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Exciton states of molecular aggregates, with a particular focus on delocalization length,
are discussed. Despite the huge number of studies of molecular excitons, it is argued
that there remain interesting open questions. It is hypothesized that limits for
equilibrium delocalization length are generally in the range of tens of molecules, even
at very low temperatures. Effects that limit delocalization include: phase disorder from
wave-zone electronic coupling, polarization fluctuations, and the extreme sensitivity of
perfect delocalization to disorder as the size of the molecular aggregate increases. To
gain physical insight, the inverse participation ratio is compared to the order parameter
for a classical system of coupled, and hence entrained, oscillators—the Kuramoto
model. The main result of the paper is that the inverse participation ratio obtained from
the quantum mechanical exciton model and the Kuramoto order parameter obtained
from coupled classical oscillators estimate the same coherence length. Conclusions
suggest discussion topics that touch on limits of delocalization, quantum-to-classical
transitions in molecular exciton systems, and whether excitons are good prospects for
exploring and exploiting quantum information resources from coherence.

Introduction

Molecules can be assembled so that, despite weak interactions among them in the
ground electronic state, photoexcitation yields states remarkably different from
those of the molecules in isolation. These ‘collective’, delocalized electronic
excited states arise from coherent superpositions of excitations of molecules in
the assembly—molecular exciton states. Despite the importance of molecular
excitons, the many detailed investigations reported to date, and thorough
reviews,"® there remain interesting questions to explore in this field.

In this report I will discuss two questions: (a) Is there a limit to how large
a molecular exciton state can be? and (b) Are excitons good prospects for
exploring and exploiting quantum information resources from coherence?

When electronic coupling is large compared to absorption line widths,
coherence (delocalization) causes splitting of bands in absorption spectra (Fig. 1).
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Fig. 1 Coherences revealed by experiment. Absorption spectra of rigidly-linked
dinaphthyl molecules DN-2 (black line), DN-4 (red line) and DN-6 (aqua line), where n in
DN-n indicates the number of bonds spanning the norbornane bridge, compared to the
model chromophore N-2 (black dotted line). Radiative decay rates measured for this series
of rigidly-bridged dinaphthyl molecules are indicated.®

Equilibrium delocalization lengths can often be estimated, even when splitting of
absorption bands is obscured, from superradiant enhancement of fluorescence
radiative rates>'® (Fig. 1). Superradiance is the collective fluorescence emission
from two or more interacting chromophores, which leads to shorter radiative
rates. Superradiant enhancement of fluorescence reveals the robustness of
exciton delocalization." The exciton coherence (or delocalization) length implied
by splitting of absorption bands is often quite different from that inferred by
measurements of superradiance because excitons can localize or partially localize
after photoexcitation owing to the interplay of averaging over disorder, decoher-
ence, and population relaxation and thermalization."™**

Spano and co-workers have shown that for J-aggregates and conjugated poly-
mers the mean delocalization length of excitons can be quantified by the ratio of
the electronic photoluminescence band intensity (°°) and that of the first
vibronic band (1°7").**® Specifically, I°°/I°™" = kN on/S, where Ny, is the number
of chromophores (repeat units) over which the exciton is coherently delocalized, S
is the vibronic Huang-Rhys factor and « is a dimensionless parameter which is
exactly unity in the Frenkel exciton limit for J-aggregates and deviates from unity
when charge-transfer configurations between subunits couple significantly into
the exciton wavefunction. In the limit of low temperature and no disorder, N.op
reduces to N, the total number of chromophores (repeat units) comprising the J-
aggregate (polymer). In one interesting application, analysis of the photo-
luminescence ratio analysis revealed an extraordinary coherent delocalization of
the exciton along disorder-free polydiacetylene chains,''” estimated to be ~30-
50 nm at 15 K. Other work has shown how and why exciton delocalization
depends on conjugated polymer molecular weight.****

