This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Physics, Faculty of Science, University of Helsinki
Wang, Lin; Department of Environmental Science & Engineering, Fudan University
Yao, Lei; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki
Zheng, Jun; Nanjing University of Information Science and Technology
Kujansuu, Joni; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki
Kangasluoma, Juha; Institute for Atmospheric and Earth System Research / Physics Faculty of Science, University of Helsinki
Petäjä, Tuukka; University of Helsinki, Department of Physics, Division of Atmospheric Sciences
Paasonen, Pauli; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki
Järvi, Leena; University of Helsinki, Department of Physics
Worsnop, Doug; Aerodyne Research Inc,
DING, Aijun; Nanjing University,
Liu, Yongchun; Beijing University of Chemical Technology, AHL
Jiang, Jingkun; Tsinghua University, School of Environment
Bianchi, Federico; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki
Yang, Gan; Department of Environmental Science & Engineering, Fudan University
Liu, Yiliang; Department of Environmental Science & Engineering, Fudan University
Lu, Yiqun; Department of Environmental Science & Engineering, Fudan University
Kerminen, Veli-Matti; University of Helsinki, Department of Physics, Division of Atmospheric Sciences
Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?

Markku Kulmala1,2,*, Lubna Dada2, Kaspar R. Daellenbach2, Chao Yan1,2, Dominik Stolzenburg2, Jenni Kontkanen2, Ekaterina Ezhova2, Simo Hakala2, Saana Tuovinen2, Tom V. Kokkosen2, Mona Kurppa2, Runlong Cai2, Ying Zhou1, Rujing Yin3, Rima Baalbaki3, Tommy Chan1,2, Biwu Chu2,4, Chenjuan Deng3, Yuyun Fu3, Maofa Ge3, Hong He4, Liine Heikkinen2, Heikki Junninen6, Yiliang Liu7, Yiqun Lu7, Wei Nie8, Anton Rusanen2, Ville Vakkari9,10, Yonghong Wang2, Gan Yang7, Lei Yao2, Jun Zheng11, Joni Kujansuu1,2, Juha Kangasluoma1,2, Tuukka Petäjä1,2,8, Pauli Paasonen2, Leena Jarvi2,12, Douglas Worsnop2,13, Aijun Ding8, Yongchun Liu1, Lin Wang7, Jingkun Jiang3, Federico Bianchi1,2, Veli-Matti Kerminen2

1 Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
2 Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Finland
3 State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing, China
4 State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
5 Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
6 Institute of Physics, University of Tartu, Ülikooli 18, EE-50090 Tartu, Estonia
7 Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP9), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
8 Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China
9 Finnish Meteorological Institute, 00560 Helsinki, Finland
10 Atmospheric Chemistry Research Group, Chemical Resource Beneficiation, North-West University, Potchefstroom, South Africa
11 Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
12 Helsinki Institute of Sustainability Science, University of Helsinki, Finland
13 Aerodyne Research Inc., Billerica, Massachusetts 01821, USA
* Corresponding author: markku.kulmala@helsinki.fi

Abstract

Atmospheric gas-to-particle conversion is the crucial or even dominating contributor to haze formation in Chinese megacities in terms of aerosol number, surface area and mass. Based on our comprehensive observations in Beijing during 15 January 2018 – 31 March 2019, we are able to show that 80–90 % of the aerosol mass (PM$_2.5$) was formed via atmospheric reactions during the haze days and over 65 % of the number concentration of haze particles resulted from new particle formation (NPF). Furthermore, the haze formation was faster when the subsequent growth of newly formed particles was enhanced. Our findings suggest that in practice almost all present-day haze episodes originate from NPF, mainly since the direct emissions of primary particles in Beijing have considerably decreased during the recent years. We also show that reducing the subsequent growth rate of freshly formed particles by a factor of 3-5 would delay the buildup of haze episodes by 1–3 days. Actually, this delay would decrease the length of each haze episode, so that the number of annual haze days could be approximately...
halved. Such improvement in air quality can be achieved with targeted reduction of gas-phase precursors for NPF, mainly dimethyl amine, ammonia and further reductions of \(\text{SO}_2 \) emissions. Furthermore, reduction of anthropogenic organic and inorganic precursor emissions would slow down the growth rate of newly-formed particles and consequently reduce the haze formation.

