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A variety of silicon-based nanostructures with dimensions in the 1-5 nm range now emit
tunable photoluminescence (PL) spanning the visible range. Achievement of high
photoluminescence quantum efficiency (PLQY) relies critically on their surface chemistry
passivation and an impressive “tool box" of options have been developed. Two distinct PL
bands are dominant. The “S-Band” (red—green emission with Slow microsecond decay) has
PLQY that has steadily improved from ~3% in 1990 to 65 + 5% by 2017. The “F-Band”
(blue—yellow with Fast nanosecond decay) has reported PLQY values that have improved
from ~0.1% in 1994 to as high as ~90% by 2016. The vast literature on both bands is
surveyed and for the S-band, size-structure-PL correlations and selective photo-excitation
studies are highlighted. Resonant photoexcitation and single quantum dot studies have
revealed the key role of quantum confinement and the excitonic phonon-assisted nature
of the radiative transitions. For the F-band, in contrast, specific phenomenological studies
are highlighted that demonstrate similar emission without the presence of silicon
nanostructures. Low PLQY F-band emission from pure silicon-silica core shell systems is
probably associated with oxide-related defects, but ultrahigh PLQY from many lower
temperature synthesis routes is likely to be from carbon-based nanostructures or
chromophores, not silicon nanostructures. Potential applications for both PL bands include
sensing, medical imaging, theranostics, photovoltaics, LED colour converters and nano-
thermometry. Emerging “green” synthesis routes are mentioned. If scalability and cost are
significantly improved then a number of other proposed uses of ultra-efficient PL from
“nano-Si” could become viable in cosmetics, catalysis, security and forensics.

1. Introduction
1.1. Scope of review

Nanostructuring has introduced an exciting new capability to semiconducting
silicon: the ability to emit visible light very efficiently under photoexcitation
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(photoluminescence (PL)). This property was quickly recognized in the early 1990s
as a route to extend the functionality of an already powerful silicon technology.
The topic has thus received intense study over the last 30 years, with now thou-
sands of publications. This review focuses on the visible photoluminescence of
silicon nanostructures; collating both experimental and theoretical work on most
types of nanostructure; providing quantitative performance metrics, particularly
on photoluminescence quantum yield (PLQY); photoluminescence wavelength
tunability (PLWT) and photoluminescence decay times (PLDT).

There are two dominant PL emissions in the visible (see Fig. 1): the “Slow” (S)
band in the red-yellow spectral range with long microsecond decay times (see
Section 2) and the “Fast” (F) band in the blue-green with faster nanosecond decay
times (see Section 3). In a given nanostructure, one or the other, or both can be
present. Often, as shown in Fig. 1, the intensity of the blue emission will often
increase with storage time. The origins of such behaviour have received intense
study.

This review highlights many spectroscopy-based studies and selected
phenomenological studies that provide insight into their likely PL mechanisms.
The review also covers six application areas of efficient visible PL: sensing,
photovoltaics, medical imaging, theranostics, white LEDs and nano-
thermometry. It also proposes a number of ways in which the field might
further progress, and other application areas that might emerge if cost and
scalability issues are surmounted. There is no detailed discussion of
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Fig. 1 The S-band and F-band photoluminescence of silicon-based nanostructures.* (a)
Photographs of nanocrystal suspensions under UV illumination. Freshly etched nano-
crystals: orange emission. After one day of air exposure: blue emission. (b) Evolution of S-
band and F-band spectra with varying air exposure of the times indicated. Adapted with
permission from A. Gupta and H. Wiggers, Nanotechnology, 2011, 22, 055707. Copyright
IOP Publishing, 2011. All rights reserved.
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nanostructure synthesis techniques and surface chemistry manipulation, as these
have already been the focus of many prior reviews that are referenced.

Data on electrical transport, electroluminescence, optical gain, and thereby
optoelectronics, are also omitted in order to entirely focus here on the potential of
photoluminescent properties. Such a platform property is however often
combined with other crucial ones for specific uses, such as biodegradability and
biocompatibility for medical applications. These additional properties are
covered briefly in the relevant application sections. In summary, this review
collates and discusses some of the very large amount of data now available on
many types of photoluminescent silicon nanostructures and many applications
thereof. It is hoped to be of use both as a broad introduction to the vast literature
of this maturing field, but should also stimulate specific areas of discussion and
perhaps further research in highlighted topics.

1.2. Electron-hole recombination processes in bulk silicon

When a semiconductor such as silicon is stimulated by light (photoexcitation) it
may return to equilibrium by a variety of processes.> Some involve the re-emission
of light (photoluminescence or fluorescence - these terms are used inter-
changeably in the literature on luminescent silicon nanostructures) and are so
called radiative transitions. Others redistribute the absorbed energy amongst
vibrational modes of the lattice or electronic excitations and ultimately generate
heat - so-called non-radiative transitions.