The elegant relationship between the exciton coherence size and I°°/I°" can
also be employed to track temporal changes in the coherence length.*® Kim and
co-workers have used time-resolved fluorescence spectroscopy to follow the 1°7°/
I°7 ratio in time, thereby discovering the dynamics of exciton localization in
perylene tetracarboxylic acid bisimide aggregates.®® The dynamics of
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delocalization competing with localization are seen in experimental data and
well-illustrated by recent studies of various supramolecular systems?'~>* as well as
in natural ring-shaped light harvesting complexes from purple bacteria.** Pump-
probe spectroscopy has been used with reasonable success in past studies.>*?*
The concept is that the ground state to exciton transition, seen in the bleach and
stimulated emission contributions to the signal, is shifted and has a different
oscillator strength from the exciton to two-exciton excited state absorption
contribution to the pump-probe transient spectrum. When line broadening is
entirely from static energetic disorder and the electronic coupling J is known,
then coherence length N, is indicated by the shift of the bleach and excited state

absorption bands 4 according to ref. 28:Neon = /372|J|/A — 1.

The quantum mechanical model for excitons

Quantum information science provides ways of speeding up computations,
encoding and transmitting information, and enabling quantum sensing. Imple-
mentations of quantum information are often based on qubits—‘switches’ that
can be entangled. Entanglement is a property of correlation between two or more
quantum systems. The key point is that these correlations defy classical
description.”**° Consider the exciton state for a dimer comprising the molecules 1
and 2:

v, = \% <<p1<p’z + ¢ (P2> @)

where the prime indicates the electronically excited molecule. This happens to be
one of the Bell states. Notably, it is a superposition of product states and cannot
be factored into a state local to molecule 1 and one local to molecule 2; hence it is
an entangled state.

Are exciton states a potential resource for quantum information? That ques-
tion was highlighted after the 2007 report by Fleming and co-workers® that
revealed unusual coherence in a photosynthetic protein. The work sparked
intense interest in the possibility that quantum effects underlie light-harvesting
function.®** Since that time our understanding of these data is more deeply
developed,** but calculations predicting entanglement of excitons in such large
and complex systems remain intriguing.*>***** It seems that a shift in thinking
might be interesting, from considering whether entanglement enhances function
to asking what kind of quantum information is encoded in complex systems and
how could we exploit it?

Entanglement is a focus of quantum information, but it is difficult to employ
as a resource for function in complex, multimolecular systems. Recently a prom-
ising alternative—coherence as a resource—has been proposed and axiomatically
formulated.®® Hence it is important to assess some properties and limits of
coherence in large-scale molecular aggregates as a first step to working out
practical demonstrations of quantum information based on coherence. To that
end, the present report focuses on estimates for the size (coherence length) of
exciton states, vide infra, but does not attempt to quantify entanglement. Never-
theless, our prior studies of multipartite entanglement in excitonic systems*’ raise
interesting questions. For instance, we discovered how under decoherence, n-
partite entanglement of an exciton is lost faster than (n — 1)-partite entanglement
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(see Fig. 3 of ref. 39). This makes sense: it is easier to keep two particles perfectly
in step than three (or more) particles. This result, in part, motivates the studies
below of limits for coherence length of excitons in many-molecule systems. The
concept is related to the interplay of site disorder and entropic effects discussed
in the next section.

To discuss the size-limits of molecular exciton states below, one element we
can think more deeply about is the electronic coupling. Our focus is on electronic
interactions that dominate in the intermolecular separation regime where orbital
overlap effects are negligible. This means we neglect the leading orbital-overlap
dependent coupling that involves charge-transfer configurations in our
basis.**>* We only consider, therefore, the coulombic interactions. One relatively
long-range Coulomb interaction—related to London dispersion forces—lowers
the exciton transition energy.** I will not discuss that interaction here. Instead we
focus on the interaction, /, that exchanges excitation between two molecules.