1. Introduction

The rapid, large-scale urbanization and industrialization of China are unique in history. Consequently, China’s air pollution situation has worsened dramatically during the last 2–3 decades, as emissions from industrial activities, energy production and traffic have increased\(^1\). However, the clean air policies implemented in China after 2010 have reduced the emissions of some major pollutants (e.g. \(\text{SO}_2, \text{CO}, \text{NO}_x \), primary particulate matter) by up to several tens of percent, while having little effect on ammonia and volatile organic compound (VOC) emissions\(^2\). Highly non-linear processes involving radiative transfer, atmospheric boundary layer (ABL) development, atmospheric chemistry and aerosol dynamics create an urban pollution cocktail and generate secondary atmospheric pollutants, including ultrafine particles, fine particulate matter and ozone\(^3-7\). Among the multiple negative environmental and economic consequences of these pollutants\(^8\), their adverse effects on human health are of the greatest concern in China\(^9-11\).

Beijing and its vicinity is one of the most polluted areas in China, where high particle mass concentrations causing haze are most frequent in winter\(^12-16\). The Beijing winter haze tends to occur in 5 to 7-day cycles, during which cleaner periods are followed by haze episodes that typically last for 3 days\(^3,17,18\). The haze occurs preferably under southerly winds which bring warm and humid air along with air pollutants from the industrial areas located south of Beijing\(^3,12,13,16,19-23\). The local meteorological conditions found to be associated with haze formation in Beijing include low wind speeds, high humidity content of air and low intensity of solar radiation\(^18,23-25\). Climate warming arguably influences weather conditions in such a way that the likelihood of winter haze episodes in Beijing has already increased, and is likely to increase further in the future\(^12,26-29\).

The development and ultimate severity of a haze episode depends on the interplay between air pollutant emissions, their atmospheric transport, and the processes responsible for accumulating and transforming these pollutants in the ABL\(^7\). In case of Beijing haze, prior research has focused mainly on the processes and feedbacks causing the highest particle mass concentrations, typically encountered during the final stages of a haze development\(^23\). In 2014, Guo, et al.\(^3\) reported that atmospheric new particle formation (NPF) tends to precede winter haze episodes in Beijing. However, it has remained unclear whether NPF and haze formation are causally connected and, in case they are, to which extent NPF might affect the formation and properties of haze. Here, we investigate how NPF and subsequent particle growth affect the initial steps of haze formation in Beijing and how the reduced NPF and/or subsequent growth can affect haze reduction.

2. Materials and Methods

The measurement site is at the campus building of the Beijing University of Chemical Technology (BUCT) in the western part of Beijing (39°56’31”N, 116°17’50”E). BUCT is located near the 3rd Ring Road of Beijing; and therefore, close to fresh traffic emissions and also surrounded by residential areas. The particle number size distribution of 1 nm–10 μm was measured by with a homemade
Diethylene Glycol Scanning Mobility Particle Sizer (DEG-SMPS) and with a Particle Sizer Magnifier (PSM; Airmodus A11) and a Neutral cluster and Air Ion Spectrometer (NAIS; Airel Ltd) in parallel. Additionally, ions in the mobility diameter range of 0.8–42 nm were measured with the ion mode of the NAIS. More details on the measurements of the particle number size distributions and the parameters derived from their acquired data can be found in the supplementary material. Additionally, meteorological variables were measured by Vaisala automatic weather station AWS310 at the BUCT site. Trace gases including NOx, CO, O3 and SO2 were also measured at BUCT (see supplementary material for more details). To measure the composition of PM2.5, an online Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) was utilized at the BUCT station from February 21 to April 7, 2018, equipped with a PM2.5 lens. Black Carbon (BC) mass concentration and Absorption Coefficient were measured by a dual spot Aethalometer at BUCT. Details on the measurement, chemical composition and source apportionment of PM2.5 are provided in the supplementary material.

