Issue 4, 2022

Cadmium and molybdenum co-induce pyroptosis and apoptosis via the PTEN/PI3K/AKT axis in the livers of Shaoxing ducks (Anas platyrhynchos)

Abstract

Cadmium (Cd) and excessive molybdenum (Mo) have adverse impacts on animals. However, the hepatotoxicity co-induced by Cd and Mo in ducks has not been fully elucidated. In order to explore the impacts of Cd and Mo co-exposure on pyroptosis and apoptosis by the PTEN/PI3K/AKT pathway in the livers of ducks, 40 healthy 7-day-old Shaoxing ducks (Anas platyrhynchos) were randomly assigned into 4 groups, and Cd or/and Mo were added to the basic diet per kilogram (kg): control group (0 mg Mo and 0 mg Cd), Mo group (100 mg Mo), Cd group (4 mg Cd), and Mo + Cd group (100 mg Mo and 4 mg Cd), with 16 weeks feed management. Results signified that Cd or/and Mo caused trace element imbalance, liver function and histomorphological abnormalities in the duck liver, and activated the PTEN/PI3K/AKT pathway through increasing PTEN mRNA and protein levels, reducing PI3K, AKT mRNA and p-AKT/AKT protein levels, which triggered pyroptosis and apoptosis via increasing Caspase-1, NLRP3, NEK7, ASC, GSDME, GSDMA, IL-1β and IL-18 mRNA levels, Caspase-1 p20, NLRP3, ASC and GSDMD protein levels, and IL-1β and IL-18 contents, and increasing Bak-1, Bax, Cyt C and Caspase-3 mRNA levels and cleaved Caspase-3/Caspase-3 protein level, and downregulating Bcl-2 mRNA level and the ratio of Bcl-2 to Bax, respectively. Overall, the results illustrate that pyroptosis and apoptosis induced by Cd or/and Mo may be associated with activating the PTEN/PI3K/AKT pathway in the livers of ducks. There may be a synergy between these two elements.

Graphical abstract: Cadmium and molybdenum co-induce pyroptosis and apoptosis via the PTEN/PI3K/AKT axis in the livers of Shaoxing ducks (Anas platyrhynchos)

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2021
Accepted
17 Jan 2022
First published
17 Jan 2022

Food Funct., 2022,13, 2142-2154

Cadmium and molybdenum co-induce pyroptosis and apoptosis via the PTEN/PI3K/AKT axis in the livers of Shaoxing ducks (Anas platyrhynchos)

P. Cao, G. Nie, J. Luo, R. Hu, G. Li, G. Hu and C. Zhang, Food Funct., 2022, 13, 2142 DOI: 10.1039/D1FO02855C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements