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The temperature dependence of vibrational spectra can provide information about

structural changes of a system and also serve as a probe to identify different vibrational

mode couplings. Fully anharmonic temperature-dependent calculations of these

quantities are challenging due to the cost associated with statistically converging

trajectory-based methods, especially when accounting for nuclear quantum effects. Here,

we train a high-dimensional neural network potential energy surface for the porphycene

molecule based on data generated with DFT-B3LYP, including pairwise van der Waals

interactions. In addition, we fit a kernel ridge regression model for the molecular dipole

moment surface. The combination of this machinery with thermostatted path integral

molecular dynamics (TRPMD) allows us to obtain well-converged, full-dimensional, fully-

anharmonic vibrational spectra including nuclear quantum effects, without sacrificing the

first-principles quality of the potential-energy surface or the dipole surface. Within this

framework, we investigate the temperature and isotopologue dependence of the high-

frequency vibrational fingerprints of porphycene. While classical-nuclei dynamics predicts

a red shift of the vibrations encompassing the NH and CH stretches, TRPMD predicts

a strong blue shift in the NH-stretch region and a smaller one in the CH-stretch region.

We explain this behavior by analyzing the modulation of the effective potential with

temperature, which arises from vibrational coupling between quasi-classical thermally

activated modes and high-frequency quantized modes.
1 Introduction

Porphycene, a structural isomer of free-base porphyrin, provides a unique example
of double hydrogen transfer (DHT) in a multidimensional anharmonic potential-
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energy surface (PES).1 In the gas-phase, the most stable isomer at the PES corre-
sponds to a trans state, where the hydrogen atoms within the cage are located on
opposite sides, as shown in Fig. 1. The strong in-cage hydrogen bonds give rise to
pronounced vibrational couplings which are evidenced, for example, by the
extreme broadening and complex structure of the NH vibrational band.2,3 The
ability to enhance, deactivate or trigger hydrogen transfer events in this family of
molecules has a potential impact on the fabrication of molecular machines and
nanodevices.4–6 Different strategies can be followed to achieve this control, for
example modifying the electronic structure by addition of different substituents,
altering the thermodynamic conditions, or using external stimuli.7–10

Addressing this system using computer simulations requires a reliable descrip-
tion of the PES beyond the harmonic approximation, a full-dimensional represen-
tation of the system, and the inclusion of nuclear quantum effects (NQEs).
Neglecting any of these aspects may lead to results that are qualitatively incorrect, as
we have shown for the room-temperature IR spectrum of porphycene and the double
hydrogen transfer reaction rates in the deep tunneling regime in ref. 2. In this work,
we investigate whether certain approximations, like classical nuclei or dimension-
ality reduction, can grasp the essential physical aspects thatmodulate the vibrational
ngerprints of porphycene and its isotopologues at different temperature regimes.
Due to the high dimensionality of this system, density-functional theory (DFT) allied
to path-integral based approximations to quantum dynamics are the state-of-the-art
methodologies that can be applied with a tractable computational cost.

Temperature-dependent changes in vibrational ngerprints oen include
quite subtle changes in peak shapes and positions.11–15 Within trajectory-based
methods, it is therefore necessary to ensure statistical convergence in order to
achieve predictive results from simulation. The computational cost of the
hundreds of thousands of force evaluations with a hybrid exchange–correlation
functional for the hundreds of path-integral replicas necessary to bridge different
temperature regimes presents a considerable challenge. Recent developments of
different types of machine-learning potentials in the realm of atomistic simula-
tions16–22 can be used to overcome this computational cost.

In this paper, we report the training of a high-dimensional neural network
potential23,24 (HDNNP) based on data from density-functional theory (DFT) with
Fig. 1 Depiction of the porphycene molecule in its gas-phase potential energy surface
ground-state trans conformation. Atomic color code: hydrogen (white), carbon (grey),
nitrogen (blue) and deuterium (cyan). The three isotopologues Pc-d0, Pc-d2 and Pc-d12
are shown in panels (a), (b) and (c).
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a hybrid exchange–correlation functional (B3LYP25–28) and including pairwise van
der Waals interactions.29 We complement this potential by a Kernel Ridge Regres-
sion (KRR) model trained on the same ab initio calculations to reproduce the dipole
moment of this molecule. This setup allows the classical-nuclei and path-integral-
based molecular dynamics simulations to effortlessly reach the nanosecond time
scale with ab initio accuracy. We address standard porphycene (Pc-d0), the iso-
topologue where the inner-cage hydrogens have been substituted by deuterium (Pc-
d2), and the isotopologue where only the outer-cage hydrogens have been
substituted by deuterium (Pc-d12) (see Fig. 1). These isotopologues have been the
subject of previous experimental and theoretical work.3,30–33 Based on the linear
response time-correlation formalism, we compute the vibrational density of states
and infrared spectra in a wide temperature range for the different isotopologues. We
analyze their similarities and differences and address the relevance of including
anharmonic contributions and nuclear-quantum effects in their full-dimensional
nature, especially focusing on the NH-stretch signal which is the most puzzling
feature of the vibrational spectrum of this molecule.