3. From new particle formation to haze

In large urban areas, like Eastern China where megacities are tied to each other, the sub-30 nm particle population has several sources and formation pathways. First, atmospheric chemical reactions produce vapors that participate in atmospheric clustering and subsequent growth of these clusters to nucleation mode particles30. Second, there are direct emissions of particles down to 5-nm diameter or even below, especially related to traffic emissions31,32,33. Since various gas-to-particle conversion processes are heavily interlinked, it is difficult to resolve which fraction of sub-30 nm particles originates from direct (primary) emissions and which fraction results from atmospheric reactions (secondary formation).

We performed comprehensive measurements in Beijing between 15 January 2018 and 31 March 2019. The measurement site is located on a rooftop of the campus building at the Beijing University of Chemical Technology (BUCT) in the western part of Beijing (Fig. S1). A full description of the instrumentation used is given in supplementary material, Section 1. During the measurements, we observed 189 NPF event days, of which over 50 were followed by a haze episode (Figs. S2–S4). While none of these haze episodes was extremely severe, most of them lasted for more than two days so that the total number of haze days was 158 (haze lasting at least 8 hours). Interestingly, there was an NPF event before almost every haze episode, whereas practically no NPF was detected during any of the haze episodes. Typically, within 15–20 hours, particles associated with the observed NPF events grow to sizes large enough (>100 nm diameter) to be considered as haze particles (Fig. S5). Both atmospheric clustering and direct emissions, especially from traffic, contributed to the sub-30 nm particle population. The observed particle formation and growth rates (Table S1) indicate that atmospheric clustering contributes significantly to NPF. Traffic and other sources contributed to the emissions of precursor compounds participating in clustering, particle growth and secondary aerosol mass formation during and before the haze periods.

Fig. 1 shows the median time evolution of the total particle number concentration (N), condensation sink (CS) and volume concentration (V), along with the corresponding size distributions, when considering all the 2-day periods during which an NPF event day was followed by a day with no apparent NPF (see Fig. S4 for this subset of days). The following day was in many cases a haze day. NPF starts to increase sub-3 nm and total particle number concentrations at around 08:00 during the first day. As a result, N peaks at around noon and then declines gradually to a level that still considerably exceeds the total particle number concentration observed before the NPF event. Sub-3 nm particles contribute little to N after about 16:00–17:00 during the first day, suggesting that
atmospheric clustering and particularly the growth of clusters to the nucleation mode become inactive after the late afternoon of the first day. Traffic emissions cause increases in N (Fig. 1) during both morning and evening rush hours, and contribute to the observed increases in CS and V during the following hours. Besides traffic, there are no detectable changes in N caused by other primary particle sources during the median 2-day period. Both CS and V increase in the afternoon of the first day, with no decline thereafter, indicating a continuous production of (secondary) particulate surface and mass until the end of the 2-day period. The observed increases are clearly faster during the daytime than at night, which suggests that photochemical reactions enhance the formation of secondary particulate matter. The temporal behavior of the daytime CS and V is very different between the two days: during the first day no increase in CS or V can be observed until a few hours after the start of NPF, while during the second day both increase notably already in the early morning. This means either that the initiation of haze formation is connected causally with NPF, or that both of these phenomena are caused by a common set of processes or atmospheric conditions.

Beijing is located not very far from the northern clean mountain regions. As a result, if the measured air mass continued to arrive from the north, particles formed by atmospheric clustering grew slowly in size, making it difficult to separate them from particles emitted by traffic (Fig. S6). However, when the measured air mass started to circle over more populated areas (Fig. S7), the particles formed by atmospheric clustering grew rapidly beyond 30 nm (Fig. S8) so that they became distinguishable from traffic emissions.