Radiative processes in silicon include recombination from electrons and
holes? free excitons,* biexcitons or excitonic molecules,>” polyexcitons,® electron-
hole liquids,”* bound excitons'* and donor-acceptor pair luminescence.">** Free
excitons will diffuse through the silicon lattice™ and can be trapped and emit light
at isolated dopants,'® clusters of dopants,'” isoelectronic traps'® and sometimes
near extended defects'>* such as dislocations and precipitates. Such trapping
can occur in the bulk and near surfaces. The majority of these radiative excitonic
processes however are only observed at very low cryogenic temperatures, due to
the small binding energy of the exciton. Not only that, but their efficiency is also
normally low. The efficiency of a radiative process generally depends on the
electronic bandstructure of the solid and for crystalline semiconductors the
perfection of its lattice and surfaces, since most defects and surfaces promote
non-radiative processes. Non-radiative processes® in silicon are dominated by
Auger recombination® and recombination at “deep level” defects such as tran-
sition metal impurities in the bulk® or defects at surfaces and interfaces such as
that created by ambient or thermal oxidation of silicon.>®

1.3. Photoluminescence of crystalline bulk silicon

It is instructive to first survey the PL of bulk Si because this reveals certain
“spectroscopic fingerprints” of radiative excitonic recombination processes in
this crystalline material. The fundamental indirect energy gap in crystalline bulk
silicon, between the top of the valence band and lowest conduction band is
1.170 eV at 0 K, decreasing monotonically to 1.125 eV at 300 K.”” Interband near
infrared photoluminescence from silicon was first observed by Haynes and co-
workers in the 1950s.®> At room temperature its near bandgap emission consists
of a single weak band at ~1.09 eV (1134 nm) with a full width at half maximum
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(FWHM) that is about 100 meV.>*** At cryogenic temperatures recombination
becomes excitonic. The exciton in bulk silicon has a Bohr radius of 4.2 nm and
a binding energy of only 14 meV.** Fig. 2 shows how the spectra broaden
considerably above room temperature and sharpen considerably at cryogenic
temperatures, with a spectral position that follows the temperature dependence
of the silicon bandgap.

At low temperatures (<40 K) and in pure silicon, free exciton (FE) recombina-
tion totally dominates over bound exciton (BE) recombination (Fig. 3). Transition
linewidths are now narrow enough to resolve fine structures corresponding to the
TA and TO phonons as shown in Fig. 2 and 3. Two phonon replicas are very weak.
Note the extremely weak “zero-phonon” peak I° near 1.16 eV in Fig. 3 where
electron and hole recombine without a momentum conserving phonon. The
spacings of the features 1" and 1" from I° in the spectrum are determined by the
corresponding phonon energies. Currently accepted values for bulk silicon are:
TA phonon = 18.4 £ 0.2 meV; LO phonon 56.2 + 1 meV; TO phonon = 58.0 £ 1
meV. The relative ratios of the phonon-assisted peaks are temperature dependent
but the TO mode is dominant with approximate values in Fig. 3 being 1 [TO] : 0.1
[LO] : 0.03 [TA].**

Concerning defect-related emission let us first consider the simplest point
defects: substitutional donors, like P, As and Sb; interstitial donors like Li; and
substitutional acceptors like B, Al, Ga and In. Free excitons migrating through the
lattice can bind to the neutral donor or acceptor and binding energies lie in the
range 3-50 meV.*® When the exciton is localised on the impurity, there is
arelaxation of the wave vector selection rule so the zero phonon line is thus much
stronger for bound excitons (e.g. In® in Fig. 4) than for free excitons (e.g. 1° in
Fig. 3).
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Fig.2 Normalized interband PL from bulk Si at 35-674 K.2® BE stands for bound exciton,
FE for free exciton (see text). Reprinted with permission from V. Alex, S. Finkbeiner and J.
Weber, J. Appl. Phys., 1996, 79, 6943. Copyright AIP Publishing.
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Fig. 3 Intrinsic free exciton PL from high purity silicon at 26 K.** The LO and TO phonon
components are not resolved. Reprinted with permission from P. J. Dean, J. R. Haynes
and W. F. Flood, Phys. Rev., 161, 711-729. Copyright the American Physical Society, 1967.

Rapid progress in identifying many radiative defects began in the late 1970s
when Ge photodetectors became available and were orders of magnitude more
sensitive than PbS detectors in the near infrared.** The huge increase in
resolution enabled isotope shifts in sharp zero phonon line transitions to be
studied, thereby unambiguously identifying which impurities were involved in
specific vibronic band emission. When combined with uniaxial stress
measurements to elucidate the defect symmetry, and correlations with other
spectroscopic techniques, detailed models of radiative point defects
emerged.**
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Fig. 4 30-100 K PL due to bound exciton recombination at indium atoms.** Reprinted
with permission from P. J. Dean, J. R. Haynes and W. F. Flood, Phys. Rev., 161, 711-729,
1967. Copyright the American Physical Society, 1967.
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Unfortunately, some luminescent bulk silicon crystals also display broad
featureless bands at sub-bandgap wavelengths'***> providing a challenge for
identification that researchers of today’s silicon nanostructures are more than
well aware. Fig. 5 shows an example of a broad and featureless band at 0.94 eV
attributed to extended defects (hydrogen platelets) in bulk silicon.**

1.4. Surface passivation chemistries for bulk silicon

Surface or interface “passivation” refers to the removal of electrically or optically
active defects and has become increasingly important in silicon solar cell tech-
nology due to the cost-driven reduction of cell thickness and corresponding
increase in surface to volume ratio. There has been an associated significant effort
in understanding the origin of, and minimizing, such non-radiative recombina-
tion. That literature is utilized here to identify some of the most useful passivation
chemistries that could be applied to luminescent silicon nanostructures, and
indeed many, but not all, have already been used. Given that nanostructures have
huge surface areas, the importance of minimizing non-radiative surface recom-
bination becomes of paramount importance if high PLQY is to be realized.