This manuscript is organized as follows: in Section 2.1 we present the details of
the DFT calculations used to generate the data on which the HDNNP and the KRR
are based. In Section 2.2, we provide a short theoretical background on the
observables that we are going to compute. The training of the HDNNP potential
and the KRR model, with the respective data set description and the validation
tests are described in Sections 2.3 and 2.4 followed by the simulations protocol in
Section 2.5. Having established a reliable description of our system we discuss our
results for the temperature dependence of the vibrational spectra and the physical
origins of the observed behaviors in Section 3. Finally, in Section 4, we close the
manuscript summarizing our most important ndings.
2 Methods
2.1 Electronic structure

The density-functional theory calculations were performed with the FHI-aims all-
electron code.34 According to previous benchmarks performed in ref. 2, the B3LYP
functional including pairwise van der Waals (vdW) corrections yields a good agree-
ment to benchmark-quality CCSD(T) reference data for stationary points on the PES,
barrier heights and geometrical properties. In this manuscript, we used most of the
data generated from the ab initio molecular dynamics trajectories in ref. 2 and
augmented it by a few points, as detailed below, to train the HDNNP. We have
therefore consistently used the light settings of the FHI-aims code package for all new
calculations. For stationary points on the potential energy surface, we observed that
light settings yield differences below 5meV in relative energies and 0.005 Å in atomic
distances (see ref. 2) with respect to tight settings. An assessment of the impact of
different numerical grids and basis sets settings on the vibrational spectrum of
porphycene is shown in Fig. S1 in the ESI.†We observe differences in peak positions
of at most 20 cm�1 and minimal differences in the harmonic peak intensities.
2.2 IR spectrum and vibrational density of states

The IR spectrum and vibrational density of states presented in this paper were
calculated within the linear-response time-correlation formalism. Within this
528 | Faraday Discuss., 2020, 221, 526–546 This journal is © The Royal Society of Chemistry 2020
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formalism, based on Fermi’s golden rule,35 the IR adsorption cross section s(u) is
proportional to

s(u) f u2 ~Cmm(u), (1)

where u is the frequency, m is the molecular dipole moment, and ~Cmm(u) is the
Fourier transform of the Kubo-transformed dipole–dipole time-correlation
function.

The vibrational density of states is given by36,37

vDOSðuÞf
X3N

i¼1

~CviviðuÞ; (2)

where the index i runs through all 3N nuclear degrees of freedom in the system,
and vi is the velocity component of each degree of freedom. We note that the
VDOS given in eqn (2) does not contain cross-terms involving the correlation of
the velocities between different degrees of freedom, which instead contribute to
the dipole spectrum.‡ The denition in eqn (2) is oen connected to the inco-
herent dynamic structure factor in neutron scattering experiments36,37 and obeys
well-known sum rules.38,39 The integral of the spectrum is proportional to the
temperature,39 such that in order to compare VDOS spectra at different temper-
atures, we have divided each one by their respective target temperature.

The time evolution of the dipole moment and the positions (and their
derivatives) have been computed within the Born–Oppenheimer approxima-
tion with classical nuclei molecular dynamics (MD) and thermostatted ring-
polymer molecular dynamics (TRPMD).40 TRPMD is an approximation to
nuclear quantum dynamics based on classical dynamics in the extended phase
space of the ring polymer.40,41 The methodology is very similar to ring-polymer
molecular dynamics,41 with the difference that the internal modes of the ring
polymer are attached to thermostats, while the centroid follows Hamiltonian
dynamics. Its connection to quantum dynamics has been shown as the short-
time approximation to Matsubara dynamics.42–44 There is a freedom in the
choice of the thermostatting procedure,40 and it has been recently shown that
generalized Langevin equation (GLE) thermostats can be tailored to yield
optimal spectra.45 Here, we used the parameters proposed in ref. 45 for the GLE
thermostats, which mitigate the spurious broadening of the TRPMD vibra-

tional lineshape. The estimator for the dipole was computed as mP ¼ PP

k¼1
mk=P,

where k runs over the P ring-polymer beads and mk is the dipole moment of the
k-th replica. The estimator entering the vibrational density of states, due to the
linearity of the velocity operator, is simply the velocity of the ring-polymer
centroid. TRPMD is known to yield a good approximation to quantum time
correlation functions that involve operators with a linear or almost linear
dependence on positions. It does not capture nuclear quantum-mechanical
coherence, and that can become more relevant at lower temperatures. We do
not expect these effects to play a determinant role in the temperature range
considered in the present study.
‡ This is easy to see if one would assume the dipole to be a linear function of the coordinates.
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2.3 Potential energy surface from high-dimensional neural networks

High-dimensional neural network potentials as proposed by Behler and Parri-
nello23 allow complex potential energy surfaces of very large systems containing
thousands of atoms and all their associated degrees of freedom to be represented.
In this approach the total energy E of the system is constructed as a sum of atomic
energies Ei,

E ¼
XNatom

i¼1

Ei; (3)

which depend on the local atomic environments up to a cutoff radius Rc, which
typically has a value between 6 and 10 Å. The positions of all neighboring atoms
inside these cutoff spheres are described by vectors of many-body atom-centered
symmetry functions,24 which incorporate the required translational, rotational
and permutational invariance of the PES. These symmetry function vectors serve
as inputs for individual atomic neural networks (NNs) yielding the Ei. For each
element present in the system there is one atomic NN, i.e. the architectures and
parameters of the atomic neural networks for a given chemical element are
constrained to be the same, which is replicated as many times as there are atoms
of the respective element. The parameters of the atomic NNs are determined in an
iterative training process using known reference energies and forces from elec-
tronic structure calculations. No energy partitioning is required as the atomic
energies are optimized to yield the correct total energies, which in the present
work has been done using the RuNNer code.46–48 HDNNP energies and forces can
be evaluated at about the same computational cost as empirical potentials,
enabling the generation of long (and many) trajectories with minimal loss of
accuracy. For a comprehensive review on the methodology and construction of
HDNNPs we refer the readers to ref. 46 and 47.