Despite the underlying uncertainties mentioned above, we attempted to estimate the fraction of accumulation mode particles (>100 nm diameter) originating from direct emissions compared to secondary formation through different approaches. Our results suggest that 65-80% of the accumulation mode particles originate from secondary formation (NPF) in the atmosphere during the observed haze episodes (Fig. 2A, 2B and Figs. S9-S10), and that this fraction was clearly above 50% already before haze formation. Analyses of the particle-phase composition combined with advanced source apportionment techniques (Figs. S11-S14) showed that about 80–90% of the fine particle mass was secondary during the haze episodes (Fig. 3D), with secondary inorganic matter aerosol (SIA, mostly NH₄NO₃ and (NH₄)₂SO₄) being about twice as abundant as secondary organic aerosol (SOA).

4. The estimated time it takes from NPF to haze formation

We investigated the timing between NPF and subsequent formation of haze. These results (Fig. 3) show that faster haze formation (reflected by smaller time difference Δt on the y-axis) was associated primarily with larger number of particles produced by the NPF event preceding the haze, and secondarily with a higher growth rate (GR) of the newly formed particles. Since the eventual clearing of haze is dictated by larger-scale weather conditions, the length of a haze episode is strongly related to how quickly haze forms. If the underlying cause governing the speed of haze formation is NPF, then our findings suggest that NPF has a potential to considerably increase the total number of haze days, typically by 1–2 days per each haze episode. On the other hand, since during our observation period we observed 57 haze episodes and since the normal cycle from haze formation to its clearance lasts up to 7 days, we could cut the haze days to almost half by reducing vapors responsible for the growth of the nucleation mode particles.

After establishing the strong linkage between NPF and haze formation, we explore whether a faster haze formation could be causally connected to NPF in the following sections.

First, we started from the unresolved puzzle on why and by which mechanisms NPF is possible in a polluted environment like Beijing. Based on our recent observations that clusters composed of
sulfuric acid (H$_2$SO$_4$) and dimethyl amine (DMA) are crucial in producing new aerosol particles in both Shanghai and Beijing35,36, we estimated the effective condensation sink (CS$_{eff}$) of such clusters using heterogeneous nucleation theory37 (Fig. 4A, see details in SI material, section 3.3). We found that, depending on the contact angle of heterogeneous nucleation and the properties of nucleating vapor, CS$_{eff}$ can be substantially lower, by more than a factor 100, than CS obtained using the traditional assumption that clusters are scavenged by larger (mainly accumulation mode) particles upon every collision with them. Low values of CS$_{eff}$/CS for H$_2$SO$_4$-DMA clusters can explain why such clusters are able to survive in polluted air to produce growing nanoparticles. Additionally, this observation indicates that vapors having a low heterogeneous nucleation probability on accumulation mode particles might prefer condensing onto the nucleation mode over the accumulation mode. Investigating contact angles of vapours under atmospherically relevant conditions remains essential, especially since the contact angles of nucleation of atmospheric vapors are still unknown.

Second, regardless of their exact origin and formation pathway, fresh particles produced by NPF are likely to have a chemical composition very different from that of accumulation mode particles. The chemically distinct aerosol surface and volume of these particles facilitate heterogeneous reactions that contribute to their growth38 and, as a side product, produce secondary aerosol mass. We found that the growth rates of aerosol particles produced by NPF (measured as a function of time and size, Fig. S7) appear not to depend on the particle size for particles larger than 25 nm. This is consistent with the surface reactions (reactive uptake) being the dominant growth mechanism39 for these particles.