The electronic coupling J arises from the way a molecule interacts with the
Maxwell fields produced by another, nearby, molecule—the displacement vector
field.* Thinking in such general terms as the quantum electrodynamical (QED)
theory might sound abstract, but it has important advantages that include
accounting properly for how the coupling propagates at the speed of light—in
accord with special relativity—and is mediated by real photons in the limit of
large intermolecular separations compared to the wavelength of the optical
absorption band.*

For identical donor and acceptor molecules with transition energy of wave-
vector k and positioned at R; and R; respectively, such that R = |R; — R;|, the
coupling matrix element is (ref. 46)

kR L L
Vi(k, R) = s —— {(1 4+ ikR) (5 = 3R:R;) — K*R* (6 — RiR;)) } (2)
TTeg R
where the hat means unit vector and §; is the Kronecker delta. The electronic
coupling has three terms, each with a characteristic distance dependence. The
fully retarded electronic coupling is obtained from eqn (2) using perturbation
theory and accounting explicitly for intermediate states involving none or both
molecules excited and the corresponding photon occupations of the radiation
field.** The near-zone term—which mediates the intermolecular interaction by
virtual photon exchange—is proportional to 1/R® and represents the instanta-
neous Coulomb interaction. The other two terms operate at long intermolecular
distances compared to the wavelength of light and account for interactions
propagated by photons with real character at the speed of light.

Interactions that propagate at the speed of light may introduce phase disorder
in the Hamiltonian of large aggregates by adding a phase term to J, i.e. a distri-
bution of interaction times. This concept has some analogy to the phase-
dependent coupling in the Kuramoto model described below. Previous studies
have shown that a satisfactory resolution of causality in long-range energy
transfer is challenging,” in part because of the choices of contours for the
complex integrations.*® Further, Power and Thirunamachandran have shown that
analysis should be specific to the measurements.*

While in principle these phase delays should be insignificant in nearest-
neighbour coupling models, where J is instantaneous, an open question is how
to think about phase delays for Coulomb interactions mediated over long length
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scales by a series of intermediate chromophores. For example, imagine a linear
molecular aggregate comprising 100 molecules, where each molecule is separated
from its neighbour by 1 nm. Since each nearest-neighbour interaction falls well
within the limits of near-zone (instantaneous) coupling, it appears that the
relayed coupling from one end of the aggregate to the other is predicted to be
instantaneous. On the other hand, the speed of 500 nm light suggests that the
interaction—relayed or not—from a molecule at one end of the aggregate to the
other end should be delayed by 0.3 fs, corresponding to a phase delay of 0.3757.
The instantaneous Coulomb interaction is required in quantum mechanics to
produce perfect eigenstates of the aggregate, where phases of all molecules are
locked together. This issue is not the same as the “EPR paradox” of quantum
information, but it is related to the difficult question of causality in the QED
formulation and careful formulation of the theory with respect to the chosen
gauge transformation.>

Another speculative element neglected in this model is random fluctuations of
transition densities. Such fluctuations, for example, give rise to dispersion
forces.”*** Do these fluctuations cause off-diagonal disorder (disorder in J) by
modulating transition moments, or are the transition densities entrained by
locking to j? We will see below the contrast of the classical model of entrained
oscillators, where the phase-locking is established over time.

Excitons and the extent of quantum delocalization

The studies of coherence length and its time-dependence described above show
that exciton delocalization is sensitive to the balance between the magnitude of
electronic coupling—that de-excites one molecule and synchronously excites
another—and the energy and time scales of spectral line broadening.*® When
electronic coupling is very weak, excitation is localized, but can hop stochastically
from one molecule to another. That process is known as Forster energy transfer or
electronic energy transfer.*® Coherent energy transfer has been of interest
recently.*»* It is energy transfer in an intermediate regime, where there is
a balance between interference among electronic resonances to give coherence
and coupling to the environment causing decoherence.

Understanding the balance between disorder (static or dynamic) and elec-
tronic coupling is a difficult issue, and is fundamental for explaining decoherence
and the quantum to classical transition.***® In cavity quantum electrodynamics,
measurements of the polariton states as a function of temperature have been
reported.” In such studies an oscillator response in the quantum regime is
indicated by the characteristic ladder of states according to the Jaynes—-Cummings
model.®® The classical regime is the high temperature limit, where many quanta
are populated.

