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Single particle inductively coupled plasma mass spectrometry (splCP-MS or SP-ICP-MS depending on the
author) is becoming an important tool for the characterization of nanoparticles (NPs). The method allows
determining the size, size distribution, and particle number concentrations of NPs in suspensions after
a mere few minutes of measurement. This review is modeled after the concept of “an ideal method for
atomic spectroscopy” introduced by Gary M. Hieftje in his publication dedicated to Howard Malmstadt.
This review discusses the instrumental developments in spICP-MS of recent years step-by-step, from the
sample introduction system to the detector. The authors identify necessary improvements and suggest
directions for further developments which have the potential to bring the method closer to “an ideal
method for atomic spectroscopy”. The review also discusses the literature on coupling spICP-MS to
separation and fractionation techniques including capillary electrophoresis (CE), field flow fractionation
(FFF), and differential mobility analysis (DMA). The second part of the review is dedicated to the
applications of spICP-MS. Key steps in sample preparation and selected instrumental conditions that
were used in the published literature are summarized in a tabular form. Most frequently, spICP-MS is
used for silver (Ag), gold (Au), and titanium dioxide (TiO,) nanomaterial analysis. Data acquisition was
typically performed with millisecond dwell times in the past while a time resolution of hundreds of
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coupled to spICP-MS for nanomaterial applications and funda-
mental studies thereof.
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1 Introduction
1.1 Nanomaterials

Nanotechnology is a rapidly developing field of science which
utilizes materials and their properties at the nanometer (10~°
m) scale. The basic idea of nanotechnology has been formu-
lated already in 1960 by Richard P. Feynman: “What would the
properties of materials be if we could really arrange the atoms
the way we want them?”” Indeed, materials at the nanometer
scale possess unique properties different from those of
chemically identical bulk materials. The fact that matter has
distinct size-dependent properties led to the development of
colloid chemistry. The first systematic studies in this field
were conducted by Michael Faraday when he described the
properties of “ruby” gold (Au) suspensions in 1857.* “The
state of division of these particles must be extreme; they have
not as yet been seen by any power of the microscope.”® This
statement is proof that the task of analyzing Au nanoparticles
(NPs) was a challenge. The variety of states and properties of
nanomaterials still presents a challenge for their character-
ization in analytical chemistry, even after more than 150 years
after the term “colloid” was first coined.* The invention of
electron microscopes in the 20th century has allowed scien-
tists to visualize nanomaterials (i.e. particles of any shape
with at least one dimension of a size between 1 nm and 100
nm). Although microscopy-based techniques became prom-
inent nanomaterial analysis tools, they have some limita-
tions, namely, difficult sample preparation, limited area of
analysis, and measurement of projections (not three-
dimensional imaging). Therefore, alternative
methods are needed.

analysis

An alternative method for nanomaterial characterization
is single particle inductively coupled plasma mass spec-
trometry (spICP-MS, also referred to as SP-ICP-MS depending
on the author).” The technique utilizes a standard ICP-MS
setup, and makes use of time-resolved detection to probe
NPs that are introduced into diluted suspensions (ideally)
one by one. Since the first publications, the field has grown
rapidly (Fig. 1) and, in the authors’ estimation, will continue
to grow. There have been several reviews focusing on the
topic of spICP-MS,*® discussing the principles, potential,
limitations, and selected applications. The goal of this review
is to critically discuss the latest developments and remaining
challenges of spICP-MS and its metrology, to highlight
instrumental parameters that are important for NP detection,
and to inform the reader about the latest applications of
spICP-MS when used with and without particle fractionation
methods.

1.2 Principle and early development of spICP-MS

The basic principle of spICP-MS is that NPs can be detected
individually if they are introduced sequentially into diluted
suspensions and the detector readout frequency is sufficiently
high. The constituents of a given single NP generate a discrete
pulse of ions at a corresponding mass-to-charge ratio (m/z) on
the order of a few hundreds of microseconds above the
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Fig. 1 Number of spICP-MS publications according to the Web of
Science database (accessed on 28 May 2019). 314 publications in total.
The search command: "SP-ICP-MS" or "SP-ICPMS” or “sp-ICPMS" or
“single particle ICPMS" or “single particle ICP-MS" or "single particle
inductively coupled plasma mass spectrometry” or “single particle
inductively coupled plasma mass-spectrometry” (the characters are
not register sensitive). Note that two publications published in 2004-
2006, which do not use the abovementioned terms, were added
manually. *The results for 2019 are incomplete.

continuous background.' The signal abundance is propor-
tional to the mass of an NP after careful calibration of the
system. NP size can then be calculated from the NP mass if an
element-specific density and particle geometry are assumed.
The frequency of the detected signal pulses can be related to the
particle number concentration (PNC) in the suspension. Over-
all, spICP-MS allows obtaining the average size, size distribu-
tion, and PNC of NPs after only a few minutes of measurement.
Quantification and calibration strategies were summarized and
described in detail in other older reviews,*® so they will be
discussed only shortly below.

The history of discrete particle detection has already been
described.® The first utilization of an ICP source for time-
resolved particle analysis was published by Kawaguchi
et al.'* In their paper, micrometer-sized particles were gener-
ated after the desolvation of monodisperse NaCl, Ca(NOj3),,
and Cu(NOj), droplets. The method was based on optical
emission spectrometry (OES) detection and intended for the
analysis of particles in air. Time resolved detection of MnCOj;
particles in model aerosol samples with ICP-OES was reported
by Bochert and Dannecker to obtain a particle size distribu-
tion.*” Later, the group of Kawaguchi adapted the technique to
ICP-MS (the commercial detector was modified) to achieve 15
times lower mass detection limits (LODs) and detect femto-
gram amounts of zinc."® This method utilized monodisperse
droplets of Zn(CH;COO), and Pb(NO3), suspensions that were
dried to produce particles, which were then introduced into
the ICP-MS. Two years later it was shown that instrumental
conditions significantly affect the resulting particle signal.*
For example, the combination of radio frequency (RF) power,
sampling position, and carrier gas (also referred to as “nebu-
lizer gas”) flow were shown to influence the signal. For Zn-
containing particles, optimal conditions for particle
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detection were reported to be 1400 W RF power, 14 mm
sampling position, and 0.8 L min~" carrier gas flow; however,
no other elements or matrices were tested. At that time, the main
future applications for air and aerosol analysis were predicted to
be environmental studies (detection of contaminants in air) and
control of clean environments (e.g. clean rooms in industrial
application)."***¢ Also, the detection of particles from suspen-
sions with ICP-OES was reported.'”*® For example, Knight et al.
studied micrometer-sized particles of refractory oxides and sili-
cates.”® They pointed out that due to incomplete droplet vapor-
ization and particle ionization, the response obtained for 3-7 pm
silica particles was not proportional to the mass of the analytes.
Furthermore, the mass calibration “still has remained a problem”
when the article was published, due to a lack of commercially
available particles (detectable by ICP-OES) with narrow size
distributions.'®

A feasibility study for colloid suspension analysis with spICP-
MS was published by Degueldre and Favarger in 2003.% In the
paper, results of spICP-MS with 10 ms dwell time for the anal-
ysis of polydisperse 400 nm (median size) TiO,, 150 nm Al,O3,
400 nm FeOOH, and some natural colloids were presented. The
choice of isotopes for detection was discussed in detail because
of the mass interference experienced by light elements in
a single quadrupole ICP-MS (ICP-Q-MS), and **Ti", >’Al", *"Fe",
and *[SiO]" were chosen for NP detection in a model water
matrix. Similar studies were published by the same authors for
100 nm ZrO,," manually milled ThO, (ref. 20) and UO,,* and 80
to 250 nm Au particles.?® The studies utilized PNC of 10° to 10°
ecm?, and the method was presented as an alternative to
microscopy investigations.>**-*?