2.3.1 Data set, neural network architecture and global accuracy. The HDNNP
has been parameterized starting from an initial data set of structures that was
obtained from three different simulation sources as shown in Table 1. The rst,
relatively small set consists of single point evaluations at stationary points of the
PES and their vicinity. The second and third sets, which represent almost 90% of
the nal data set, came from ab initioMD and PIMD simulations at 150 and 290 K
that were performed for the study presented in ref. 2. Because we wanted to
extend the range of validity for the HDNNP to higher temperatures, where
Table 1 Description of the data sets available for the construction of the HDNNP. Data
sets 1, 2 and 3 were available from a previous work,2 while data sets 4 and 5 were produced
for this study. High temperature simulations refer to additional structures obtained from
simulations at 500, 600 and 700 K

Set # Description Structures

1 Stationary points set 244
2 Classical MD set 11 033
3 Path integral MD set 80 665
4 High temperature set 7795
5 Umbrella sampling

set
2000
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different regions of the conformational space can be reached, a fourth set con-
taining structures sampled at 500, 600, and 700 K was included during the
training to avoid any type of extrapolation. Finally, to augment the number of data
points near the saddle points, 2000 additional structures from an umbrella
sampling simulation were added. In total, these two additional sets computed
only for this work represent less than 10% of the total data. The data for all 5
different sets was computed with exactly the same numerical settings and level of
theory.

We trained seven different HDNNPs with different architectures, data sets and
numbers of symmetry functions (SM) (see Table 2). Their overall accuracy is
commonly evaluated in terms of the energy and force root mean square error
(RMSE) for both training and test sets. Overall, we have been able to reach the
typical RMSEs of less than �1 meV per atom for the energy and less than �100
meV per Bohr for the force,47 which are known to yield very good results. We show
in Fig. S2 in the ESI† scatter plots comparing DFT energies and HDNNP predic-
tions for points spanning up to 1 eV from the global minimum and append to the
ESI† the numerical parameters for all symmetry functions of all NNs.

2.3.2 Validation tests. Since the overall accuracy of all the HDNNPs is
comparable, we present the following results as average values calculated from
the several trained HDNNPs. In the case of observables involving quantum-
nuclear statistics, we exclude the HDNNPs C, D and E because they were not
trained explicitly with path integral MD data.

We start our validation tests looking at the stationary points generated by the
HDNNP. For this purpose, instead of using the geometries given by DFT, which
Table 2 Architecture, amount of symmetry functions (SM), and overall accuracy for the
different trained HDNNPs. Energy and forces RMSEs are expressed in meV per atom and
meV per Bohr respectively. We used 2 hidden layers and either 22 or 15 nodes per hidden
layer for all elements, as detailed in the architecture field of each network, where G is
a placeholder for the number of SM of each element

HDNNP A B C D E F G

Data set 1, 2, 3, 4 1, 2, 3, 4 1, 2 1, 2, 5 1, 2, 5 1, 2, 3, 4 1, 2, 3, 4, 5
Hydrogen SM 50 50 50 50 72 72 72
Carbon SM 44 44 55 55 72 72 72
Nitrogen SM 40 40 40 40 72 72 72

Architecture G-22-22-1 G-15-15-1 G-15-15-1 G-15-15-1 G-22-22-1 G-22-22-1 G-22-22-1

Training
energy
RMSE

1.2 1.5 0.7 0.8 0.6 0.8 1.1

Test energy
RMSE

1.5 1.7 0.8 1.0 0.7 1.0 1.2

Training
force RMSE

88 99 82 83 72 63 75

Test force
RMSE

86 98 83 87 70 62 73
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are not necessarily stationary points on the new generated PES, we performed new
geometry optimizations for each HDNNP. The results are shown in Table 3 and
show an overall overestimation of the energies of �5% with respect to the
reference values even though the optimized geometries with the HDNNPs are
almost identical (see Table SII in ESI†). More interesting are the NH stretch
frequencies at those stationary points reported in Table 4. The degree of accuracy
observed is remarkable, given that we have not explicitly included any Hessian
information during the training procedure.

A considerably more challenging task is the evaluation of the accuracy of the
HDNNP on nite-temperature properties of interest. We were in the favorable
situation where we had many pre-computed DFT molecular dynamics trajectories
at our disposal so we could compare the predictions of the HDNNP and DFT for
such properties directly. In Sections II.C and II.D of the ESI† we show these
validation tests for quantum-nuclear potential-energy probability densities, VDOS
and IR spectra. We nd in general that the HDNNP is very accurate for all of these
quantities. Small discrepancies appear between �600 cm�1 and �1250 cm�1 in
the vibrational spectra, and we can connect them to inaccuracies either in the
HDNNP potential or in the KRR model for the dipole (described below). Because
in this work we will not be focusing in detail on this frequency region, we consider
the current setup to be accurate enough for our purposes.

2.4 Dipole surface from kernel ridge regression

Although it is possible to incorporate an approximation to the dipole moment
within the HDNN,49 we here chose to use a KRR model50 with Gaussian kernels in
order to compute the molecular dipole moment of a particular molecular struc-
ture. This is a non-linear regression where an l2-norm regularization is considered
in the loss-function, which is thenminimized. This method is formally equivalent
to a Gaussian Process Regression,51 but the hyperparameter optimization proce-
dure can differ.