The exciton problem is different because we study how the quantum-
mechanical delocalization across many coupled molecules changes as a func-
tion of coupling strength and disorder. Therefore we do not expect to observe
a quantum to classical transition, but instead characterize the degrees of delo-
calization within the ensemble system. The question of main interest for this
discussion is how large can an exciton really be? The question is motivated by the
hypothesis that as the size of the molecular aggregate increases, the delocaliza-
tion will be increasingly limited by small disorder. At very low temperature it is

This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 265-280 | 269


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9fd00064j

Open Access Article. Published on 12 August 2019. Downloaded on 10/22/2025 5:46:36 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Faraday Discussions Paper

anticipated that even very small effects, like the phase delays in long-range
Coulomb interactions, may start to become important for very large aggregates,
and contribute to exciton localization. At large exciton sizes there may also be
localizing effects derived from mixing of spin eigenstates. The exchange splitting
between singlet and triplet excitons diminishes with increasing delocalization.*
Therefore these states can become close in energy compared to k7, facilitating
intersystem crossing. At finite temperature, disorder will enable distributions of
localization that mean entropic effects will play a role of exponential significance
as the aggregate size grows.

The Inverse Participation Ratio (IPR)** is frequently and conveniently
employed as a measure of delocalization.®*** This measure looks at the variance
of probabilities within a wavefunction delocalized among N sites. The exciton
wavefunction ¥; with a basis of N single-molecule excitation states
|n) = @105...¢,...0x (Where the primed molecular wavefunction denotes the
electronic excited state), is:

W= aln) (3)

Then, the IPR for exciton state j is defined as:
N
IPR = > a* (4)
n=1

and 1/IPR is an indicator of the delocalization length in units of molecules. In the
case of a linear aggregate with nearest-neighbour coupling, then the delocaliza-
tion length is indicated by 3/(2 x IPR).®*

Macroscopic quantum-mechanical superpositions have been well-studied, and
the results point to remarkable length scales over which superpositions or
quantum interferences can be demonstrated.®® Exciton states are complex
quantum systems owing to the large number of molecules involved. How delo-
calized can molecular aggregates be at very low temperature and what limits
delocalization? Some small effects have been discussed above, but it is worth
thinking more about entropic effects and the diminishing return of
delocalization.

When two identical molecules couple by electronic coupling J to form dimer
exciton states, like the states indicated by the absorption spectra of the
dinaphthyl molecules shown in Fig. 1, the splitting between the absorption bands
is 2J. Assuming the bands shift symmetrically up and down in energy, then the
lowest energy exciton state of the dimer is J lower in energy than the monomer.
The dimer contains N = 2 molecules and I denote it by the index p = 0, defined by
the number of molecules in the aggregate according to N/2 = 2%V, If we take
a dimer of dimers (p = 1, N = 4), then the energy of this lowest exciton state is
further reduced by J/2. Combining two tetramers (p = 2, N = 8) further reduces the
energy by J/4, and so on. In other words, the energy lowering (half the exciton
bandwidth) is given by the series

1 1 1
Elowering =J+ §J+ZJ+§J+ (5)
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which has the infinite sum,

Elowering = Zzipj =2J (6)
=0
yielding the well-known maximum exciton bandwidth of 4J. Thus we see that
almost 94% of the possible energy lowering is achieved by N = 32 and 98.4% by
N = 128. In other words, if the nearest-neighbour electronic coupling J =
500 cm™ ', then the maximum energy difference between an aggregate comprising
10> molecules and one of 10° molecules is only ~8 cm™". The entropy of delo-
calization in the 1000-molecule aggregate is decisive; there is only one way to
perfectly delocalize the exciton, but there are 901! ways of delocalizing the exciton
over 100 molecules in that aggregate and of those, ~990 involve delocalization
over consecutive molecules. Clearly the entropy of mid-sized delocalization within
a large molecular aggregate must predominate and limit delocalization length,
even at quite low temperatures.
To model the effects of temperature, we construct density matrix operators in
the molecular site basis from eqn (3),

N
Pum = ijajnajm|n> <m| (7)
J

where p; is the thermal occupation probability of state j for temperature T
(assuming an equilibrium Boltzmann distribution). In the calculations presented
below, thermal occupation is considered for two cases of reference states. One is
the usual reference to the low energy exciton band edge. However, the states at the
band edge tend to be dominated by disorder (typical of an Urbach tail) and are
therefore more localized than the states in the middle of the band. Therefore
a second analysis is reported where it is assumed that the reference state is
located at an energy 80% of the band center. Thus we can get a sense of the
exciton delocalization for the majority of states in the band.

The delocalization is estimated by using the purity, a quantity closely related to
the IPR. Recall that Tr(p?) = 1 for a pure state. By multiplying the purity by N, a size
of delocalization, in units of the number of molecules, is estimated:

Deloc = N x Tr(p?) (8)

To keep the model simple, phonons and dynamic energy fluctuations are not
included, so the thermal effects simply reflect population of a density of eigen-
states for each system in the ensemble. The effects of temperature are most
important when the standard deviation of the site energy distribution is less than

J.

The Kuramoto model as a classical analog

Coordinated and controlled oscillations are ubiquitous in biology,***” where
cycles range from lockstep breathing and heart beating that involves choreog-
raphy of every heart muscle cell, to annual foliage changes in trees. Sophisticated
clocks for these rhythms are locked together—entrained—by coupling among
oscillators. These entrained systems can be understood through simple
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mathematical models for phase oscillators, for example by the van der Pol model
(ref. 68),

X+ wo’x = pf (x, x) )

where x is the oscillator coordinate, w, is the oscillator frequency, and u is
a parameter encompassing the nonlinearity and strength of the damping (if
present). The problem is solved by writing eqn (9) as a system of coupled first-
order differential equations:

x =

. . 10
V= W()zx +f(x7 x) ( )

When u = 0 the system reduces to the harmonic oscillator, where we can easily
map the motion of the oscillator onto a point rotating around a circle of radius p
(interpreted as the oscillator amplitude) on the (x,y) plane,

x = p cos(wot + 0)
¥y = —pwy sin(wyt + )

(11)

The angle 6 defines the oscillator phase in the rotating frame. A similar,
approximate, solution can be written for the van der Pol oscillator. Solving for
a damped oscillator shows that the point mapped by p and total phase (wot + §)—
rather than rotating around a circle—spirals into the origin.

Kuramoto considered a model for many oscillators (N), with respective phases
0; (in the rotating frame) all weakly coupled to each other by a uniform coupling K.
The mean-field solution turns out to be remarkably simple.* For all-to-all
coupling:

. K&
0; = w; + v ; sin(6; — 6;) (12)

and for nearest-neighbour coupling we use:”*"*

. K .
6,’ = w; + ? Z Sln(a/ — (9,) (13)

i—il=1

This ensemble of oscillators shows rich nonlinear dynamics as a function of
parameters and has been well studied.”””® When K is larger than the oscillator
phase distribution a remarkable self-synchronization of the oscillators is found
(Fig. 2). The phase distribution of a small ensemble of 20 oscillators as a function
of time is plotted on polar axes in Fig. 2a. The points are plotted at different radii,
where time starts on the outside of the plot and increases as the radius dimin-
ishes. The purple points show that the initial phases span a large fraction of the
range [0,27]. That initial phase distribution comes from a random phase assigned
to the oscillators in the ensemble from a normal distribution (typically with
a standard deviation of 3.0 radians).

After a time delay of about two periods, the oscillators abruptly lock together—
see the way the red points at long time are clustered on the phase plot. That same
information is shown by the amplitude versus time plots in Fig. 2b. This plot
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Fig.2 The Kuramoto model for oscillator mutual entrainment. (a) Phase of the oscillators
as a function of time. Initial time is at the outside of the polar plot. Time increases as an
inverse function of radius (indicated also by the color scale transitioning from purple to
red). (b) Amplitude representation of the phase oscillators showing the transition of five
oscillators from random phase to in-step. (c) Sum of all the amplitude oscillators, high-
lighting the “rephasing”. (d) Order parameter as a function of time. These simulations are
for a small number (20) of oscillators, coupled all-to-all. The coupling K is four-times the
standard deviation of the frequency distribution.

emphasizes the frequency distribution of each oscillator, assigned as a random
frequency off-set from w, (the mean). The normal distribution of frequencies has
a standard deviation of the order of 10% of w,. Note that the natural frequency of
each oscillator is constant, so that phase-locking is achieved by speeding up and
slowing down oscillators—by nonlinear feedback—during the course of their
periodic motion. Fig. 2c shows the sum of all the amplitude oscillators, high-
lighting the “rephasing” as the ensemble becomes entrained.

By taking the sum of the complex exponential of each phase, Kuramoto
defined a complex order parameter, where r(¢) indicates the coherence of the
phases:

rexp(i?) = % Zexp(ié’j) (14)

The synchronization of the ensemble is clearly shown by the plot of r(¢) in
Fig. 2d. Nr(t) gives an estimate of the number of synchronized oscillators and in
the simulations below we compare it to the quantum-mechanical delocalization
length, 1/IPR.

The coupled oscillators model is clearly a good analogy for coupled molecules
and their exciton states, and a formal mapping of the energy eigenstates of
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coupled classical oscillators onto the exciton problem has been described.” A
difference between the Kuramoto (classical) model for coupled oscillators and the
quantum mechanical model is that the quantum model predicts energy eigen-
states for perfectly phased oscillators, whereas the oscillators in the classical
nonlinear model become phased with time. As seen below, there is often
surprising agreement between the number of synchronized oscillators after
several periods of oscillation and the delocalization length.

Results

The calculations reported here do not include dynamic energy fluctuations, so
they formally correspond to the limit of 7= 0. The same Hamiltonian matrix is
used for input to the Kuramoto calculation and to construct the Hamiltonian
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Fig. 3 Kuramoto model for coupled oscillators vs. the exciton model. (a) The initial
distribution of oscillator phases compared to (b) the final distribution. (c) The phase
evolution for all 200 oscillators. (d) Kuramoto order parameter. The bottom panels show
(e) the spectrum of density of exciton states and (f) the spectrum of delocalization lengths
(1/IPR) for the exciton eigenstates calculated using the quantum mechanical model. These
simulations are for 200 oscillators, coupled nearest-neighbour. The coupling K is 24-times
the standard deviation of the frequency distribution (K = 120 cm™, ¢ =5 cm™)).
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matrix that is diagonalized to yield the exciton eigenstates and energies. The
diagonal elements are the oscillator frequency (200 cm ™, but note this is arbi-
trary because we report results in the rotating frame). An offset is added to each
oscillator’s frequency, randomly taken from a normal distribution with standard
deviation specified below. The coupling parameter is specified also. A key
difference between the Kuramoto model and the exciton model is that the Kur-
amoto coupling depends on phase difference. We use the nearest-neighbour
coupling model, J = K/3.

An example of calculations for an ensemble of 200 molecules is reported in
Fig. 3. The top panels show the initial distribution of oscillator phases, which
include the distribution of frequency inputs for the diagonal elements of the
Hamiltonian as well as a random oscillator phase. This is compared to the final
distribution of phases decided by the Kuramoto model. The middle panels report
the time evolution of phases and the corresponding Kuramoto order parameter.
The bottom panels show the spectra of the exciton density of states and delo-
calization lengths (1/IPR) for an ensemble of 500 molecular aggregates. The
Kuramoto order parameter estimates a coherence size of 149 molecules. The
delocalization length estimated from the mean of 1/IPR is 95 molecules, while the
delocalization across the middle of the band of states is ~150, in close agreement
with that predicted by the order parameter. The mean delocalization from the
quantum mechanical model comes from the low delocalization in the tails of the
density of states, which is indicative of an Urbach tail—that is, low (or high) lying
localized states owing to the tail of the distribution of disorder.

A study of the effect of temperature on delocalization length for the 200-
molecule system is reported in Table 1. I report two analyses: band edge (domi-
nated by the Urbach tail) and mid-band (lowest energy cutoff state at 80% wy). As
expected, temperature has a significant effect to localize exciton states by gener-
ating a superposition of eigenstates. The von Neumann entropy, S = —Tr(p log p),
is also reported. It is an indicator of how mixed the state is.