After the first publications on spICP-MS between 2003 and
2011, the total number of publications first doubled in 2012 (¢f:
Fig. 1). According to a search in the Web of Science database,
interest in this method is steadily growing and over 300 peer-
reviewed manuscripts on the topic have been published to
date. The next chapter is dedicated to the description of
improvements of the spICP-MS method and areas that require
further research and where the methodology can be further
developed in the opinion of the authors.

2 A step towards an ideal spICP-MS
method

The title and idea of the article were inspired by plenary lectures
of Gary M. Hieftje**** and his publication dedicated to Howard
Malmstadt in 2006." Howard Malmstadt's research reportedly
followed the concept of an “ideal”. He was known to first define
the qualities of an ideal “concept, method, device, or system”,
and the research itself was then aimed at overcoming the
identified weaknesses.' In the same paper,* the characteristics
of such “an ideal method for atomic spectroscopy” were
defined. These characteristics comprise, among others, the
LOD of a single atom, no spectral or matrix interference,
simultaneous multielement detection, and standardless anal-
ysis.* These ideal characteristics warrant another look here and
will be compared to performance characteristics as they are
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related to spICP-MS and NP analysis to date. The capabilities
and advances of the method along with the limitations are
critically discussed and future areas of research are identified
which would help to bring us closer to what would be an ideal
spICP-MS method.

2.1 Sample preparation

“An ideal method for atomic spectroscopy” would require no
sample preparation, and, ideally, liquid samples could be
analyzed with spICP-MS without any sample preparation. In
reality, this can be done only for model solutions (and not for
unknown samples); however, this still requires an abundance of
factors to be considered beforehand, especially when a signifi-
cant amount of matrix is present, in order not to alter the state
of NPs. Nanomaterials possess high surface energy that makes
them more reactive compared to bulk materials of the same
composition; therefore, the stability of the NP suspensions
should always be considered during storage, handling, sample
preservation, and sample preparation. Different dispersion
media or dilutions, interactions with materials of the sampling
or storage containers, storage conditions, and storage time may
alter the surface coating or size of the NPs and cause aggrega-
tion. Moreover, a certain PNC range is required for analysis to
measure the NPs individually. The required PNC range for
analysis is discussed here in detail, as it depends on a plethora
of factors (nebulization and transport efficiency, type of nebu-
lizer and sample introduction system, elemental composition
and size of the NPs etc.). If the samples are too diluted,
measurement time can be increased to enhance the number of
detected particles. In some cases, matrix interference can be
reduced by sample dilution.

Nanomaterials often come in complex matrices (e.g. solid
matrices and environmental and food samples) and require
carefully optimized sample preparation protocols for their
successful extraction and spICP-MS analysis. Table 1 presents
an overview of all papers which report sample preparation
strategies for spICP-MS sorted by the type of matrix (e.g.
animal tissue, cell cultures, body fluids, cosmetics etc.) and by
the publication year. This table is intended to help the reader
to easily grasp the experimental details. In addition, the
reader is advised that the main challenges of sample prepa-
ration are discussed in some detail in other papers and
reviews.>>?¢

It is fundamentally important when using complex matrices
to consider that the state of NPs may change due to filtering
(NPs may interact with filter membranes), species interconver-
sion (NPs may partially dissolve and form ionic species or ionic
species can be reduced to corresponding metals), extraction and
digestion procedures, or storage. At the current state of
knowledge and as it is used today, spICP-MS is considered to be
very suitable for the analysis of liquid samples without any
sample preparation but only in the case of a rather simple
matrix. In all other cases, a careful sample preparation method
development is required for the analysis of complex, in partic-
ular, solid matrices to ensure that NPs do not change in their
size, form, or aggregation state.

This journal is © The Royal Society of Chemistry 2020
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50.5 nm TiNbCN

SNb"

555 Hz

nebulizer,

and Disperbyk-

2012,

titanium

cyclonic spray
chamber

carbonitride
particles

centrifugation to

remove

dissolved iron,
dilution

“ Note that the entries are grouped by the sample matrix that is the main focus of each study. Papers that report solely on spICP-MS method development are not included.
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2.2 Sample introduction

In an ideal world, a sample introduction system would exist for
spICP-MS that features a 100% transport efficiency and a high
tolerance to all kinds of different matrices. Today, commercially
available nebulizers do not achieve a 100% particle transport
efficiency, which necessitates the precise determination of the
nebulizer transport efficiency for system calibration. Pneumatic
nebulizers achieve only approximately 0.5-2% transport effi-
ciency with a 1 mL min " sample uptake rate.”” The aerosol
transport through a spray chamber is aimed to eliminate larger
droplets, which helps to reduce the solvent load and to improve
analyte signal stability, but at the same time a considerable
amount of the analytes is also lost. An alternative to high-flow
pneumatic nebulizers (e.g. 1 mL min ' sample uptake rate)
are micronebulizers with considerably lower sample flow rates.
With micronebulizers (e.g. at a 10 uL min~* sample uptake rate)
the transport efficiency can be improved to 60 or up to 80%.*”
Micronebulizers utilize low-volume spray chambers (e.g. 15
cm?®) and help to improve the transport efficiency. For example,
a transport efficiency of approximately 93% was reportedly
achieved for 70 nm Pt NPs with a large-bore concentric nebu-
lizer and a small-volume on-axis cylinder chamber.”® A loss of
7% was discussed to be likely due to adsorption to nebulizer
and spray chamber walls, NP surface charges, and assumptions
made during PNC determination.”® In general, the higher the
sample flow of a nebulizer, the lower its transport efficiency
typically is. However, the matrix tolerance decreases from
higher to lower sample uptake rates. Micronebulizers can be
more difficult to operate and maintain due to the dimensions of
the inlet capillary (e.g. 0.15 mm),*® which might get obstructed,
and sample interchange can also be tedious. When compared to
standard pneumatic nebulizers, however, micronebulizers are
considered to be advantageous in the field of spICP-MS for low-
volume samples and simple matrices, when they are used to
interface with separation devices, or to achieve lower PNC
LODs.

Another approach to achieve high transport efficiency for
NPs is through a microdroplet generator (MDG), in which
monodisperse droplets are generated by a piezoelectrically
actuated quartz capillary.® The droplets generated at
a controlled volume and speed are transported into the ICP, and
a transport efficiency of over 95% can be achieved.*® The
advantage of the MDG introduction is that calibration may be
performed with dissolved metal standards if reference materials
of the NPs are not available.>**** Also, a combination of a pneu-
matic nebulizer and an MDG was recently reported as a means
to exchange different sample matrixes faster and to calibrate the
NP signal using traceable elemental standards without the need
to use NP reference materials.*** In this setup, the MDG was
used for system calibration, and the pneumatic nebulizer was
used for sample introduction.