Surfaces disrupt the band structure, creating energy states in the bandgap via
strained or un-terminated (“dangling”) bonds. These states can capture electrons
or holes with capture velocities S, and Sy, that are governed by the product of
carrier diffusion, capture cross-section and defect density, D;.. A surface will have
different steady-state carrier concentrations (7, ps) of electrons and holes to those
in the bulk, and different to the intrinsic carrier concentration (#;).
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Fig.5 Low temperature PL from plasma etched bulk silicon with high levels of hydrogen.®
Reprinted and adapted with permission from H. Weman, B. Monemar, G. S. Oehrlein and S.
J.Jeng, Phys. Rev. B, 42, 3109-3112, 1990. Copyright the American Physical Society, 1990.
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The total recombination at a surface can be characterized by an effective
“surface recombination velocity (SRV)” that quantitatively assesses surface or
interface passivation:

Serr = (1/Ang) x (ngps — m)((ns + m)Spo + (ps + 1)/ Sy0) (1)

where Ang is the excess minority carrier concentration that dominates overall
recombination rates.*® What eqn (1) nicely illustrates are the two complementary
techniques that have been investigated for reducing surface recombination in
bulk silicon. One is “chemical” in the sense of new bonding arrangements of
surface dielectric films or organic monolayers and chemical species like
hydrogen. These can lower capture rates by having fewer bandgap states
(defects) or lowering the capture cross sections of existing defects. They there-
fore lower the carrier capture velocities S, and Sy, The other is “physical” in the
sense of utilizing surface charge and thereby electric fields to lower the
concentration of minority carriers at the surface or interface. This can be ach-
ieved by having a raised charge density at the surface or within the interfacial
layer that acts to reduce the concentration of one type of carrier at the surface,
where most defects reside. They therefore lower ng or pg or change their ratio.
The lowest values of SRV for bulk silicon have been achieved by utilizing both
techniques.®® Table 1 shows SRV values for a range of bulk Si surface and
interface chemistries.
Some observations from surveying this field and the data in Table 1:

Table 1 SRV values for a range of bulk Si surface and interface chemistries

Si Surface SRV

structure chemistry Passivation method (ems™) References

Bulk Si Silicon hydride In situ in HF and other acids <1 (0.25) (Yablonovitch

(111) 1986)>*

Bulk Si Silicon hydride HF-based cleans <0.05 — 0.1 (Sun 2018)**

Bulk Si Native oxide HF and air exposure (24 days) >1000 (Nemanik

(111) 2006)*°

Bulk Si  Thermal oxide Annealed silica <1 (Kerr 2002)*”

(100)

Bulk Si Thermal oxide Charged annealed silica <1 (0.44) (Collet 2017)*®

Bulk Si  Silicon nitride ~PECVD <1 (0.67) (Wan 2013)*°

BulkSi  Alumina Plasma ALD 2-6 (Hoex 2008)*°

Bulk Si Amorphous Si  PECVD a-Si/SiO,/SiN, <1 (0.06) (Bonilla
2016)"

Bulk Si Alkyl groups Chloro-alkylation <25 (Royea 2000)**

(111)

Bulk Si Methyl, ethyl,  Chloro-alkylation and 24 <100 (44-80) (Nemanik

(111) propyl, butyl,  days in air 2006)*°

phenyl

Bulk Si Superacid HF-dip coating 3-10 (Bullock
2016)"

Bulk Si Superacid Pre-clean/etches-SA Soln. 0.3-3 (Grant 2017)**

(100) Coating

Bulk Si  Nafion Spin coating 1.5 (Chen 2018)*

(100)
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¢ Hydride passivation is effective but susceptible to native oxide growth which
can seriously raise non-radiative rates.*

¢ Organic monolayers with Si-C bonding are also effective, but passivation also
deteriorates with extended air exposure.*®

e SRV values below 1 cm s~ " are achievable at bulk Si interfaces with optimized
a-Si, thermal oxides and nitride coatings. Alumina, titania and silicon carbide
films can also passivate silicon surfaces but SRV values are generally a little
higher.

e Interface densities are much lower for atomically smooth interfaces.*®

e Surface/interface charging has not been explored thoroughly versus PLQY of
nanostructures.

e Superacids and Nafion can provide very low SRV, at least with bulk Si of
moderate surface areas.**** They are yet to be explored with silicon
nanostructures.

e SRV values are generally much higher for nanostructured silicon (see Section
5.1).

