after
spiking ZnO-NP or ZnSO, to the pilot WWTP were responsible
for the observed differences in growth inhibitions.>* However,
suitable tools to investigate spatial heterogeneities at the
micrometre scale were not available and the hypothesis
remained speculative. As Cu and Zn both classify as chalco-
phile transition metals®* the results from this study on Cu may
also be transferrable to Zn. Structural differences of the
sludge at the micrometre scale or even below may have
influenced the Zn bioavailability and, thus, also have
contributed to the increased eco-toxicity of the ZnO-NP-spiked
versus the dissolved Zn spiked sludge reported in the study of
Lahive et al.>®

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
X-Coord., [mm]

d ] ASH AQ

P19
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Fig. 5 Anapproximation of the Cu concentrations in the samples ((a): SLG NP, (b): SLG AQ, (c): ASH NP and (d): ASH AQ) reflecting the difference
between the non-normalized intensity of the post- and pre-edge energy (A/)). The intensities are displayed on a logarithmic scale. The coor-
dinates (in mm) represent the coordinates relative to the beam in the centre of the sample. The red crosses and labels indicate the locations of the
recorded pXANES. The pXANES, the reference material spectra and the results of a LCF analysis are given in the ESI (Fig. S14-S20%). Where
multiple pXANES were recorded close to each other, the labels were combined, e.g., p2-p6, p9 in the sample ASH AQ. The location of the

individual pXANES areas are given in the ESI (Section S87).
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4 Conclusion and outlook

We presented a model and related algorithms to quantify the
uncertainty associated with hard X-ray derived chemical
images. The model and algorithm were evaluated using
a synthetic dataset. Two newly introduced data quality bench-
marks (score and CSCI) to assess the reliability of the chemical
images were evaluated using a synthetic dataset and applied to
experimental data of a case study. Eventually, the model/
algorithms can also be adapted to evaluate uncertainties asso-
ciated with data interpretations in other settings where LCF
methods are used, e.g., electron energy loss spectroscopy.*

The model/algorithm also offers a suitable tool for planning
and conducting chemical imaging experiments. To the end of
the latter, multiple XRF maps of a small area can be recorded
and the presented algorithms can be used to quantitatively
evaluate the resulting uncertainties and noise levels associated
with LCF data interpretations under the given end-station
settings. The model output can then be used to tune the end
station settings to achieve a desired level of spectra interpret-
ability (decision tree in Fig. S257).

Progress in the quantitative assessment of the uncer-
tainties may further enhance the interpretability of chemical
images derived from synchrotron based hard X-rays. As
demonstrated in this study, the evaluation and interpretation
of chemical imaging data requires a detailed understanding of
the underlying uncertainties, especially at short dwell times.
The present model is purely empirical and future modifica-
tions will be directed towards a more rigorous treatment of
physical processes (e.g., undulator based spatial beam struc-
ture development with energy changes, beam polarisation,
elastic and inelastic scattering, RIXS, self-absorption, beam
damage, etc.), which will reveal future possibilities and also
current limitations associated with the data interpretation of
chemical images of heterogeneous samples with low absorber
concentrations.

Code availability

The computer code extracting the uncertainty (¢) from
(linearized) chemical images can be found in the
Eawag Research Data Institutional Repository (ERIC) under:
https://doi.org/10.25678/0001MF. The package includes
a comprehensive README file and the data displayed in
Fig. 3, 4, S12 and S13.}
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