A comparison of pneumatic nebulizers and MDG-based
sample introduction systems was performed in order to high-
light the advantages and disadvantages of the techniques for NP
quantification.**** It was found that losses are still possible at
the sample introduction stage affecting both NPs and dissolved
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species. Future improvements of sample introduction systems
are still needed to ensure high NP and dissolved ion transport
efficiency, robust operation, automated sample introduction,
and a high tolerance toward different matrices.

One approach to the introduction of solid samples into the
ICP-MS is laser ablation (LA). Recent research has demon-
strated a possible coupling of LA to spICP-MS.** Instrumental
parameters were optimized, and imaging of a sunflower plant
root (cross section), which was previously exposed to Au NPs
(60 nm citrate-coated, PNC: 1.83 x 10° NP mL™"), has been
performed. With 307 000 data points obtained per line scan,
the obtained results show that Au NPs retained their original
size and were concentrated on the surface of the root and
rhizodermis (Fig. 2). It is recommended by the authors of the
study “that the laser fluence is kept below 1 J cm™? to avoid NP
degradation”.*

2.3 NPs in the ICP source

When NPs enter the ICP, they would ideally get fully vaporized,
atomized, and ionized, regardless of their elemental composi-
tion, size, and matrix they are in. However, it is important to
consider differences in the physicochemical properties of the
elements (and other species such as their oxides) that the
particles are made of including boiling points and ionization
potentials. These differences are likely to result in different
optimal experimental conditions for the best spICP-MS perfor-
mance. In fact, the fundamental aspects of micrometer-sized
particles were studied by LA-ICP-MS and it was found that the
particle size can significantly affect the vaporization, atomiza-
tion, and ionization efficiency.***” While our understanding of
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Fig. 2 Image (in blue) showing the distribution of gold in a root cross
section from a sunflower plant exposed to gold NPs with a mean size
of 60 nm, overlaid with a high-resolution time-resolved signal of
a single LA-splCP-MS line scan (in yellow). The pixel size in the image is
5 x 5 pm?, and the line-scan signal was recorded every 100 ps.
Reprinted with permission from Metarapi et al* Copyright 2019
American  Chemical Society. (https://pubs.acs.org/doi/10.1021/
acs.analchem.9b00853, further permissions related to the material
excerpted should be directed to the American Chemical Society).
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the behavior of micrometer-sized particles in the ICP has
improved in recent years, the number of fundamental studies
on the effects of nanometer-sized particles in spICP-MS is still
very limited. For example, Ho et al. focused on the determina-
tion of the maximum signal intensity as a function of the ion
sampling position (frequently referred to as “sampling depth”)
for different elements in aqueous solution and a selection of Au
and ZrO, NPs.*® It was shown that different elements have
a different signal maximum in their sampling position profiles
depending on the combination of element ionization potentials
and boiling points of the corresponding oxides. 150 nm and
250 nm Au and 80 nm ZrO, NPs were investigated in the same
study, and they were found to have different complete ioniza-
tion positions (£0.5 mm) in the ICP compared to dissolved
metal analysis (Fig. 3).*® Consequently, when calibration with
dissolved metals is performed in spICP-MS, it is important to
determine the position of the maximum signal in sampling
position profiles for method optimization and minimization of
systematic errors.

Incomplete ionization may occur due to a relatively larger
mass of individual NPs, and, in turn, would lead to a limited
upper size dynamic range for NP analysis. Additionally, matrix
ions that reach the plasma together with the NPs may affect the
ionization of the NPs. For example, Niemax et al. utilized an
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Fig. 3 Sampling depth profiles of (a) Au and (b) Zr in the form of
aqueous solution with a concentration of 10 ug L=t and discrete NPs.
Reproduced from Ho et al.*® with permission from the Royal Society of
Chemistry.

J. Anal. At. Spectrom., 2020, 35, 1740-1783 | 1763


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ja00206e

Open Access Article. Published on 25 July 2019. Downloaded on 1/22/2026 6:04:13 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

JAAS

MDG to study atomization processes in the plasma.*® They re-
ported a local plasma cooling effect during atomization which is
dependent on the analyte mass. Another finding was that the
matrix elements in the droplets affect the droplet atomization.
Later they confirmed experimentally that the position of atom-
ization and ionization of analytes in the ICP strongly depends
on the injector gas flow, the size of the introduced droplet, and
also on the mass of the analyte (e.g. particles).* The presence of
a matrix (SiO, particles in a Ca®>" matrix) affects both particle
and matrix component atomization. For example, there was
a delay in complete atomization of two 1.55 um SiO, particles
compared to one 0.83 um SiO, particle that translates into “a
spatial shift of about 8 mm in the ICP.”*° It has also been shown
that the position of atomization and ionization is important for
ion sampling. If the ions are sampled too early, when atom-
ization and ionization are still not complete, then the detected
signal per particle decreases. If the sampling is performed too
late, then after the particles are ionized, diffusion occurs, and
the signal per particle may also decrease.”

Ho et al. performed a simulation study focusing on incom-
plete particle vaporization.** It was shown that ion sampling
requires knowledge of the point of complete particle ionization.
For example, they reported that the mass calibration leveled off
at higher mass values (above 34 fg) at the 8 mm sampling
position and concluded that Au particles larger than 150 nm
may experience incomplete ionization; further experiments to
confirm this hypothesis were not conducted in the study. A
sampling position upstream in the plasma (closer to the coil)
resulted in an even narrower linear dynamic range (LDR) for Au
NP detection (e.g. 6 mm in the simulations results in incom-
plete vaporization of Au NPs above 60 nm). Additionally, smaller
NPs are subjected to diffusion to a greater extent, causing
analyte losses for smaller particles that already completely
vaporize early in the ICP. Therefore, it was pointed out that it is
important to match the NP masses used for calibration with the
analyzed particles. A literature search** was done to determine
the detected signal of the particles at which the size calibration
is no longer linear (100 nm for Ag NPs** and 150 nm for Au
NPs*"); however, to what extent incomplete particle ionization
and the limited LDR of the detector influence the obtained
values was not studied. Borovinskaya et al. demonstrated that
droplets that are off the central axis of the plasma experience
a temporal shift in their ICP-MS signals due to diffusion in the
plasma.*> A computational study confirmed the advantages of
introducing the samples on-axis to achieve higher transport
efficiencies of the ions into the MS.* Chan and Hieftje
demonstrated that injection of droplets (deionized water) into
the ICP causes a noticeable influence on it; the plasma is locally
cooled (the cooling lasts for more than 2 ms after the droplet
leaves the load-coil) and is then reheated to a temperature above
equilibrium (this effect lasts up to 4 ms after the droplet leaves
the load coil); therefore, these effects last longer than the resi-
dence time of droplets in the plasma.** Here, the OH molecular
band and Ar I and H I emission lines were measured with
a monochromatic imaging spectrometer every 100 ps.