1.5. Luminescent Si nanostructure diversification

The easily reproduced demonstration of efficient”” and wavelength-tunable*”**

visible emission from porous silicon and silicon nanocrystals around 1990 led to
a wide range of silicon nanostructures being explored, together with a variety of
synthesis techniques. Fig. 6 illustrates many of these schematically. Each class of
nanostructure is at least mentioned in this review, but with emphasis that very
much reflects their respective levels of study and development, and also their
success in achieving high photoluminescence efficiency.

A variety of different terms for luminescent silicon nanostructures are used in
the literature, so we will start by mentioning them here. The terms silicon
“quantum” wells, wires, and dots are the smallest 1D, 2D and 3D confined crys-
talline silicon structures, respectively, with diameters below that of the Bohr
exciton radius (~4 nm) in bulk silicon (see Section 1.3). Such structures are ex-
pected to have bandstructures that are size-dependent due to quantum confine-
ment effects as discussed in Section 1.6. Silicon “nanoparticles”, nanowires,
nanopillars or nanorods can often, but not always, have larger diameters in the
range 5-100 nm. These can exhibit carrier confinement effects on PL but their
bandstructure is similar to that of bulk Si. In the literature both terms are used
interchangeably. “Nanoclusters”, for example, often denote the tiniest structures
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Fig. 6 Example classes of silicon nanostructures.
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consisting of under 50 atoms. Likewise, “nanosheets” usually refer to free-
standing layers of, at most, a few atoms thickness.

The experimental literature is currently dominated by luminescent silicon
nanocrystals, porous silicon, silicon nanowires and silicon superlattices, in that
order. The theoretical literature is dominated by calculations of silicon quantum
wires and silicon quantum dots. Other silicon nanostructures have received
some, but not substantial development. Examples of silicon nanostructures
where efficient visible luminescence at 300 K is either not reported or not
quantified to date include silicon nanoribbons,* nanoshells and nanotubes,*
nanosheets,”* molecular clusters,* allotropes®® and metastable polymorphs.®

1.6. Theory of quantum confinement effects in Si nanostructures

Theoretical studies of how the silicon bandstructure evolves with size and shape
in the critical 1-10 nm size range began in the early 1990s and there is now
a substantial body of work. I am not aware of a prior review that tries to
comprehensively analyze the considerable theoretical literature on silicon nano-
structures and will not attempt to here. Numerous publications are provided here
and a few concepts and trends are selected where there is a consensus with
respect to issues that affect PLQY, PLWT and PLDT of silicon nanostructures.

Starting with the earliest calculations in 1992-1993 (ref. 58-60) and many
others, theoretical work has continuously grown over the last 30 years, due to
a myriad of potential applications for nano-Si, many of which do not utilize
photoluminescence. Studies are grouped in Table 2, not by calculation technique,
but by nanostructure morphology and surface/interface chemistry. The aim is to
help readers access the available theory most relevant to their specific lumines-
cent nanostructures. A large number of theoretical studies have focused on
silicon quantum wires, but the literature on quantum dots is growing. Lumi-
nescent porous silicon has been modelled as idealized quantum wires and
quantum dots or by introducing an artificial periodicity of holes via supercell
techniques.” In reality, morphology is variable but often of mixed 2-3D
confinement due to undulating wire thickness (see Section 2.1) combined with
other geometrical shape variations.'*

Surveying the theoretical data of Table 2 there would appear to be a consensus
that:

Table 2 Theoretical literature on different classes of model Si nanostructures

Model nanostructure

morphology Surface chemistry  Size range studied References
Quantum slabs (free-standing)  Si-H, 0.3-6.0 nm 61-64
Quantum wells (embedded) Si-Si0,, Si-CaF, 0.3-6.0 nm 65-69
Quantum wires (free-standing)  Si-H, 0.8-3.0 nm 70-85
Quantum wires (core-shell) Si-Sio, 1.0-3.0 nm core 86-88
Quantum wires Si-CH;, 1.0-3.0 nm 89

Quantum dots Si-H, 1.0-5.0 nm 74 and 90-94
Quantum dots Si-SiO, 1.0-5.0 nm 95-99
Quantum dots Si-organic ligands  1.0-5.0 nm 100-106
Ultrasmall Si clusters Si-H, 1-50 atoms 107 and 108
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e The silicon bandgap starts to widen significantly for quantum wells (slabs/
nanosheets) with widths under 2 nm, quantum wires with diameters under
3 nm and quantum dots with diameters under 5 nm.

e In principle the entire visible range is accessible for quantum dots and wires,
with bandgap tunability extending from 1 eV to 3 eV.

e Exciton binding energy is significantly enhanced due to quantum confine-
ment reaching values as high as a few hundred meV for 1.5-3 nm diameter
quantum dots or 1-2 nm diameter quantum wires.

e Surface chemistry significantly affects the bandstructure of smaller nano-
structures, e.g. oxidation narrows the bandgap of hydride passivated
nanostructures.

Table 3 provides some theoretical data for hydride passivated silicon quantum
dots, quantifying how the bandgap and strength of exciton binding increase
dramatically with decreasing size for 1-5 nm nanocrystals. Note how the pre-
dicted radiative recombination rates however, only become comparable with
those of direct bandgap semiconductors for the smallest silicon nanocrystals
around 1 nm diameter.