Here we do not make any assumption on the analytical form of the dipole
moment, and model each Cartesian component mi separately by

miðX Þ ¼
XNT

j¼1

wj
iK

�
X ;X j

�
; (4)

where the index j runs over the number of points in the training set NT, wj
i are the

weights, and KðX ;X jÞ ¼ e�ðX�X jÞ2=2s2 is the kernel with s being an hyper-
Table 3 Energy differences at stationary points of the potential energy for DFT and the
HDNNP optimized with the respective method, taking as a reference the global minimum
trans geometry. SD1 and SD2 refer to first and second order saddle points related to the
hydrogen-transfer coordinates, respectively. Energies are expressed in meV and the
HDNNP energy values are reported as ‘mean (standard deviation)’ along the HDNNP
ensemble. The individual values for each HDNPP are reported in the ESI

DFT NN

cis 93 101 (5)
SD1 189 199 (5)
SD2 290 308 (9)
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Table 4 NH stretch frequencies for all the stationary points of the potential energy surface
for DFT and the HDNNP expressed in cm�1. The NN frequencies are reported as ‘mean
(standard deviation)’ within the HDNNP ensemble. The raw values for each HDNNP are
reported in the ESI. SD1 and SD2 refer to first and second order saddle points related to the
hydrogen-transfer coordinates, respectively

DFT NN

Neg. freq. SD1 1228 1268 (27)
Neg. freq. SD2 (1) 1263 1283 (21)
Neg. freq. SD2 (2) 1126 1153 (33)
N–H trans 2903 2917 (15)
N–H trans 2907 2929 (14)
N–H cis 2678 2644 (40)
N–H cis 2640 2673 (64)
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parameter which controls the degree of correlation between training points. X is
a vector containing the representation of a particular molecular structure.

By equating the derivative of the loss function to zero, the weights for each
dipole component are straightforwardly determined by

wi ¼ ðK þ lIÞ�1miðX Þ; (5)

where wi ¼ (w1
i, w2

i, ., wNT

i)T, mi ¼ (m1
i, m2

i, ., mNT

i)T, K is the kernel covariance
matrix, I is the NT � NT identity matrix and the hyperparameter l sets the strength
of the regularization. Both hyperparameters s and l are not determined by the
previous equation. We determine these parameters through a deterministic grid
search, as described below.

The efficiency of most KRR models depends on the representation X that
enters the model. Many groups have proposed strategies to nd optimal repre-
sentation of molecular geometries that can greatly reduce the size of the training
set necessary to reach acceptable accuracy.18,52,53 Symmetry considerations that
allow the extension of this model to the prediction of full tensorial quantities of
different ranks have also been recently addressed.54 However, for this work, a very
large quantity of data was already available from previous simulations and the
system considered here is a relatively rigid molecule. Therefore, we could simply
align all geometries and dipole moments to a reference frame and use the
Cartesian components as a representation (i.e. no representation) to predict each
component of the dipole moment separately. The alignment was performed using
the following expression

y0 ¼ R(y)y (6)

m0(y0) ¼ R(y)m(y) (7)

where y and y0 are the N Cartesian coordinate vectors of the initial and aligned
geometry respectively, N is the number of atoms in the molecule and m and m0 are
their corresponding dipole moments. The 3 � 3 unitary R matrix was obtained
with the Kabsch algorithm55 and has the property of minimizing the root mean
squared deviation (RMSD) of the Cartesian coordinates with respect to the
reference frame. We have excluded all hydrogen atoms from this procedure.
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 526–546 | 533
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Table 5 KRR hyperparameters used for each dipole moment component together with
the r2 and 3 values obtained for training and test set. All values are reported as an average
over the 5 repetitions accompanied by the standard deviation of the mean

Hyperparameters Training set Test set

s (Å) l 3 (%) r2 3 (%) r2

mx 3.0 �20 3.74 � 0.03 0.999 � 0.001 20.67 � 0.65 0.957 � 0.003
my 2.5 �20 1.87 � 1.19 0.999 � 0.001 19.14 � 0.93 0.962 � 0.004
mz 2.5 �19 0.52 � 0.16 0.999 � 0.001 3.44 � 0.12 0.999 � 0.001
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We used a total of �9500 data points of which 90% were selected as part of
training and the remaining 10% were assigned to the test set. We performed
a random selection 5 times in order to obtain statistically meaningful results for
the performance of our model. For each division of the data, the hyper-
parameters s and l were determined using the QML package56 by a grid search
minimization of the root mean square error (RMSE) on the test set (see Table 5).
As shown in Table 5, the parameters are very similar for all three components,
and using the same values for all would result in a minimal difference in the
errors.

In order to describe the accuracy of the dipole moment t, we report in Table 5
the coefficient of determination, r2, and the RMSE normalized by the standard
deviation (STD) 3¼ 100� RMSE/STD. 3 has the advantage of being more sensitive
to outliers, in comparison to the mean absolute error, and also allows quantities
of different natures to be compared to one another.

Although the errors on the test set are somewhat large (in percentage), they are
of a comparable magnitude to what was reported in previous work, that never-
theless could reach the same accuracy with a lesser amount of data and more
sophisticated approaches.54,57 We observe that the models above (with such
errors), actually lead to a very good prediction (with smaller errors) of the IR
intensities, as shown in Fig. S6 in the ESI.† This effect has also been observed and
discussed in ref. 58 for Raman intensities.
2.5 Simulation protocol

All trajectories were computed with HDNNP B using the LAMMPS soware59 and
its interface with the RuNNer code.60 We then used the socket interface between
LAMMPS and the i-PI code61,62 in order to communicate energy and forces to
perform classical-nuclei and path-integral molecular dynamics. In order to obtain
the TRPMD VDOS, we ran 10 different imaginary path-integral trajectories of 110
ps per temperature, with a time-step of 0.25 fs. The rst 10 ps of these runs were
discarded as equilibration. We launched a 10 ps long TRPMD trajectory each 10
ps aer that. This represents a total amount of 1 ns of statistical sampling per
temperature and per isotopologue. In Table 6 we report the number of replicas
used for the TRPMD simulations at each temperature.

For classical nuclei simulations, we followed a similar strategy, with the
following few differences: (i) since within classical mechanics any time inde-
pendent equilibrium property is mass independent, we could use the same
534 | Faraday Discuss., 2020, 221, 526–546 This journal is © The Royal Society of Chemistry 2020
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Table 6 Number of ring-polymer beads used for each temperature studied

T 50 100 200 300 400
P 256 128 48 32 32
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classical-nuclei NVT trajectories for different isotopologues; (ii) we employed
a time step of 0.5 fs and (iii) started NVE trajectories from the thermalization run.

In all cases the dipole-moments were obtained a posteriori with the KRRmodel
described above, and were calculated at an interval of 2.5 fs.

3 Results and discussion
3.1 Temperature dependent geometrical properties

Geometrical equilibrium properties oen have a decisive impact on time
dependent properties. In porphycene, a particular geometrical property of interest
is the equilibrium N–N distance d(NN) at a given temperature. This is because the
dynamics of the hydrogens within the cage are strongly coupled to low frequency
modes which modulate the cage size and therefore also d(NN).63,64

In Fig. 2(a) we show the average d(NN) as a function of temperature, for the
Pc-d0 and Pc-d2 isotopologues, considering quantum and classical nuclei. For
classical nuclei simulations, both isotopologues (must) yield the same equi-
librium geometrical properties. In all cases, the cage size, reected by d(NN),
increases linearly with temperature. In the temperature range studied, d(NN) of
Pc-d0 is smaller than that of Pc-d2 and both are smaller than the classical
nuclei d(NN). This geometrical isotope effect (GIE) is the so-called secondary-
GIE or the Ubbelohde effect.65–67 We obtain an almost temperature-
independent value of this secondary GIE of 0.016 Å, which compares very
well with the experimental inferred one of 0.02 Å.32 As pointed out by Ubbe-
lohde more than 60 years ago, the “structures may generally be expected to be
Fig. 2 Average nitrogen–nitrogen (a) and nitrogen–hydrogen/deuterium (b) distances at
different temperatures obtained from classical MD (red), and PIMD for Pc-d0 (black) and
Pc-d2 (blue) simulations. (c) shows the average carbon–hydrogen/deuterium distances
from classical MD (red), and PIMD for Pc-d0 (black) and Pc-d12 (blue). The circles in (c)
refer to the eight carbon–hydrogen/deuterium bonds that are part of the pyrrole rings
while the diamonds refer to remaining ones. In all cases the statistical error is 0.001 Å or
smaller. Dashed lines correspond to linear fits to the data, with the slope S reported in the
figure. A value of S ¼ 0 means that the observed slope is smaller than the statistical error.
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closer for H than for D-bonds, because of differences in zero-point vibra-
tions”,65 even though inverse Ubbelohde effects are possible for weak H-bonds,
and have been observed.67,68 In porphycene, where strong directional H-bonds
are present, the nuclear-quantum uctuations along the anharmonic N–H
bond increase the N–H bond length d(NH). As shown in Fig. 2(b) this effect is
greater for Pc-d0 than for Pc-d2, which is the so-called primary isotope effect. In
both cases, this bond elongation strengthens the H-bond and consequently
reduces d(NN), inducing also a correlation between d(NN) and d(NH/D), shown
in Fig. 3(a). The similarity of the values of the linear slope S of d(NN) for Pc-d0
and Pc-d2 above 100 K mean that the cage expansion can be treated classically
in this temperature range. At 50 K we observe a deviation from the linear slope
for Pc-d0, which is consistent with the observation that the lowest cage vibra-
tion mode lies at 65 cm�1 (z90 K).

The positive sign of S can also be rationalized by analyzing the 1-D PES cut
along the d(NN) coordinate shown in Fig. 3(b). The cage modulation is quite
anharmonic and the potential is soer towards larger d(NN), such that when
more thermal energy is available the average d(NN) will increase. The fact that
the cage is much smaller in the quantum case than in the classical case also
promotes the population of quasi-cis structures that present a permanent
dipole, as has been discussed in ref. 2. For the situations above we found that
the analysis for Pc-d12 is the same as for Pc-d0, such that we do not show this
data.

For d(CH/D) and d(NH/D) in Fig. 2(b) and (c) we observe no temperature
dependence when treating the nuclei quantum mechanically. This is expected,
since the frequencies of the corresponding vibrational modes (>1900 cm�1, 2730
K) mean that more than 99.9% of the population stays in the vibrational ground
state. In contrast, for classical nuclei the bond elongation increases with
temperature even though the coupling between d(CH/D)/d(NH/D) and d(NN) is
rather small, as shown in Fig. 3(a). The bond length increase is thus due to the
temperature-dependent increase in population of this mode when treated clas-
sically and its anharmonic prole. The (quantum) temperature dependence of
these geometrical properties for the deuterated isotopologues follows closely the
ones for standard porphycene, but the deuterated bonds are always smaller than
their hydrogenated counterparts.
Fig. 3 Selected bond lengths (a) and potential energy (b) for relaxed trans structures as
a function of nitrogen–nitrogen distance. In (b) the filled circles refer to nitrogen–
hydrogen, the empty squares to the eight d(CH) that are connected to the pyrrole rings
and the empty diamonds to other d(CH). The red dots represent the values of the fully
relaxed structure.
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3.2 Temperature-dependent vibrational spectra

Having analyzed the geometrical properties of porphycene and its isotopologues,
we turn our attention to vibrational spectra. In Fig. 4 we show the TRPMD VDOS
for the three isotopologues in the NH (upper panels) and CH (bottom panels)
stretch regions. The full frequency range is reported in the ESI, Fig. S10.† For Pc-
d0 and Pc-d12 (panels a and c), the position and temperature dependence of the
NH stretch peak around 2600 cm�1 is similar. Importantly, the broadening
increases with temperature and it presents an unexpected blue shi of 150 cm �1

when the temperature is increased from 50 to 400 K. For Pc-d2 (panel b), the ND
stretch peak appears at around 2050 cm�1. This value is 200 cm�1 above the trivial
harmonic mass-scaled frequency, which highlights the anharmonic nature of this
vibration. In this case the peak is narrower, and while both the blue shi and the
broadening with increasing temperature are still present, their magnitude is
smaller if compared to Pc-d0.

The CH/D stretch peaks present, for all temperatures and isotopologues,
a bimodal distribution emerging from the two types of CH bonds in this mole-
cule: the ones belonging to the pyrrole rings and the ones which are connected to
the ‘bridge’ positions. For the Pc-d0 and Pc-d2 cases (panels a and b), the CH
peaks show amodest blue shi of�20 cm�1 and 10 cm�1 when the temperature is
increased. On the contrary, the blue shi is not observed for Pc-d12 (panel c).

The classical-nuclei VDOS at the same vibrational regions and temperatures
are shown in Fig. 5 for Pc-d0 (panel a) and Pc-d2 (panel b). The full frequency
range is reported in the ESI, Fig. S11.† It is clear that, contrary to the TRPMD
spectra, the NH and ND-stretch peaks slightly red-shi (20 cm�1) with increasing
Fig. 4 VDOS obtained from TRPMD simulations at 50 K, 100 K, 200 K, 300 K and 400 K,
color coded going from blue (cold) to red (hot) for (a) Pc-d0, (b) Pc-d2 and (c) Pc-d12.
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Fig. 5 VDOS obtained from (classical-nuclei) MD simulations at 50 K, 100 K, 200 K, 300 K
and 400 K color coded going from blue (cold) to red (hot) for (a) Pc-d0 and (b) Pc-d2. Note
that in this figure the frequency axis spans a range of 200 cm�1 while in Fig. 4 it spans
a range of 600 cm�1.
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temperature. Additionally, these vibrations are situated much closer to the values
predicted by the harmonic approximation in this case: 2950 and 2180 cm�1 for Pc-
d0 and Pc-d2, respectively. The CH-stretch peaks also consistently red-shi with
increasing temperature, and are also situated very close to the harmonic-
approximation values of about 3175 and 3250 cm�1.

Clearly, the nature of the high frequency vibrational peaks is strongly affected
by nuclear quantum uctuations, altering both the peak positions and their
temperature dependence. In the next section, we explore the physical origins of
these effects.

3.2.1 Physical origin of classical and quantum temperature dependence. We
now rationalize the stark differences observed in the temperature dependence of
the vibrational NH/D and CH/D stretch regions when considering TRPMD and
classical nuclei dynamics. As discussed previously, the increase of the tempera-
ture induces an expansion of the porphycene cage. Assuming that an adiabatic
separation of the high and low frequencymodes is valid, we can ask ourselves how
the local potential experienced by the NH and CHmodes changes with increasing
temperature, due to the change in d(NN). In Fig. 6(a) and (b) we show the
dependency of the harmonic NH/D and CH/D frequencies with the thermally
accessible d(NN) values. We obtained these results by constraining d(NN) at
Fig. 6 Selected harmonic stretch frequencies for trans structures where all degrees of
freedom were optimized except for d(NN). In (a) we show the NH and ND stretch
frequencies for Pc-d0 (black) and Pc-d2 (blue) as a function of d(NN). In (b) we show the
CH and CD stretch frequencies for Pc-d0 (black) and Pc-d12 as a function of d(NN). The
red dots represent the values for the relaxed structure.

538 | Faraday Discuss., 2020, 221, 526–546 This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9fd00056a


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 2
0 

Ju
ne

 2
01

9.
 D

ow
nl

oa
de

d 
on

 2
/1

0/
20

26
 9

:0
2:

50
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
particular values, relaxing all other degrees of freedom, and then performing
a harmonic vibrational analysis. We observe that the harmonic NH stretch
frequency (nNH) spans a range of 1000 cm

�1 and blue-shis with increasing d(NN),
evidencing the strong coupling of the NH stretch vibration with modes that
modulate the cage size. The ND stretch shows the same behavior, but the shi is
less pronounced. The CH stretch frequency also blue shis with increasing d(NN),
but only by less than 40 cm�1 on the same d(NN) interval and the CD frequency is
almost constant.

The simplest model to understand the physics of the NH-stretch potential
energy, where exact quantum dynamics can be solved numerically, is a 1D double-
well potential that changes with temperature, as shown in Fig. 7. The potential
energy surfaces shown there were obtained by calculating the minimum-energy
pathway (MEP) projected on the hydrogen-transfer coordinate (see caption of
Fig. 7 for a denition of this coordinate). We calculated the MEP for two con-
strained d(NN) that are representative of the lowest and highest temperatures in
this study. The MEP between these two constrained minima was obtained with
the nudged elastic band method69 and it was extended by a harmonic potential at
low and high d(NN), consistent with the corresponding NH frequency, in order to
model the repulsive parts of the well.

In the classical-nuclei picture, temperature has two important effects. On the
one hand, it induces a cage expansion with increasing temperature, and on the
other hand, it also increases the thermal population of the NH vibrational well, as
pictorially shown in Fig. 7. The rst effect makes the walls of the potential
increase more steeply with increasing temperature, thus increasing the curvature
of the well (blue-shi), as evidenced in Fig. 6(a). The second effect causes the
nuclei to explore more anharmonic parts of the well at higher energies, thus
causing a red-shi. The nal result is a competition between both effects and, for
the classical case, the full-dimensional VDOS (Fig. 5) shows that the second one
wins at certain temperatures, giving a net red-shi that becomes smaller (and
eventually could turn into a blue shi) as the temperature is increased.
Fig. 7 Model 1D double-well potentials for two fixed d(NN) (see text). Blue and red curves
correspond to d(NN) ¼ 2.622 Å and d(NN) ¼ 2.642 Å, respectively. These distances are
representative of the d(NN) at 50 and 400 K. Horizontal dashed lines represent the first and
second quantum energy levels of each potential. The filled areas show the energies
accessible by 98% of the thermal population in a classical picture at 50 K (blue) and 400 K
(red). The hydrogen transfer coordinate is defined by the projection of the distance
between the hydrogen atom and the middle point of d(NN) into the nitrogen–nitrogen
axis. In this way the coordinate is zero when the hydrogen is equidistant to the nitrogen
atoms.
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In quantum mechanics, however, the situation is quite different. The cage
modulation with increasing temperature is similar to the classical-nuclei case.
This can be easily understood since the energies of these modes lie at around
200 cm�1 (287 K) such that the thermal energy is comparable to the energy level
spacing. On the other hand, the NHmode is still completely quantized up to 400 K
and its thermal activation is negligible. The ZPE connected to this mode ensures
that at all temperatures studied here, the anharmonic parts of the potential are
assessed beyond what could be assessed by the classical nuclei simulations, thus
explaining the overall red-shi when comparing quantum simulations to the
classical ones. However, the insignicant thermal activation in this temperature
interval makes this vibration solely sensitive to the modulation of the cage-mode
with temperature, such that there is no competition between two effects and the
result can only be a blue shi. This effect is also exemplied in Fig. 7. We have
calculated the exact quantum mechanical rst and second vibrational states
connected to the 1D double well potentials presented in the gure, following the
algorithm of ref. 70, where the MEP was tted by a fourth order polynomial in the
[�0.5 Å, +0.5 Å] interval in order to obtain an analytical form of the potential. We
show an average of the tunneling-split levels, since these cannot be captured by
TRPMD and would be smaller than the temperature broadening at the temper-
atures studied here. The less-pronounced effect for ND can also be understood
within this model, in that the differences between the rst vibrational excited
state in the two potentials would be smaller.

The 1D potentials shown in Fig. 7 are useful to understand the physics of this
problem and the differences between classical and quantum treatment of vibra-
tional degrees of freedomwhen vibrational coupling between low and high energy
modes is present. It also shows that the classical dynamics in the extended phase
space of the ring polymer of TRPMD are successful in capturing the main
quantum effect that would dictate the temperature dependence of this vibrational
peak in full quantum dynamics. However, we nd that it is not possible to obtain
quantitative results for the observed temperature-dependence of the vibrational
frequencies with this simple model. This once more highlights the inherently
multi-dimensional nature of this problem.

Finally, for the CH vibrations we observed a much less pronounced blue-shi
with increasing temperature. In this case, the CH potential is better described by
a Morse potential and perturbative treatments could give reasonable results. We
have thus performed second order vibrational perturbation calculations71,72

(VPT2). They show important couplings between the CH stretch and the CH
bending modes. The results reproduce the average peak positions (see Table S4 in
the ESI†) that we observe in the TRPMD simulations, and these are all red-shied
with respect to the harmonic estimation. However, also this coupling does not
immediately explain the blue-shi with increasing temperature, since the
bending modes have frequencies starting at 800 cm�1, which correspond only to
a 5% thermal population at the highest temperature. We could not nd any clear
direct coupling between cage modes and the CH stretch, so it is less clear why and
how the expansion of the cage modies the CH-stretch potential. Nevertheless,
since the blue shiwith increasing d(NN) is very tenuous as shown in Fig. 6(b), for
classical nuclei, increasing the thermal population of this mode results in a very
pronounced net red shi. For quantum nuclei, again, there is no competition and
540 | Faraday Discuss., 2020, 221, 526–546 This journal is © The Royal Society of Chemistry 2020
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we only observe a very small blue shi, which is�20 times smaller than in the NH
case.

3.2.2 Infrared spectra. In order to provide a point of reference for the
temperature dependence of vibrational quantities that can be easily accessed in
experiment, we report the temperature dependent IR spectra of Pc-d0 and Pc-d2
above 1600 cm�1 in Fig. 8, obtained from TRPMD simulations. The full frequency
range and the corresponding results obtained from classical nuclei simulations
are reported in the ESI (Fig. S7 and S8†). One point to notice is that compared to
full DFT calculations (see ESI† and ref. 2), the IR spectra we obtain with the
HDNNP and KRR combination seem to lose some of the ne features present at
the combination-band region just below 2000 cm�1 for Pc-d0, and the ne
structure of the NH stretch peak is not so pronounced both in the classical nuclei
and the TRPMD simulations. Since both of these features stem from presumably
weak mode coupling, we nd it plausible that small remaining errors in the
models for the forces and in the dipole surface wash out these weak correlations.