The studies presented in the paragraph above demonstrate
that it is indeed important to optimize the plasma conditions
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for a precise and sensitive NP detection. For example, the
injector gas flow (only Ar and not He was considered in this
review), plasma power, sampling position, and injector diam-
eter should be optimized based on the analytes and matrix
used. Other studies were done to find an optimal sampling
position. They studied the effect of the ICP-MS sampling posi-
tion on the signal intensity of Ag and Au NPs.* It was shown
that it is necessary to optimize the sampling position because it
can decrease the size LODs by 25-30% for the studied NPs
compared to the standard instrument tuning procedure. For
example a sampling position of 4 mm was found to be optimal
for Ag and Au NPs to obtain the highest signal intensity, and the
signal of dissolved silver and gold standards followed the same
trend.* It is important to note that the optimal sampling
position would be different for different instruments, and the
elements of different mass ranges, and the formation rate of
doubly charged ions and oxides should be accounted for some
elements. Chun et al. used a double-viewing-position single
particle ICP-OES approach to study and select an appropriate
sampling position.*® The approach can be used to elucidate
a potentially incomplete ionization of particles, and, therefore,
provides information for spICP-MS that sampling from these
positions would not be suitable.

spICP-MS is highly dependent on the plasma conditions,
and more studies are required in this respect to develop robust
protocols to establish optimal plasma conditions for different
NPs and different matrices. The plasma conditions that were
used in spICP-MS application papers are summarized in Table 1
and discussed in the corresponding chapter. Apart from the
choice of the nebulizer, torch injectors of a smaller diameter (1
or 1.5 mm inner diameter) may help to guide NPs on a central
axis movement towards the sampler tip. The combination of
three parameters, namely injector gas flow, plasma power, and
ion sampling efficiency (depending on sampling position),
significantly affects NP ionization and, in turn, the recorded
signals, and should be optimized prior to analyses. The aim is to
achieve the conditions under which the ionization is complete
for the required NP size range in a specific matrix, and to
sample the ions into the MS from the point of complete ioni-
zation to limit ion cloud diffusion in the plasma and a loss of
ions per particle.

2.4 Ion transport

All analyte ions produced in the ICP would ideally be trans-
ferred completely into the mass spectrometer. However, the
step of ion extraction is associated with losses. Ion extraction
from the atmospheric-pressure ICP is typically performed by
using a two-stage (sampler and skimmer cones) and sometimes
a three-stage aperture interface. Downstream of the skimmer
orifice, positively charged analyte ions are separated from other
plasma species using ion guide devices. While optimal ion lens
voltages may differ from element to element, typically a stan-
dard tuning protocol is established with a multielement solu-
tion to determine only one “ideal” set of voltages for the whole
mass range. The maximum sensitivity for a particular ion may
be achieved by fine tuning. Additionally, space charge effects,
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namely ion losses due to charge repulsion and defocusing of the
ion beam downstream of the skimmer and the ion optics, may
introduce mass-dependent artifacts in nanoparticle analysis
similarly to what is known for standard elemental analysis. Niu
and Houk* described fundamental aspects of ion extraction in
ICP-MS, and highlighted that the understanding of the
processes occurring during the transport of the ions to the mass
analyzer would help to reduce ion losses at this stage. Typically,
low-mass isotopes have lower ion kinetic energies compared to
high-mass isotopes; therefore, low-mass isotopes get forced out
to the edges of the ion beam by high-mass isotopes and a rela-
tive loss of sensitivity for low-mass isotopes is observed.*® To the
best of our knowledge, papers on space-charge effect investi-
gations specifically for NP analysis have not been published yet.
Clearly, such ion sampling and transport effects as are
mentioned above will affect ions from NPs in a similar fashion,
and, in turn, lead to possible partial losses of the number of
ions per NP that were generated in the plasma, partial losses of
the background ions, losses due to the extraction of positively
charged ions, space charge effects etc. All of these losses will
likely decrease the overall instrument sensitivity and contribute
to an increase in the size LOD for NPs in spICP-MS. However,
the order-of-magnitude compared to other fundamental aspects
in spICP-MS is not clear to date and more fundamental research
is required.

2.5 Mass analyzers

An ideal mass analyzer for NPs would be able to have a high
mass resolution to provide isotopic information along with
simultaneous rapid multielement detection of short (few
hundreds of microseconds)'® NP signals. The mass analyzers
that are available today are suitable for different types of
applications and still have some room for improvement. ICP-Q-
MS is widely used because of its comparatively low cost and
capability for fast NP detection. However, ICP-Q-MS instru-
ments are limited in terms of multielement detection and
resolution (one m/z unit at a time). Switching between different
m/z ratios requires some settling time (on the order of 100 ps)*
for the new set of conditions to be stable (ion travel time
through the mass analyzer etc.). If one decides to perform
isotope-hopping over the course of a fast transient NP signal,
the settling time leads to a limited signal coverage, which also
significantly limits the number of counts detected per NP. A
proof-of-concept for a two-element detection was recently
demonstrated, where Au/Ag core/shell NPs were detected with
100 ps dwell time and 100 ps settling time.* Interference is
another limitation of ICP-Q-MS due to its comparatively low
mass resolution. A large number of elements suffer from
interference in ICP-Q-MS,*® especially in the presence of
a matrix. If the interfering species is present only as the back-
ground and not in the form of NPs, then NPs could still be
detected to a certain extent as signal pulses above the contin-
uous background. However, as the variation of the background
signal rises with increasing signal level,>~** the NP size LOD
rapidly increases (from 18 nm to 32 nm for Ag NPs, when 0.3 pg
L' Ag" was added, and 5 ms dwell time).®* One approach to

This journal is © The Royal Society of Chemistry 2020

View Article Online

JAAS

remove interference may be the use of a collision-reaction cell
with kinetic energy discrimination. The collision-reaction cell
was purposely used to reduce the sensitivity of the instrument to
be able to detect Au NPs up to 200-250 nm in diameter.>** After
passing through the mass analyzer, the ion detection itself is
performed usually by using a discrete dynode electron multi-
plier. The crucial parameter to set here is the detector dwell
time, which will be discussed in the next chapter. In spite of all
limitations discussed above, ICP-Q-MS is still the most widely
used instrument (compared to other mass analyzers) for NP
detection in terms of the number of publications.

The utilization of triple quadrupole (TQ or QQQ) technology
allows overcoming matrix interference not only in solution
analysis but also in particle analysis. For example, the use of
CH;F or H, for reactions/collisions in ICP-QQQ-MS allowed
quantifying SiO, NPs (high natural background of N,) in the
range from 80 to 400 nm using on-mass detection with H, (**Si")
and mass-shift detection with CH;F (*®Si'°F") and significantly
improved the size LODs (Fig. 4).*® TiO, NPs can be quantified
with the use of NH; as the reaction gas in candy products®” and
water matrices with a high Ca content™ (**Ca” interferes with
the most abundant **Ti* isotope, and the mass-shift detection
of [**Ti(**N"H;);(**N"H)]" has been performed). In contrast to
ICP-Q-MS and ICP-QQQ-MS, sector field (SF)-ICP-MS and mul-
ticollector instruments feature a higher mass resolution and
sensitivity compared to ICP-Q/QQQ-MS and can also be used for
NP detection.****** For example, a high mass resolution makes
it possible to distinguish **Ti* (m/z = 47.948) and **Ca* (m/z =
47.953) during the analysis of TiO, NPs in calcium rich
matrices.*® The feasibility of spICP-MS for isotope analysis in
erbium oxide particles was demonstrated with multi-collector
(MC)-ICP-MS.* Isotope dilution analysis was introduced for
Ag NP analysis and quantification with ICP-Q-MS.***” Here,
spiked samples with isotopically enriched '°’Ag" solution were
introduced for quantification.