Aside from size, shape and surface chemistry, there are other factors that affect
bandstructure and therefore PL. There have, for example, been a series of theo-
retical effects investigating the roles of strain."***® For quantum wires, crystal-
lographic orientation also has a significant effect on bandstructure.””7:8312¢

1.7. PL quantum yield (PLQY)

For any photoluminescent material or molecular species the efficiency of its
radiative processes or “photoluminescence quantum yield” (PLQY) of its lumi-
nescence is an important quantitative property that will impact on its likely use.
The PLQY depends on direct competition between the specific radiative process
and all non-radiative processes:

Table 3 Theoretical estimates of bandgaps, exciton binding energies and radiative
recombination rates for 1-5 nm diameter silicon nanocrystals (quantum dots) with hydride
passivation

2.0 2.5 3.0

Size 1nm 1.5 nm nm nm nm 3.5nm 4.0 nm 5.0 nm References
Number of silicon 29 87 191 389 705 1087 >1500 >3000 111
atoms

Number of 36 76 148 254 300 436 >500 >750 112
hydrogen surface

atoms

Excitonic bandgap >3.5, >2.5, 2.2, 1.9, 1.7, 1.6, 1.5, 1.35, 112
(eV) (nm) <354, <496, 563, 653, 729, 775, 827, 918,

associated UV blue green red red nearIR near IR near IR

spectral range

Exciton binding ~400 ~300 200 160 125 95 113 and
energy (mevV) 114
Radiative >107  ~10° ~10° ~10" <10* 115
recombination

rate (s7)
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PLQY (%) = photons emitted/photons absorbed = k/(k, + Zk,,) 2)

where k. is the radiative recombination rate and k,,, the non-radiative rate.

Measurement of both PLQY 7 and luminescence decay time 7py, enables one to
separate the radiative and non-radiative lifetimes of excited states using the
simple relation

PLQY = n = tpp/t, = Uzt /(1/z, + 1/zy,) (3)

The intrinsic radiative recombination coefficient k. of bulk c-Si has been
estimated to be 2 x 10~ "° em® s~ " which is about 100 000 times lower than direct
bandgap semiconductors like GaAs. Absolute quantum efficiency estimates of
interband recombination (see Fig. 2) in standard silicon crystals (wafers) with
native oxide surfaces (see Table 1) typically range from 10~ ° to 10~*. However, eqn
(3) emphasizes that if all non-radiative processes can be virtually removed, then
PLQY can be quite high. This has been elegantly demonstrated by solar cell
specialists (Green and co-workers). In 2003 they showed that in the highest purity
float zone silicon with optimized surface passivation, PLQY of near infrared
emission could be as high as 6.1 £+ 0.9% at 300 K.***

Accurate measurement of PLQY is not as straightforward as measuring PL
decay times and a number of different protocols exist, but they can be divided into
comparative ones that utilize photoluminescence standards of known PLQY and
absolute ones that directly measure the fraction of absorbed photons that are
emitted as photoluminescence or the fraction of photons lost by non-radiative
recombination. The latter use integrating spheres to collect all emitted light, or
use photoacoustic/calorimetric methods to quantify heat production. Method-
ology can depend on the physical form of the photoluminescent material (e.g.,
film versus dry powder versus colloidal solution) and the spectral positions of both
excitation and emission. A number of important reviews are available that detail
the theory, methodologies, standards, and sources of error involved.””>**” Of
particular relevance here is the review by Valenta on PLQY measurements of
nanomaterials."’

For comparative methods, the most established standards are quinine
sulphate in 0.5 M sulphuric acid, fluorescein in 0.1 M NaOH and rhodamine 6G in
ethanol with peak emissions at 451, 515 and 552 nm, respectively. Their PLQY
accuracy is better than 4% under well-defined conditions.* These standards are
well suited to the spectral positions of the F-band (see Section 3).

The physical form of silicon nanostructures can have a pronounced effect on
PLQY. For example, for thin solid films light entrapment effects due to total
internal reflections and Fresnel transmission at the film-air interface can
dramatically lower PLQY, even if the internal quantum efficiency (IQE) is very
high. A light extraction efficiency Exp;, for a thin film on an absorbing substrate
has been estimated.” The escape probability of emitted light is strongly
dependent on refractive index:

Expr = 1/[n(n. + 1)°] (4)

So, for example, with a solid silicon film of refractive index 3.5 only 1.4% of
light escapes directly from the top surface. For silicon nanocrystals embedded in
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silica films with a refractive index of 1.64, only 8.7% escapes internal reflections.
For porous silicon nanostructures, PLQY and IQE values start to get closer as
refractive index is lowered. High PLQY pSi structures have porosities in the range
70-90% with refractive indices as low as 1.1. Now more than 20% of light emitted
internally can directly escape, lowering its self-absorption. Forming luminescent
nanocomposites will often normally lower the perceived brightness due to
refractive indices then being higher again.