In Table 2 the results from a study of a 1000-molecule aggregate are reported.
The results should be treated with care since the Kuramoto model converges quite
slowly, taking 50 periods of oscillation or more. The initial phase distribution was
chosen, by testing various parameters, to optimize convergence. For most entries
in the table multiple calculations were carried out and a representative, converged
result is reported. The Kuramoto order parameter is closely consistent with the

Table 1 Temperature dependence of delocalization. Delocalization length, egn (8), from
analysis of the density matrix in the guantum mechanical model (in units of numbers of
molecules) for the 200-molecule system (K = 120 cm™, ¢ = 5 cm™). The von Neumann
entropy in units of J K~ is obtained by multiplying the values in the table by kg, where kg is
the Boltzmann constant

Band edge Mid-band
Temperature
(K) Tr(p?)  Delocalization  Entropy  Tr(p?) Delocalization  Entropy
0.1 0.066 13 3.0 0.33 65 1.6
1.0 0.062 12 3.0 0.27 54 1.8
10 0.029 6 3.5 0.066 13 2.9
20 0.020 4 3.7 0.037 7 3.3
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Table 2 The stability of large excitons. Order length from the Kuramoto model and
delocalization length from the quantum mechanical model (in units of numbers of
molecules) for the 1000-molecule system (K = 120 cm™?)

Standard

deviation (cm ™) Order length Average delocalization
0.2 882 962

1.0 841 798

2.0 695 614

2.5 537 548

3.0 268 464

4.0 139 375

10 145 218

average exciton delocalization number. When the ratio ¢/K is very small—
meaning the exciton is closer to perfect—both models predict close to perfect
order, but clearly the delocalization is strongly attenuated by disorder.

In Fig. 4 the results of calculations for a temperature of 5 K are shown, high-
lighting the size-dependence of delocalization (purity) and the van Neumann
entropy. Note that the coupling is very large compared to the disorder, so the
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Fig. 4 The stability of large excitons. Delocalization estimated from egn (8) and the von
Neumann entropy as a function of the number of molecules in the aggregate. These
simulations are for the nearest-neighbour coupling model and an ensemble average of
500 copies of the system. For the blue points K = 120 cm™t ¢ = 0.1 cm™L. For the red
points K =120 cm™, ¢ =10 cm™%.
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(zero-temperature) IPR measure and the Kuramoto model predict almost perfect
delocalization for every blue point plotted (i.e. K= 120 cm ', ¢ = 0.1 cm ™ "). The
delocalization saturates with N because the density-of-states increases propor-
tional to N, making the density matrix more mixed in character. That is reflected
in the plot of entropy versus N.

Questions raised and conclusions

To gain physical insight in to the size-limits for molecular exciton states, the
inverse participation ratio was compared to the order parameter for a classical
system of coupled, and hence entrained, oscillators—the Kuramoto model. The
Kuramoto model gives physical insight into coherence and decoherence and
highlights properties of the quantum mechanical model—in particular how the
phases of basis functions (molecular excitations) must be locked perfectly
together in the construction of eigenstates. Simulations using the same param-
eters in the Kuramoto model and a quantum mechanical model for predicting
exciton eigenstates showed that the Kuramoto order parameter makes very
similar predictions of coherence lengths to the inverse participation ratio (IPR).

The Kuramoto model is known to show a transition from order to disorder as
a function of parameters, and I speculate that this might inspire how to think
about a quantum to classical transition in large molecular aggregates. In
considering factors that limit exciton delocalization length, I suggested that
entropy should be the major limiting factor, and therefore it is unlikely that
delocalization lengths greater than the wavelength of the excitation light are
possible. That, in turn, means it is challenging for experiments to be devised to
demonstrate superpositions of macroscopically distinguishable states (“cat”
states) in molecular aggregates.

A series of key questions emerge for discussion:

e Can molecular excitons be used as a resource for quantum information*® or
as models for studying quantum phenomena,” and if so, how?

e What are the size limits for molecular excitons? What chemical strategies
could increase delocalization lengths?

e Can exciton delocalization be enhanced by entraining transition densities by
a driving field? That field might be excitation light or it could be a cavity mode.

o Is there a way to produce a quantum to classical transition for exciton states
of large molecular aggregates, in analogy to nonlinear oscillator models?
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