A limitation of scanning-type mass analyzers is the fact that
only one isotope (m/z) can be examined at once. Quasi-
simultaneous multielement analysis can be performed with
time-of-flight ICP-MS (ICP-TOF-MS).** While ICP-TOF-MS
instruments were offered by manufactures in the past but did
not seem to find their way into the routine elemental analysis
market, the recent interest in nanoparticle analysis led
researchers to revisit this type of mass analyzer. A prototype
instrument was developed by the Giinther group at ETH Zurich
which features a 30 kHz spectral acquisition rate. Particle size
LODs of 46 nm, 32 nm, and 22 nm for Ag, Au, and U NPs
respectively were reported (at that time higher than that with
ICP-Q-MS****7). In a follow-up study, ICP-TOF-MS was used to
perform the analysis of e.g. Au/Ag core/shell NPs. It was
successfully shown that this core/shell material could be iden-
tified even in the presence of Ag NPs in the same sample.
Improved size-related LODs of 19 nm and 27 nm for Au and Ag
NPs respectively were reported (values determined with Poisson
statistics).” The benefit of all-isotope-information in a sampled
ion cloud was recently exploited to distinguish natural from
engineered CeO, NPs” (Fig. 5) and TiO, NPs.” The commercial
ICP-TOF-MS is reported to achieve 29 nm, 14 nm, and 7 nm
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Fig.4 Frequency distribution for the lowest NP sizes detectable using different reaction gases in ICP-TQ-MS for SiO, particle analysis. Practical
LODsqj,e are indicated in red in each figure. Frequency refers to the number of events of each type (background or NPs) detected. Reproduced

from Bolea-Fernandez et al.*® with permission from the Royal Society of Chemistry.
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ICP-TOF-MS mass spectra of CeO, engineered NPs and natural Ce-containing NPs. Averaged mass spectra for 20 discrete single

nanoparticle events from both a suspension of CeO, engineered NPs (a and b (zoomed on Ce)) and a pristine soil sample with natural Ce-
containing NPs (c and d (zoomed on Ce and neighboring isotopes)). The engineered NP sample is characterized solely by the Ce ion signal, while
the geogenic Ce-containing NNP sample shows, in addition to the Ce signal, detectable levels of La, Ba, Pr, Nd, and Th within single-particle
events. Reproduced from Praetorius et al.”? with permission from the Royal Society of Chemistry.
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LODs for Ti, Mo, and Au containing NPs respectively.” It was
used, for example, for Bi containing NPs and NPs of steel to
obtain the elemental composition of these industrial
materials.”

2.6 Detector dwell time

Ideally, spICP-MS requires fast time-resolved detection to get
accurate information (number of counts) for each detected NP
over the whole required duration of the measurement. In this
paper, we focus on secondary electron multiplier (SEM) detec-
tors as they are most frequently used for ICP-Q-MS. Usually, ion
detection occurs sequentially within defined time intervals
called dwell times. In spICP-MS, dwell times in the millisecond
time range are still the most frequently used (Table 1, also
determined by the available settings of the instruments). As was
demonstrated earlier, for example in a study on the effect of
a CE buffer matrix on the particle ion cloud duration in CE-
spICP-MS," NPs typically result in ion cloud event durations on
the order of a few hundreds of microseconds. One fundamental
limitation of millisecond dwell times is that only one data point
is used to describe a shorter transient. Additionally, a dead time
between the individual dwell times® may interrupt the time-
resolved measurements and lead to count losses in pulse-
counting mode of the SEM. The occurrence of a NP between
two adjacent dwell time intervals may cause one NP to be
detected as two smaller ones (split-particle events). Similarly,
towards higher particle numbers in a suspension, two or more
particles may fall into one dwell time (particle coincidence),
which results in a skewed PNC. Therefore, the users of milli-
second dwell times in spICP-MS should always consider a suit-
able PNC range for their measurements and be aware of the
limitations of the method when the data are used to draw
conclusions e.g. from particle stability and toxicology studies.
One possible approach to overcome the measurement arti-
facts is to use integration times that are significantly shorter
than the duration of NP ion clouds (on the microsecond time
scale). This way allows for obtaining time-resolved profiles of
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NP ion clouds with an adequate number of data points per
transient. The main challenge then arises in the data acquisi-
tion, storage, and processing of us time-resolved data. For
example, if the dwell time would be 10 ps, then each 1 s 100 000
data points are obtained. Therefore, a special data processing
for visualization and quantification is required that is different
from standard ICP-MS data acquisition (DAQ) and software,
respectively. In addition, the accurate extraction of NP ion
clouds and their unambiguous identification above possible
background counts are critical in pus-spICP-MS. To the best of
our knowledge, the first system for time-resolved particle anal-
ysis with ICP-MS was presented by Nomizu et al. in 2002.*® The
detection was performed with 20 ps time resolution for 1 min in
the pulse-counting mode; however, it is stated that the
measurement time was limited by the computer hard disc
space. Later, ICP-MS became commercially available which
allows data acquisition with 100, 50 and 10 ps dwell times. For
example, several authors utilized a dwell time as low as 10 ps
and highlighted the advantages and disadvantages compared to
millisecond time.**”>7° In the study by Montafio et al., NP signal
extraction from the background was carried out by applying
a three time standard deviation (SD) of the background crite-
rion.” One limitation of commercially available ICP-MS
instrumentation is the fact that the total measurement time
with high time resolution is currently limited to minutes. An
ideal spICP-MS instrument would be able to operate continu-
ously with microsecond time resolution (hours rather than
minutes), without significant dead time, and be able to process
the data online. As a contribution from our group to help to get
closer to such an ideal system, we presented a DAQ system
developed in-house for spICP-MS with 5 ps time resolution and
truly continuous data acquisition (Fig. 6).”” The system allows
performing acquisition for any measurement duration (only
limited by the hard disk space). It was used for continuous
measurements for up to 60 min with the coupling of a separa-
tion technique.' The obtained data were processed with in-
house written software and particle events were extracted on
a particle-by particle level by setting defined count thresholds.”
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Fig. 6 Representative ICP-MS signal (monitoring m/z **’Au*) due to 30 nm Au NPs (Cynp = 2.5 x 10° NP mL™Y) acquired simultaneously for 2 s
with (a) 10 ms dwell time (vendor software), and (b) 5 ps dwell time (home-built data acquisition system). First zoom level shows several particle
events in (c) and (d) for 500 ms (of the highlighted section in a and b). Second zoom level (e) shows the temporal profile of a single particle's ion
cloud identified with the home-built data acquisition system in (d). Reproduced from Strenge and Engelhard” with permission from the Royal
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SF-ICP-MS has also been used with microsecond time reso-
lution (as short as 10 ps).>***%>%* NP identification in the raw
data was carried out by determining the peak maxima above
a certain threshold.**** Tuoriniemi et al. introduced a peak
recognition algorithm into an SF-ICP-MS using a 100 ps dwell
time based on cluster detection.®” Another mass analyzer that
can be used for fast detection of NPs is an ICP-TOF-MS that can
be operated with a speed of up to 30 kHz.*®

