Energy & Environmental Science

CORRECTION

View Article Online

Cite this: Energy Environ. Sci., 2020, 13, 646

Further correction: Understanding cation effects in electrochemical CO2 reduction

Stefan Ringe,*ab Ezra L. Clark,cd Joaquin Resasco,e Amber Walton,c Brian Seger,d Alexis T. Bell^c and Karen Chan*^f

Further correction for 'Understanding cation effects in electrochemical CO2 reduction' by Stefan Ringe et al., Energy Environ. Sci., 2019, 12, 3001-3014.

DOI: 10.1039/d0ee90006k

rsc.li/ees

In Fig. 6 of the original correction to this article, the captions (a) and (b) were switched. The Figure should appear with the following text:

Fig. 6 Dependence of the double layer capacitance on the electrolyte-containing cation. (a) Predicted double layer capacitance from the 1D-continuum model. Solid black line: MPB model predicted double layer capacitance of the Au(111) facet as a function of effective interfacial cation radius at 0 V vs. RHE. Values at the here determined interfacial radii are depicted by filled circles, the dashed lines represent experimental results for K⁺ and Na⁺ that are shown explicitly in b. (b) Potential-dependence of the double layer capacitance obtained from fitting a RC circuit to the impedance data of a Au(111) single crystal electrode using a 0.05 M KHCO₃ or NaHCO₃ electrolyte. Filled circles denote the data points (left y-axis), the solid gray line (right y-axis) the difference in surface charge density between both experiments under the assumption of the same PZC of 0.97 V vs. RHE.¹

0.2

Voltage vs. RHE (V)

0.4

0.6

0.8

-Ó.2

0.0

a SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA. E-mail: sringe@stanford.edu

^b SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA

^c Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^d Surface Physics & Catalysis (SurfCat), Department of Physics Technical University of Denmark, Denmark

^e Department of Chemical Engineering, University of California, Santa Barbara, California 93117, USA

^f CatTheory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark. E-mail: kchan@fysik.dtu.dk

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

1 S. Trasatti and E. Lust, in *Modern aspects of electrochemistry*, ed. J. O'M. Bockris, B. E. Conway and R. E. White, Kluwer Academic/Plenum Publishers, New York, vol. 33.