As mentioned above, in contrast to the VDOS, the IR spectra contain cross
terms involving different nuclei and dipole selection rules. Therefore, lineshapes
between VDOS and IR spectra are different and it is not obligatory that trends
observed in the VDOS are exactly reected in the IR spectra. Indeed, the line-
shapes in Fig. 8 are different to the VDOS, but the observed temperature depen-
dence of the vibrational peaks in this region is very similar to what was discussed
for the VDOS. Specically, Pc-d0 presents a blue shi of 100 cm�1 and 20 cm�1 for
NH and CH stretch peakmaxima respectively. For Pc-d2 the CH blue shi remains
comparable (15 cm�1) and the NH one is only 40 cm�1. Both the peak positions
and the blue-shis are larger than what would be predicted by the trivial
harmonic isotope

ffiffiffi
2

p
scaling factor, highlighting once more the anharmonic

nature of this problem.
Finally, we comment on the region of the IR spectrum situated between 1750

and 2000 cm�1 of Pc-d0. The modes in this region are absent in the harmonic
spectrum and they are thermally activated in a similar manner (red-shi with
increasing temperature) for quantum and classical nuclei. One can thus infer that
this band is a combination or overtone of lower-frequency vibrations, as was
previously discussed by Gawinkowski and coworkers in ref. 3. The red-shi of
100 cm�1 we observe in the TRPMD spectrum is the largest in the whole spectrum
(including lower frequencies) and we nd the red-shis of the bands situated
between 800 and 1000 cm�1 to be more consistent with the combined shi, thus
pointing to overtones. We could not further analyze our results at this point in
order conrm this interpretation.
Fig. 8 IR spectra obtained from TRPMD simulations of (a) Pc-d0 and (b) Pc-d2 at 100 K,
200 K, 300 K and 400 K.
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4 Concluding remarks

In this work we have studied the temperature dependence of structural and
vibrational properties of the gas-phase porphycene molecule and its iso-
topologues, namely Pc-d0, Pc-d2 and Pc-d12, in temperatures ranging from 50 to
400 K. We employed high-dimensional neural-network potentials trained on
B3LYP + vdW data to calculate energy and forces, augmented by a kernel ridge
regression model for the dipole surface. We took nuclear quantum effects into
account through imaginary-time path integral and thermostatted ring polymer
molecular dynamics.

We could explain the primary and secondary geometric isotope effects related
to the N–N and N–H/D distances, and found good agreement with experiment.
The strong hydrogen bonds within the cage are strengthened by nuclear quantum
effects, such that the N–N distances are larger for Pc-d2 than for Pc-d0, while the
N–H/D distances are smaller for Pc-d2 than for Pc-d0. In all cases the cage of
porphycene expands with increasing temperature.

Regarding vibrational properties of Pc-d0, we nd that anharmonic vibrational
spectra derived from classical-nuclei molecular dynamics show a red-shi of both
NH and CH stretch regions with increasing temperature. Approximate quantum
dynamics (TRPMD) instead predicts a pronounced blue-shi (150 cm�1) in the
NH stretch region with increasing temperature and a small blue-shi in the CH
stretch region. For Pc-d2, the ND stretch shows a less pronounced blue-shi and
for Pc-d12 the CD stretch region remains unchanged throughout this temperature
range.

The temperature behavior of the NH(ND) stretch regions is a consequence of
vibrational coupling between quasi-classical thermally activated cage expansion/
contraction modes and high-frequency quantized modes. We could understand
the underlying physics of the problem by analyzing a 1D double-well model where
the distance (and the barrier height) between the two wells increases with
temperature. In classical mechanics there is a competition between the
increasing thermal population of the well and the increasing curvature of the
potential as the temperature increases. The rst causes a red-shi due to the
anharmonicity of the potential, while the second causes a blue-shi due to the
effective decrease of anharmonicity at the bottom of the well. In quantum
mechanics, at all temperatures studied here, the thermal population of excited
vibrational states is completely negligible, such that only the modulation of the
potential with temperature plays a role and the result is a pronounced blue shi.
The approximate quantum dynamics of TRPMD are able to grasp this effect,
because ZPE is correctly described at the different temperatures and the linear-
response transition probabilities are only sensitive to the stiffening in the effec-
tive curvature of the potential with increasing temperature. Even though the 1D
model in this case is useful to understand the underlying physics, no quantitative
predictions could be achieved with it, highlighting the inherent high-
dimensionality of the problem.

For the CH/D stretch regions the direct coupling between low and high
frequency modes is less clear, but we observe the that the cage expansion is
correlated to a blue shi with increasing temperature. We note that the
(quantum) blue-shi with increasing temperature observed for this isolated gas-
542 | Faraday Discuss., 2020, 221, 526–546 This journal is © The Royal Society of Chemistry 2020
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phase molecule seems not to have the same origin as the ones observed in
condensed phase systems,11,13,73 where it is understood that the shis are due to
the weakening of intermolecular H-bonds with increasing temperature.

In summary, we have shown that the porphycene molecule is a clear example
where considering nuclei as classical particles makes the theory inaccurate and
completely removes its predictive power for a range of geometrical and vibrational
properties. On the other hand, path-integral based approximations to quantum
dynamics, which conserve the quantum Boltzmann distribution and therefore are
free from ZPE leakage, are able to grasp the correct underlying physics in this
system. In fact, even though we treated an isolated molecule here, the large
amount of (anharmonic) degrees of freedom and the temperature range consid-
ered washes out most dynamical quantum coherence effects, which presents an
ideal ground for such methods. We have also demonstrated that when a large
amount of data from ab initio simulations is available, the effort to train high
dimensional neural network potentials and kernel ridge regression models that
accurately reproduce energy, forces and dipoles can be minimal. This makes it
possible to address new physical problems that would be too cost-intensive with
accurate DFT potentials – in particular, problems that take the quantum nature of
nuclei into account. Open access data repositories that can handle, specically,
data related to ab initio molecular dynamics trajectories will be paramount to
make this approach more common in the near future.
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