While the majority of spICP-MS studies investigate spheri-
cally shaped nanomaterials (or assume a spherical shape), first
attempts have been undertaken to distinguish NPs with
different shapes and high aspect ratios. For example, micro-
second time resolution helped to distinguish spherical NPs
from nanorods and to perform dimensional characterization of
the NPs based on their ion cloud signal duration.” The
composition of NPs of gold and silver alloys has also been
assessed using profiles of the ion clouds.” The detection of
silica colloids, which otherwise would require the use of
a collision gas to remove polyatomic interference (from
nitrogen dimer ions), has been simplified with microsecond
time resolution detection.®

As reported above, the advent of microsecond time resolu-
tion helped to significantly improve the performance of spICP-
MS compared to millisecond time resolved data. The number of
data points per ion cloud event is improved, the background is
divided between adjacent dwells,”*”” and, thus, the detection of
NPs is possible in a wider range of PNCs and in the presence of
a higher background and dissolved ion concentrations.
However, it should also be noted that the data obtained with
microsecond time resolution represent in most of the cases only
several counts per dwell time (with 5-10 ps dwell times) and that
the normal distribution statistics may not apply to these data
anymore. In fact, we suggest that Poisson statistics should be
considered in order to differentiate NPs from the background.®*

2.7 Quantification considerations

The principles of quantification with spICP-MS were described
in previous reviews in detail.**° Briefly speaking, quantification
can be performed using NP standards of the same elemental
composition or dissolved standard solutions of the element
after taking into account the nebulization efficiency in order to
obtain particle size and size distributions with a pneumatic
nebulizer. The PNC determination requires a NP standard with
the known PNC of the same element, or of a different element, if
the same transport and nebulization efficiencies are assumed.
The main limitation today is the fact that only a limited variety
of the NP standards of different compositions and certified
PNCs exist,” and difficulties in determination of the nebuliza-
tion efficiency can occur.®” Interlaboratory studies have shown
that the determination of median particle diameter (2-5%
repeatability SD and 15-25% reproducibility SD) is much more
repeatable and reproducible compared to the determination of
PNC (7-18% repeatability SD and 70-90% reproducibility SD).
The lack of stability of the NPs in initial suspensions and
different matrices depending on the handling and storage
conditions may have a significant contribution to this fact.*>*
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Recently, a metrological study assessing the determination and
validation of Au NP size and size distribution was performed.**
High-resolution scanning electron microscopy (HR-SEM) was
used as one of the methods to validate the results obtained with
spICP-MS. The two methods show a good agreement with
a relative precision of 0.5%. It was emphasized that the NP size
characterization provided by their suppliers is not sufficient,
and that more characterization is needed if the NPs are inten-
ded to be used in research. Alternative methods including the
use of a MDG,****>* isotope dilution,**” and flow injection®%®
are promising new quantification approaches. However, more
studies on the metrology of these methods are required to
ensure accurate NP analysis.

The counting stage of the electron multiplier is typically used
up to 2 x 10° cps (ref. 27) because there is a detector dead time
(on the order of 50 ns)”” between the acquisitions caused by
physical and detector construction limitations. Because NPs
result in short but intense ion signals, some of the counts per
NP are lost due to the dead time (e.g. 6.2% for 40 nm and 24.4%
for 60 nm Au NPs).”” This phenomenon leads to a limited LDR
for NP size detection. Liu et al. extended the LDR for Au NPs
from 10 nm to 70 nm in “highest sensitivity mode” to 200 nm in
“less sensitive modes”.>* The approaches that can be used to
extend the LDR are based on decreasing the temporal ion signal
abundance by the use of low extraction voltage® or collision-
reaction cells.**** The effect of the plasma conditions on the
LDR for Au NPs was investigated by Lee and Chan and 250 nm
Au NPs were reportedly outside of the LDR.*”

The size LODs depend on the sensitivity of the instrument,
and an ideal LOD of one atom cannot be achieved nowadays
with the current ICP-MS systems. The main reasons are a low
nebulization efficiency, low ionization efficiencies of some
elements in the argon plasma, and ion transfer into and inside
the mass spectrometer. Lee et al. calculated the size LODs for 40
elements for an ICP-Q-MS.”® So far, most of the elements still
have LODs well above 10 nm (ref. 6 and 70) and spICP-MS
instruments are yet to be developed that can cover the
complete nanoscale from 1 nm to 100 nm routinely.

PNC and size LODs are both based on a statistical evaluation
of the data; therefore, data processing plays an important role
in spICP-MS. For millisecond time resolution, the size LOD is
usually determined as 3 x SDgg (SD of the background) or 5 x
SDgg above the background.®*® Real world samples may have
higher size LODs due to a continuous background. If the blank
is well known and no NP events are detected, then the PNC LOD
was proposed to be three detected NP events by Laborda et al.*®
based on the Currie Poisson-Normal approximation
(2.71 4 3.294/SDgg for a “well-known” blank). This PNC LOD
may need recalculation if some NP events are detected even in
blanks. The data obtained with microsecond time resolution
usually require even more data processing, because each NP is
represented by several data points. Until now there is still no
established approach to extract NPs from the raw data, and each
developed system utilizes its own algorithm (discussed in the
previous chapter). Therefore, there is still a need to develop
statistical approaches based on counting statistics for the
quantitative extraction of NPs from time-resolved data.
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Table 2 Separation methods coupled to spICP-MS for NP analysis
Technique
coupled Nebulizer and spray Plasma Dwell
online Analytes chamber parameters time Separation features Ref.
CE 10, 20, 30, 40, Microflow nebulizer RF power 2 ms 70 mM SDS and 98
and 60 nm with a low volume 1500 W, cooling 10 mM CAPS in pH
citrate-coated Au spray chamber gas 15 L min~}, 10 buffer
NPs auxiliary gas 1
L min?,
nebulizer gas 0.8
L min~?,
sampling
position 7 mm
CE 20, 40, and Microflow nebulizer RF power 5 us 60 mM SDS and 10
60 nm citrate- with a low volume 1450 W, cooling 10 mM CAPS in pH
coated Ag NPs spray chamber gas 14 L min’, 10 buffer, online
auxiliary gas 0.8 preconcentration
L min?,
nebulizer gas 0.8
L min~?,
sampling
position 3.5 mm
CE 20, 40, and Microflow nebulizer RF power 5 us 60 mM SDS and 99
60 nm citrate- with a low volume 1450 W, cooling 10 mM CAPS in pH
coated; 20, 40, spray chamber gas 14 L min %, 10 buffer, online
and 60 nm PVP- auxiliary gas 0.8 preconcentration,
coated; 40 and L min~, separation of NPs
60 nm PEG- nebulizer gas 0.8 with different
coated; 40 nm L min~, coatings
BPEI-coated Ag sampling
NPs position 3.5 mm
ES-DMA 30, 40, 60, 80, n/s n/s 10 ms Ammonium acetate 96
and 100 nm Au was used for
NPs electrospray,
aggregate detection
ES-DMA CTAB- and n/s n/s 10 ms Quantification of 97
citrate-coated Au the length and
nanorods diameter of
(diameters 11.8 nanorods
to 38.2 nm and
aspect ratios 1.8
to 6.9)
FFF 40, 60, 80, and Concentric Nebulizer gas 5 ms 10 kDa regenerated 95
100 nm citrate- nebulizer with 0.88-0.96 cellulose
coated Ag NPs, a cyclonic spray L min~* membrane, 0.02%
60 nm citrate chamber FL-70 carrier,
coated Au NPs, separation of Au/
51 nm Ag core SiO, core/shell NPs
and 21.6 nm from Au NPs
SiO, shell citrate-
coated NPs
FFF AgPURE® Concentric RF power 5 ms 10 kDa regenerated 100
(<20 nm nebulizer with 1550 W, cooling cellulose
polyoxyethylene a cyclonic spray gas 14 L min~ !, membrane,
fatty acid ester- chamber auxiliary gas 0.8 ultrapure water as
coated) in food L min~?, the mobile phase
simulants nebulizer gas 1
(water, 10% L min*
ethanol, and 3%
acetic acid)
extracted from
model films
HDC 30, 60, 80, and V-groove nebulizer n/s 10 ms 10 mM SDS in pH 11 94