Table 4 collates the highest PLQY values reported to date for all types of silicon
nanostructure. It is clear that the highest PLQY values have been obtained in
colloidal quantum dots, quantum dot-based superlattices and porous silicon and
so these materials are given more consideration in this review. Amorphous
nanoparticles have much lower PLQY than crystalline ones and are therefore not
discussed. Molecular size clusters and size-dependent PL from ultrathin quantum
wells have not had PLQY quantified to date. Nanotube studies have not reported
visible PL.

2. S-Band photoluminescence
2.1. Porous Si (2D to 3D confinement)

Historically, relatively efficient (~3%) S-band emission at room temperature was
first observed in high porosity silicon*” which is why we first consider this
nanostructure, despite its complex range of morphologies which make theoretical
modelling a challenge. Freshly etched red-emitting high porosity silicon was
found to contain “undulating” quantum wires**” of below 3 nm average width
(Fig. 7b).

Efficient S-band emissions are also evident in material where hydride passiv-
ation is replaced by native oxides,'*”'** anodic oxides,'** high temperature oxides®"
and organic monolayers.”® All these surface chemistries, with the notable
exception of native oxides in some cases (see Table 1) produce low levels of non-
radiative surface recombination in bulk Si. In oxide-free material tuning from the
near infrared to the blue spectral region (1300 to 400 nm) has been achieved, as
shown in Fig. 7a.'*®'? In oxidized material, from the near infrared to the yellow
(1300 to 590 nm).*** Typical PL lifetimes (see Table 5) are in the microsecond
range but depend on wavelength and surface passivation quality (SRV) (see eqn
(3).

The data in Table 5 shows variability in PLDT at given wavelengths, due to
differing silicon skeleton morphology and interconnectivity, levels of poly-
crystallinity and surface passivation. Nonetheless, the longest PLDT values of
Gelloz 2005 probably reflect primarily the lowest SRV values obtained to date by
their wet oxide passivation technique.

2.2. Single quantum wells and nanosheets (1D confinement)

Takahashi et al.’*” and Saeta et al.**® were the first to report visible emission from
single 2D crystalline silicon structures. Both groups used SIMOX wafers, thinning
the silicon layer with high precision via thermal oxidation. A red and near infrared
emission band (1.65 eV) was observed with an intensity dependent on the well
thickness but spectral position varying little. No luminescence was observed
unless the quantum well thickness was less than 5-8 nm. PLQY peaked at ~2 nm

This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 222, 10-81 | 21


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0fd00018c

View Article Online

Paper

Faraday Discussions

0c(€00T SueL) —

0¢1(9T0T UDIq[2H) —

mmﬁmmmﬁ nsjruauey) —
(2002 0YD) —
»pr(CTOT BIS1]) (S) %s°0
¢1(600T AuOIUY) (S) %>
21 (PT0T TUOD) (S) %¥-1T
(€102 0'T) (S) wey
opi(€T0T IBYOUOD) (S) %s
e1(6T0T Ueky) (A) %6
g¢1(9T0T 3U0g) (d) %st
,¢:(970T 00[) (S) e
0£1(610T EIUS[BA) (S) %0s

¢¢1(900T s312qn() (S) %tT ¥ 29

er(STOT
yoreyssues) (S) %9 F 9
(S) %S F <9

(S) %8 F 99

¢¢r(LTOT SUTULIBIN)
2e1(ST0T Suex)

(S) %S F 89
(d) %06

Ler(£T0T UBNK)
0e:(9T0T 1T)

621670 3u0yZ) (d) %06

A9 €F'C ‘WU 01§
A9 §9°'T ‘wiu TS/

A9 9E'T ‘WU TT6 ‘A9 LL°T ‘WU 00L

A9 §9°'T ‘wu 0L
A9 9T ‘wu 0S8
A9 £0°T ‘WU 009
A9 0L°T ‘WU 0L
A9 89°T ‘WU 0FL
A9 8%°C ‘wiu 00S
A9 8%°C ‘WU 00S
A9 T8'T ‘WU 689
A9 ST'T ‘WU 766
A9 LS'T ‘WU 68£

A9 9T ‘wu 6//

A9 9T ‘wu G2/
A9 76°T ‘WU 8€9

A9 £8'T ‘WU OFL
A9 €7°C ‘wu 66§

A9 8€'C ‘WU ¢S

S[rem Ie[nqny 1S-d WU /-€

aua1fysAjod ur s399ys %H 918

[e1sA10 JATIS[AyawIpIAIng—(81S) aueqnoe[IseInn
SISLLIRQ BOI[IS UIIM SIaAR] WU £'7-T'T