Third, we investigated the effect of enhanced aerosol mass growth ($\frac{dM}{dt} = \Delta M/\Delta t$) due to surface reactions on haze formation by assuming that the increased reactive surface area is due to NPF. We used a simple conceptual model and set the initial (before NPF) aerosol mass concentration and its growth rate equal to 10 ug/m3 and 1 ug/m3 per hour, respectively. The results (Table 1) show that even small enhancements in the mass growth due to new reactive aerosol surface will lead to significant increases in the accumulated aerosol mass, and that a mass growth enhancement of 10% is sufficient for the haze (100 ug/m3) to form within 24 hours. This supports our observations that without NPF the time needed for haze formation is significantly longer.

How would preferential heterogeneous nucleation and reactive uptake on the nucleation mode compared with accumulation mode affect how fast haze forms? We performed simulations using a simple but realistic model (see SI material, section 3.4, Fig. S15) that has two modes, a growing mode (originating from NPF) and accumulation mode, and two different vapors. We assume that one of these vapors condenses irreversibly onto both modes, representing all low-volatility vapors, whereas the other vapor can be taken up only by the growing mode, representing vapors that have preferential heterogeneous nucleation or reactive uptake with nucleation mode particles. By repeating these simulations for a large number of cases with different initial conditions, we obtained essentially the same result as observed in the atmosphere (see Fig. 4B): higher growth rates of the nucleation particle mode following NPF lead to faster haze formation.

5. Potential solutions for mitigating winter haze

In Figure 5 we summarize our main findings from clustering to haze formation. The particulate matter formed during haze episodes in Beijing is mainly secondary, in terms of both particle number and mass concentration (Fig. 2). This, together with our other findings listed above, suggest that a reduction in the strength of NPF and subsequent particle growth would delay the starting times of
haze episodes and reduce particle mass concentrations during these episodes. By reducing the number of particles formed during an NPF event by a factor of 4, we might be able to delay the initiation of haze up to 40 hours particularly if we can at the same time decrease their growth rate. The most effective way to reduce NPF strength is to reduce DMA emissions together with H_2SO_4 concentrations originating dominantly from gas-phase SO_2 oxidation, since H_2SO_4–DMA clustering has been shown to effective pathway in megacities. Reductions in anthropogenic inorganic and organic gas-phase precursor emission would decrease the growth rates of newly-formed particles and further delay haze formation. The potential delay of 1–2 days per haze period would mean 16 to 32 fewer haze days per winter in Beijing.

Major clean air policies have already been implemented to reduce SO_2 emissions in China, especially in the North China Plain surrounding Beijing. As a result, SO_2 concentrations in the surface air have decreased considerably during the recent years. Though sulfate aerosol mass decreased, the observed reduction in the PM_{2.5} concentration was smaller, partly due to compensating effects by more efficient nitrate formation. Other contributors to PM_{2.5} (SOA, NH_4^+ and NO_3^−) will likely be targeted in future emission reductions. What it comes to particle number concentrations, practically no change in the NPF event frequency in Beijing was observed in the past four years (Fig. S3). This indicates that SO_2 concentrations have probably not yet reached levels low enough to be a limiting factor for NPF in Beijing. The apparent lack of major emission changes in the other precursors for NPF and subsequent particle growth, especially those of NH_3 and VOCs, and probably also those of amines, during the recent years is consistent with this picture.

During our research period of about 400 days in Beijing, we had 189 NPF event days and more than 50 of them were followed by a haze episode. In practice almost no haze episode was recorded without a preceding NPF event. Based on our results, we identify potential solutions to reduce aerosol formation and growth rates that will reduce the strength and frequency of NPF leading to less haze formation: 1) Further reduce SO_2 emissions to decrease H_2SO_4 concentrations and weaken both NPF and formation of particulate sulfate; 2) Reduce amine and ammonia emissions to decrease the strength of NPF; and 3) Reduce anthropogenic organic and inorganic gas-phase precursor emissions to decrease the rate at which particle formed by NPF grow to haze particles. Using our current emission estimates for the Beijing-Tianjing-Hebei area (see supplementary material), the regional SO_2 emissions are split mainly between the industrial combustion (60%), residential combustion (20%) and power production (10%), with more than 70% of these emissions being related to coal combustion, whereas approximately 90% of the NH_3 emissions originate from agriculture. No official emission data for amines in this region exists, but our measurements in Beijing indicate a large contribution from local traffic. Based on Fig. 3 and 4, a reduction by a factor of 3–5 in the particle growth rate will delay the onset of haze by 1–3 days and consequently provide more time for the synoptic meteorological situation to change. This has a potential to cut the total number of haze days to more than half. In order to verify the efficiency of imposed control mechanisms, and to understand how the mutual effects of aerosol precursor emissions and changes in condensation sink affect NPF and ultimately haze, we need continuous and comprehensive observations in Chinese megacities, as suggested by Kulmala.