100 nm citrate-
coated Au NPs

with a double pass

Scott spray chamber
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Table 2 (Contd.)
Technique
coupled Nebulizer and spray Plasma Dwell
online Analytes chamber parameters time Separation features Ref.
HDC 10, 30, 50, 100, PTFE spray chamber RF power 5 ms 2 mM Na,PO,, 101
and 150, 250 nm 1400 W, auxiliary 60 mM
citrate-coated Au gas 0.82L min %, formaldehyde,
NPs nebulizer gas 1.8 mM SDS, 3.2 mM
0.78 L min™ 7, Brij 123, and
sampling 3.2 mM Triton X-100
position 40 mm in pH 7.5-8 eluent
HDC 40 and 80 nm Ag n/s n/s 100 ps 1 mM NaNOg, 102

NPs spiked in
Milli Q water,
WWTP influents
and effluents

Another issue in NP quantification is the differentiation of
NPs from the background. The continuous background in ICP-
MS may be a result of dissolved ions, natural background, or
interference. Bi et al. proposed an approach to differentiate NPs
from the background with the use of K-means clustering to
improve the differentiation of the NPs from the BG compared to
the “traditional standard deviation approach”.* Cornelis and
Hassellov developed an approach for data deconvolution taking
into the account the noise components of ICP-MS to differen-
tiate the NPs that are not fully resolved from the background.*®
An approach that utilizes modelling of the background based
on the noise components with Monte Carlo simulation was
developed for the data obtained with ICP-TOF-MS with 200 Hz
resolution.”® The method allows distinguishing small NPs from
the background, and the decision criteria for NP detection were
revisited. Alternatively, dissolved ions can be removed with ion
exchange resins®* or the samples can be analyzed after dilu-
tions.”® Microsecond time resolution helps to distinguish NPs
from a continuous background (up to 1 000 000 cps) and
quantify both the dissolved ions and NPs.*!

2.8 Coupling of spICP-MS to separation techniques

A promising approach to obtain more information about
mixtures of NPs is the online coupling of spICP-MS to a sepa-
ration technique. As spICP-MS is used for NP size and size
distribution determination, different separation techniques
allow obtaining complimentary information. However, the
main challenge is that spICP-MS requires the discrete detection
of individual NPs while separation techniques will result in
a local preconcentration of analytes of a certain type (in a peak),
which then elute/migrate together from the column/capillary.
Additionally, separation techniques usually require a separa-
tion medium (mainly organic compounds) that is introduced
into the ICP-MS and may cause matrix effects. Therefore, the
combined use of a separation/fractionation technique and
spICP-MS requires a careful method development to ensure
that:
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0.0013% w/w SDS,
and 0.0013% w/w
Triton X-100 in pH
7.5 eluent

e The NPs are separated based on their properties but not
focused in time to the extent that the detection of single NPs is
significantly hindered.

e The organic buffer does not interfere with the NP detection
(instrumental parameter optimization).

oA suitable dwell time is chosen.

eThe NPs do not undergo size transformations during the
separation.

e The best size and PNC LODs are achieved.

An overview of the separation techniques that were coupled
online to spICP-MS is presented in Table 2, and the main
features are highlighted. The first online coupling of spICP-MS
to hydrodynamic chromatography (HDC) was presented by
Pergantis et al. in 2012, where Au NPs were separated by their
size.”* In 2016, spICP-MS was coupled online to asymmetric
field flow fractionation (AF4) to fractionate the NPs by their size
and also core-shell NPs (Ag core with a SiO, shell) from mono-
component NPs (Ag NPs) (Fig. 7).” Electrospray-differential
mobility analysis (ES-DMA) was also coupled online to spICP-
MS.”® This method allows distinguishing different sizes of NPs,
assessing their aggregation,”® and distinguishing nanorods
from spherical NPs.?” The coupling of capillary electrophoresis
(CE) to spICP-MS?® allows separation of the NPs not only by their
size, but also in some cases by their different coatings (Fig. 8).”
According to Table 2, most of the separation methods utilize
surfactants, most commonly sodium dodecyl sulfate (SDS), to
enhance the separation of NPs from each other. The coupling of
separation techniques online to spICP-MS has the potential to
answer non-trivial questions in NP mixtures analysis, where
spICP-MS alone does not provide sufficient information.

3 Applications of splICP-MS

There has been a significant increase in the number of pub-
lished studies that utilize spICP-MS in recent years (Fig. 1) and
the majority of these publications are dedicated to applications
thereof. Table 1 summarizes the papers that include applica-
tions of spICP-MS for the analysis of different samples and

This journal is © The Royal Society of Chemistry 2020
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Fig. 7 (a) Size distribution of a mixture containing 40 (1 ng L™, 60
(2ng L), and 80 nm (6 ng L) Ag NPs and Ag—SiO, NPs (1 ng Ag per L)
obtained using splCP-MS. (b) Contour plot result of an AF4-splCP-MS
analysis on a suspension containing 40, 60, and 80 nm Ag NPs
(678 ng L™, 1.39 ug L% and 3.73 ug L%, respectively) and Ag—SiO» NPs
(624 ng Ag per L). In (a) and (b), the Ag mass concentration ratio of 40,
60, and 80 nm AgNPs, and Ag-SiO, NPs was about 1:2:6:1.
Reprinted with permission from Huynh et al.** Copyright 2016 Amer-
ican Chemical Society.

different matrices (note that fundamental studies on spICP-MS
are not included). The studies included in Table 1 are grouped
by the analysis matrix and then sorted by the year of publica-
tion. Table 1 is a summary of the articles with a short descrip-
tion of the sample preparation and selected instrumental
parameters. The reader is advised to check the original publi-
cations for more details.