SMN IS WU §

SN WU G-¢ pappaquig

9PIXO UI SIN WU ¢ pappaquid

SMN 9pIM WU H-¢

SON WU € PIyUIIIUI YIM SMN IPIM WU 002-0T
sIake[oUOW UODI[IS papong

SMN 9PIM WU Og~

18 W OSTT pUE SN PRUIIUL wu €> 3 1sd ads

SISLLIE] BOI[IS WU € YIIM DN WU §'F pappaquia
UOTN[OS [EPIO[[09 DN IS-9UAIOPEId0 WU

uonN[os [EPIO[[0d DN IS-IAYIoWw WU §

Xujew IowAijod Ul DN IS-[A[[e WU S'F
uonn[os [BPIO[[0d Ul SON IS-[A[[e WU ¢

uonN[oSs [BPIO[[0d UT SDN IS-[A[e WU ¢

UonN[os [epIO[[0d Ul spued] surure[Are pue SGN WU §

uonnos
[ePIO[[0d Ul SpuesI| UIdISaIoN[j pue SIN WU ¥

saqmoueU IS PI[OS
ansodwoooueu
199ysoueu IS

SI9ISN[D IB[NIJ[OW IS
s[om wnjuenb 15

saxm winjuenb 18 pros
sad His-e

saod *o:s-e

sa1m winjuenb 1S prjos
SaIIMOURU IS SNOIOJ

(¢) s399ysoueu 1§

(¢) spoloueu 15
sopontedororu 1§ Snoiod
soomepradns paseq AO-IS
sad 1s

sao 1S
w@#mOQEOUOGNE
paseq-aod Is
sad 1s
sopontedoueu
UodI[IS Snoiod

(&) sad s

(&) savs

S90U19J3Y (S 10 ) pueq 1d pue (3 00€ 1e
AO1d) Adusyge 1d

uonisod yead 14

S[TeIap 2IN3oNINS

2InjdnIjsoueu Jo Sse[D

(¢ UONDSS 995) SIYy dziseydwa O} 3)C) DY} Ul PIPNIDUI D€ SHJeW UORSSNb pue $34n3dNnJisoueU UODNIS WO SSSHEe 3l Jay3dym Ajjeoyioads
puE UOISSIWS 343 JO UIBIIO 843 JoAO Ajuleyaoun 3)qelapiSuoD S| 249y} pued-4 843 UO 1ep 04 "(ADTd) S2I2UBIDLS2 Td 1s2YBIyY 92U} YIM S3SSe)D 2JN3dNJisoueu IS ¢ alqel

'90UB217 paModun 'g uong LNy suowwoD aAireal) e sepun pasusol|siapiesiyl |[EGEGEEL ()
"INV L€:92: GZ0Z/0E/S U0 papeo|umo "0Z0Z 8Unt TO U0 paus!|and 801y sseooy usdO

This journal is © The Royal Society of Chemistry 2020

22 | Faraday Discuss., 2020, 222, 10-81


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0fd00018c

Open Access Article. Published on 01 June 2020. Downloaded on 5/30/2025 4:26:37 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Faraday Discussions
Energy (eV)
325 2 1.5
/\' ' blue \ \ \ Porous Silicon

/k orange|
a /\ red

1 1 1
400 600 800 1000
Wavelength (nm)

Normalized PL Intensity

Fig. 7 (a) S-band PL tuning via porosity of hydride passivated porous silicon.**® Reprinted
and adapted with permission from M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan and C.
Delerue, Phys. Rev. Lett., 82(1), 197-200, 1999. Copyright 1999, the American Physical
Society. (b) Complex morphology of photoluminescent porous silicon of 78% porosity.*#”
Adapted with permission from A. G. Cullis and L. T. Canham, Nature, 353, 335-337, 1991.
Copyright 1991, Nature Publishing Group

Table 5 Experimental S-band decay times (PLDT) in porous silicon versus wavelength/
energy for hydride or oxide passivation. SCD: SuperCiritically Dried, HP: High Pressure

Decay
Wavelength Energy Decay time Decay time time Decay Decay time Decay
(nm) ev)  (ns) (ns) (ns)  time (ps) (ns) time (ps)
Surface Native Native Hydride Native SCD native HP wet
passivation oxide oxide oxide oxide oxide
References 153 154 152 155 137 156
800 1.55 10 20 50 65 100
700 1.77 9 10 12 30 42 50
600 2.07 2.5 5 9 12 20 20
550 2.25 1.5 1 3 10
500 2.48 0.7 2.5
450 2.76 0.1 0.2
400 3.10 0.02

thickness but was very low at 10 *.*% Okamoto et al.*® reported 2 K PL from
SIMOX-derived quantum wells of only 0.6 and 1.6 nm. Emission was again at
1.66 eV. Pauc et al.*** studied PL at 6 K from SIMOX derived wells of 3.9 down to
0.6 nm. A 1.6 eV band appeared for the narrowest wells with an estimated PLQY of
only 0.1% at 6 K.

The first really size-tunable emission was achieved by Green and co-workers.
They used ELTRAN structures with superior defect densities (<50 cm™?), atomi-
cally flat interfaces and lower SRVs. Fig. 8 shows TEM data and the 650-950 nm PL
spectra as a function of well thickness over the range 1.1-2.7 nm. Their data on
processed SIMOX wafers also reported an emission whose peak wavelength was
insensitive to QW thickness but correlated instead with oxide thickness. Zhu
et al.'®® studied (110) SIMOX wafers with ~1-4.4 nm thick wells. Both QC and
interface effects were discussed in relation to their 750-800 nm emission. Wagner
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Fig. 8 Single silicon quantum well and associated S-band PL for varying well thickness.*62
Reprinted and adapted with permission from E. C. Cho, M. A. Green, J. Xia, R. Corkish, P.
Reece, M. Gal and S. H. Lee. J. Appl. Phys., 2007, 101, 024321. Copyright AIP Publishing.

et al.®® also achieved size dependent 75 K emissions over 1.6 to 1.2 eV for 1-4 nm
well widths.