Author Contributions

Scientific discussions and interpretations: MK, LD, KRD, CY, DS, JKon, EE, TP, PP, DW, AD, LW, JJ, FB, VMK
Data analysis: MK, LD, KRD, CY, JKon, EE, SH, ST, TK, MoK, RC, YZ, RY, RB
Modeling: EE, ST
Writing: MK, LD, KRD, CY, DS, JKon, VMK
Measurements: KRD, CY, TK, YZ, RY, TC, BC, CD, YF, LH, HJ, YiLiu, YLu, AR, VV, YW, GY, LY, GZ, JIan, JKuj, YoLiu

All co-authors contributed to revising and commenting on the manuscripts.

Conflict of interest: the authors declare no conflict of interest.

Acknowledgements

We thank Maija Peltola for providing the growth rates code. The work is supported by Academy of Finland via Center of Excellence in Atmospheric Sciences (project no. 307331) and European Research Council via ATM-GTP (742206). This research has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 895875 (“NPF-PANDA”), the Academy of Finland (project no. 316114 & 315203) as well as the Doctoral Programme in Atmospheric Sciences at the University of Helsinki. Partial support from the National Key R&D Program of China (2017YFC0209503 & 2017YFC0209505), the National Natural Science Foundation of China (21876094 & 91644213 & 41730106), and Samsung PM2.5 SRP is acknowledged. Moreover, this research received support from the Swiss National Science postdoc mobility grant (P2EZP2_181599).
References

Tables and Figures

Table 1. The influenced enhanced aerosol mass growth rate (first column), caused by the reactive aerosol surface area originating from NPF, on the aerosol mass concentration after 10 hours (second column) and 24 (third column) of ageing, and the time it takes for the aerosol mass concentration to reach 100 μg/m³ (fourth column). The initial (before NPF) aerosol mass concentration and its growth rate were set equal to 10 ug/m³ and 1 ug/m³ per hour, respectively. Without any enhancement in aerosol mass growth, it would take 90 hours for the aerosol mass concentration to reach 100 μg/m³.

<table>
<thead>
<tr>
<th>Enhanced mass growth rate (times the original value)</th>
<th>Additional aerosol mass after 10 hours</th>
<th>Additional aerosol mass after 24 hours</th>
<th>The time it takes for the aerosol mass concentration to reach 100 μg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>1 μg/m³</td>
<td>6.5 μg/m³</td>
<td>57 hours</td>
</tr>
<tr>
<td>1.04</td>
<td>4.8 μg/m³</td>
<td>37.5 μg/m³</td>
<td>31 hours</td>
</tr>
<tr>
<td>1.10</td>
<td>16 μg/m³</td>
<td>212.4 μg/m³</td>
<td>18 hours</td>
</tr>
</tbody>
</table>