It became apparent when compiling this table that many
publications do not include all experimental conditions that the
authors of this review consider important for spICP-MS. As
discussed above, the combination of RF power, sampling
position, and carrier gas flow is crucial for the best spICP-MS
performance. The parameters dwell time and measured
isotopes are very important as well. Most of the articles state the
dwell time that was used for the measurements, with micro-
second time resolution (most frequently 0.1 ms dwell time)
becoming more widely used in recent years. The majority of the
articles do not include the sampling position or injector
diameter in the experimental descriptions. Some articles cite
their previous studies and do not cite the exact conditions that
were used for the study.
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Fig. 8 Comparison of a standard CE-ICP-MS plot (A) and first CE-
splCP-MS two-dimensional color map (B) acquired from a complex
five-component mixture of different nanomaterials (5 ug L™ citrate-
coated 20 nm sized, 35 pug L™* each citrate and PVP-coated 40 nm
sized, 100 pg L™ PVP-coated 60 nm sized, and 200 pg L~ citrate-
coated 60 nm sized Ag NPs). The analysis was conducted by moni-
toring at 1°’Ag™ with 5 us dwell time, using 110 s injection and REPSM at
20 kV. Reprinted with permission from Mozhayeva et al.°® Copyright
2017 American Chemical Society.

The majority of the spICP-MS application papers (Table 1)
utilize a method for direct analysis of aqueous media (exposure
media, model and real environmental water samples, etc.) with
or without dilution. Dilution is an effective tool to reduce the
matrix load. A filtration step is introduced frequently to avoid
clogging of the nebulizer; however, this step may lead to partial
losses of NPs due to interactions with the filter membrane
materials, even if the NPs are smaller than the membrane
pores.'® Therefore, more research is required to determine
suitable filter materials for NPs with different coatings to reduce
these interactions or identify membranes that show a somewhat
reproducible adsorption behavior. When enzymatic or alkaline
digestions are used for more complex matrices (tissue, plants,
etc.), care must be taken to ensure that the NPs keep their initial
state after these procedures. The ultimate goal of any sample
preparation step must be a high particle recovery rate and little
to no species transformation.

4 Conclusion

The past two decades have witnessed the commercial realiza-
tion of new and powerful ICP-MS instrumentation and
methods, including instruments with faster data acquisition,

J. Anal. At. Spectrom., 2020, 35, 1740-1783 | 1771


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ja00206e

Open Access Article. Published on 25 July 2019. Downloaded on 1/22/2026 6:04:13 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

JAAS

enhanced detection power, alternative mass analyzers, off-the-
shelf interfaces to couple liquid chromatography, CE, etc. to
ICP-MS, and novel separation and fractionation methods.
While these instruments were successfully used for nano-
material characterization and the number of published studies
of spICP-MS is steadily increasing, there are some remaining
challenges that need to be addressed to ultimately reach the top
of the nanoparticle peak.

Total consumption microflow nebulizers or droplet genera-
tors are attractive due to a high particle transport efficiency.
However, microflow nebulizers sometimes suffer from clogging
(in the presence of agglomerates or organic matter) and
commercially available droplet generators reportedly suffer
from a limited day-to-day reproducibility and cannot be coupled
to autosamplers in the state in which they are available today.
Future research in the area of sample introduction for both
stand-alone spICP-MS and when interfaced with separation
methods (e.g. CE-spICP-MS) is encouraged to address these and
other challenges with the ultimate goal of a high-throughput
and robust sample introduction system for single particle
(and single-cell) ICP-MS. While sample introduction is a poten-
tial source of error, sample preparation is often overlooked but
may play an even bigger role, especially when particle number
concentrations are to be determined. Here, more fundamental
studies on potential analyte losses and species transformation
(oxidation, release of ions, change of size, and agglomeration)
during sampling, storage, and sample preparation are required.
For example, a common sample preparation step is filtration to
remove unwanted organic matter and larger particle fractions.
However, particle losses might occur depending on the particle
size and surface coating interaction with the filter material and
are often overlooked when particle number concentrations are
reported. Similarly to conventional analytical methods, the
analyte (particle) recovery should become a parameter that is
always reported in future spICP-MS studies.

Based on the publications discussed in this review and from
our own findings, we would like to stress that a careful opti-
mization of the plasma conditions and dwell time is required to
achieve better NP size detection limits and accurate particle size
and number information respectively. In addition, instru-
mental developments to improve the ion sampling/transfer
efficiency in ICP-MS would help to further decrease the size
detection limits for single particles and also to gain access to
information on NPs of mixed elemental composition and core/
shell materials.

While quadrupole-based ICP-MS systems were widely used
in past spICP-MS studies, we assume that mass analyzers that
provide fast time-resolved and multielement detection such as
ICP-TOF-MS will play an important role in this field in the
future. However, even the best instrument is worthless if it
cannot be calibrated properly, and there is still the lack of
appropriate reference materials for calibration. In the future,
the field would benefit from more well-characterized and
certified nanomaterials to ensure accurate and precise
quantification.

It can be concluded that spICP-MS is a very useful method
for NP analysis today but there is still room for fundamental
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studies, instrumental improvements, and methodological
advances to come closer to what would be an ideal method for
nanomaterial characterization.
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List of abbreviations

AF4 asymmetrical flow field-flow fractionation
BPEI branched polyethyleneimine

BSA bovine serum albumin

CAPS 3-cyclohexylamoniuopropanesulfonic acid
CE capillary electrophoresis

CIGS copper indium gallium selenide cells
CNT carbon nanotube

CPE cloud point extraction

CTAB  cetyltrimethylammonium bromide

DAQ data acquisition

DMEM Dulbecco's modified eagle medium

EPA Environmental Protection Agency

ESD equivalent spherical diameter

ES-DMA electrospray-differential mobility analysis
FFF field flow fractionation

HDC hydrodynamic chromatography

HR- high-resolution scanning electron microscopy
SEM

ICP-Q-  single quadrupole ICP-MS

MS

IEC ion-exchange column

KED kinetic energy discrimination

LA laser ablation

LDR linear dynamic range

LOD detection limit

m/z mass-to-charge ratio

MA multielement analysis

MC multi-collector

MDG microdroplet generator

MOPS  3-morpholinopropane-1-sulfonic acid

n/a not applicable

n/s not specified

NOM natural organic matter

NP nanoparticle

OECD  The Organization for Economic Co-operation and
Development

OES optical emission spectrometry

OPV organic photovoltaic cells

PBS phosphate buffered saline
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PEG polyethylene glycol

PFA perfluoroalkoxy alkane

PNC particle number concentration

PTFE polytetrafluoroethylene

PVA polyvinyl alcohol

PVP polyvinylpyrrolidone

Q quadrupole

QQQ triple quadrupole

RF radio frequency

SD standard deviation

SDS sodium dodecyl sulfate

SEM secondary electron multiplier

SF sector field

spICP-  single particle inductively coupled plasma mass
MS spectrometry

TAP tris-acetate-phosphate

TMAH tetramethylammonium hydroxide

TOF time-of-flight

TQ triple quadrupole

TSPP tetrasodium pyrophosphate

WWTP waste water treatment plant
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