2.3. Superlattices and multilayers (1D to 3D confinement)

Multilayer and superlattice structures have primarily been based on silica
passivation,'®**”* but photoluminescent lattice matched Si/CaF, super-
lattices’”>*7* have also been achieved. Lockwood and co-workers'®*'®> first
reported a photoluminescent MBE grown Si/SiO, superlattice. The 6 period
structure had 1.0-5.4 nm thick Si quantum wells with 1 nm thick oxide
barriers. Visible emission was only observed for wells below 3 nm. PL peak
energies were tunable over the 1.7-2.3 eV range but PLQY values were not
given. A major advance was made by the Zacharias group in a series of

diameter equal or below
3.8nm 2.0nm (b)
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Fig.9 Superlattice-based nanocrystals and their S-band photoluminescence.*”* Reprinted
and adapted with permission from M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M.
Schmidt and J. Blasing, Appl. Phys. Lett., 2002, 80(4), 661-663. Copyright AIP Publishing.
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papers'’*'7>'7¢ using superlattices to exploit 3D rather than 1D confinement.
They also dramatically raised PLQY via improved interface passivation, size
control and nanocrystal density. Fig. 9 shows a typical structure and the
tunability of the PL."”* Valenta et al.'’® provided detailed information on PLQY
values, lying in the range 10-20% and doubling when the silica barrier layer
thickness was increased from 1 to 3 nm. PLQY variation with temperature was
also studied, peaking at 30% at 100 K. Very recently,"*® PLQY values reported
for near infrared emission (1.35 eV/0.97 micron) corresponding to 4.5 nm
nanocrystals were as high as 50%.

2.4. Nanowires and quantum wires (2D confinement)

The first free-standing isolated NWs of widths under 10 nm realized by litho-
graphic etching techniques showed very weak photoluminescence”” or no
visible luminescence at all, ascribed to insufficient surface passivation.’® Using
laser ablation to create 13 nm wide ultralong nanowires, and then oxidation to
thin the silicon core to 3.5 nm, Feng and co-workers reported red emission of
unknown PLQY.*** Complete oxidation of the wires removed the red emission but
a distinct green emission band persisted (see Section 3.2). Brongersma and co-
workers used catalysed CVD growth to create 20 nm wide nanowires and then
oxidation to decrease core widths to below 5 nm. Tunable 800 to 720 nm emission
with microsecond decay times was achieved.

Examination of Table 4 reveals that nanowire fabrication, excluding porous
silicon, has been less successful to date with regards to achieving the highest
PLQY values for S-band emission. Korgel’s group reported a PLQY of 4.3% for 3-
4 nm wide solid quantum wires.*** For nanowires we need to distinguish those
that are solid silicon from those that have larger diameters but are themselves
porous. The latter “porous silicon nanowire arrays” will behave in a similar
manner to porous silicon films but with lowered nanocrystal densities and, to
date, lower PLQY (see Table 4). Some much larger solid nanowires also have
oxidized rough sidewalls containing nanocrystals that generate the visible
photoluminescence.*®®

182
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Fig. 10 Luminescent ultrathin silicon nanowires from plasma synthesis and their S-band
300 K PL at varying levels of surface passivation.’®* Adapted with permission from V. Le
Borgne, M. Agati, S. Boninelli, P. Castrucci, M. de Crescenzi, R. Dolbec and M. A. E. Khakani,
Nanotechnology, 2017, 28, 285702. Copyright IOP Publishing. All rights reserved.
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Fig. 10 shows an energy filtered TEM image of ultrathin luminescent solid
quantum wires reported recently.'® These were extracted by-products of a plasma
torch spherodization of micro-particulate powder. Once extracted via centrifu-
gation, the various fractions showed PL that shifted from 950 to 680 nm as the
average Si core diameter evolved from ~5 to ~3 nm.

2.5. Nanoparticles and quantum dots (3D confinement)

S-band PL from visibly luminescent silicon nanocrystals (nanoparticles)
synthesized by a broad range of techniques have now received a vast amount of
study. Fabrication techniques include plasma-assisted decomposition of
silane or silicon tetrachloride; laser pyrolysis of silane; liquid phase synthesis;
laser ablation; high energy milling and microemulsion growth. The reviews of
Mangolini,*® Huan et al.*®® and Cheng et al.'® provide details on the majority
of these synthesis techniques. Highlighted here is the recent study of the
Ceroni and Korgel Groups using dodecene passivated nanocrystals in colloidal
suspension.'®® Fig. 11 illustrates the excellent control over size. Fig. 12 shows
how spectral position smoothly “blueshifts” with decreasing nanocrystal size
right from the 1.1 eV bandgap of bulk silicon (for 9.1 nm average size) to 2.1 eV
(1.8 nm average size).

Table 6 shows the decay times from a number of nanocrystal studies