Figures

Fig. 1. Time evolution (Local Time) of the (A) particle number size distribution and total number concentrations of particles larger than 1.5 nm, 3 nm, 50 nm and 100 nm in diameter, (B) condensation sink size distribution and total condensation sink (solid line), and (C) particle volume size distribution and total volume concentrations particles larger than 1.5 nm, 3 nm, 50 nm and 100 nm in diameter. The surface plots are calculated as a median of 15 cases (Table S2), in which an NPF event day was followed by a non-event day (this could be a haze day or a day in the process of forming haze). In (A) right after the start of NPF, we observe a major increase in the number concentration of particles...
with diameters larger than 1.5 nm and 3 nm, as demonstrated by solid and broad-dashed lines. Around 6 hours later, we observe an increase in number concentrations of 50 nm and 100 nm particles. At the onset of NPF, we observe a small contribution of the recently-formed particles to the total condensation sink (solid line in (B)), which later systematically increases concurrent with the increase of larger particle number (> 50 nm and 100 nm) observed in (A). Finally, similar to the CS, we observe a contribution to the total volume of particles, even though the volume of particles is dominated by larger particles, easily visible from the fact that particles with diameters larger than 1.5 nm, 3 nm, 50 and 100 nm have almost the same total volume. A drop in visibility is observed around midnight on the second day (Fig. S18).

Fig. 2. (A) The fraction of primary particles in the accumulation mode (>100 nm) estimated using the NOx tracer method (see SI material section 3.1), and with a percentile line of 1% in Figs. S9 and S10. (B) Relative contributions of black carbon (BC), primary organic aerosol (POA) from traffic, cooking, coal and biomass burning, secondary organic aerosol (SOA), ammonium (NH₄), nitrate (NO₃), sulphate (SO₄), and chloride (Cl) to the total PM₂.₅ mass concentration as function of the non-refractory PM₂.₅ mass concentration. Our observations mean that most of the accumulation mode particles are secondary, which confirms our hypothesis that secondary sources also contribute to the number concentration and not only to the mass concentration. With an increasing PM₂.₅, the relative contribution of secondary PM₂.₅ (SOA, NH₄, NO₃, SO₄, Cl) increases up to 90% of the total PM₂.₅ mass concentration.
Figure 3. The time difference between end of NPF events and time when the PM$_{2.5}$ concentration reaches 100 μg/m3 as a function of the (A) total number of 3-nm particles produced during the NPF event and (B) total number of 10-nm particles produced during the NPF event. The points are divided into points with low growth rate (GR < 6 nm·h$^{-1}$) in blue and points with high growth rate (GR > 6 nm·h$^{-1}$). The data points are binned based on the number concentration (x-axis). A linear fit for the points with low GR is shown as a dashed line and another one for the points with high GR as a solid line. Our results show that an increase in the total number of formed 3-nm or 10-nm particles results in a shorter time needed to form haze. Accordingly, a decrease in the intensity of NPF could result in delaying the haze formation. The data set having larger values of GR causes a faster haze development. More specifically, decreasing the total number of formed 3-nm particles by a factor of 2 results in delaying the haze formation by up to 40 and 60 hours for cases with low and high GR, respectively. Reducing particle growth rates by 50% (a shift from yellow to blue points), e.g. by reducing anthropogenic VOC concentrations, will delay haze formation between about 20 and 50 hours.
Fig. 4. (A) The ratio between effective and total condensation sink, CS_{eff}/CS, for a sulfuric acid–DMA clusters as a function of condensing cluster mass was estimated using heterogeneous nucleation theory with a constant contact angle of 45° (see details in the SI material, Section 3.4). (B) Measured and modeled effect of the growth rate of freshly formed particles by NPF on the time needed for formation of haze. The measured data in the figure covers the 15 months in Beijing between Jan 1 2018 till Mar 31, 2019; the Shanghai data (see the SI material, Section 1.9, for details) spans the dates from 25 February 2014 to 25 February 2016. The curve shows the results of model calculations. The model simulations are described in the SI material (Section 3.3).
Fig. 5. The main mechanisms of NPF and subsequent particle growth. The initial stages of NPF are dominated by formation of sulfuric acid–DMA clusters, with additional contribution by ammonia. Growth of particles larger than 3 nm in diameter is mainly due to anthropogenic low volatile organic and inorganic compounds. Heterogeneous chemistry, including reactive uptake of aerosol precursors, is crucial for the production of secondary aerosol mass.