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Exploring new sources of efficiency in process-
driven materials screening for post-combustion
carbon capture†

Amir H. Farmahini, *a Daniel Friedrich, b Stefano Brandani a and Lev Sarkisov*a

Performance-based screening of porous materials for CO2 capture and gas separation requires development of

multiscale simulation workflows where physiochemical characteristics of adsorbents are obtained from

molecular simulations, while separation performance of materials is evaluated at the process level by comparing

overall energy efficiency and productivity in a particular process configuration. Practical implementation of these

workflows requires: (a) accurate calculation of various material properties some of which are poorly estimated so

far (e.g. specific heat capacity), (b) consistent treatment of the process variables that cannot be calculated from

molecular simulations but are crucial for process modelling (e.g. pellet size and porosity), (c) improving

computational efficiency of the workflows by reducing the search space in process optimization. In this study,

we focus on four representative materials in the context of the vacuum swing adsorption process for carbon

capture to probe these issues. We report on several observations with important implications for the

theoretically achievable process efficiency, the computational efficiency of the multiscale workflows and on the

consistency of materials rankings. We demonstrate that if size and porosity of adsorbent pellets are optimized,

efficiency and productivity of the process can be substantially improved. We show the maximum performance

of a material achievable in a particular process depends on a complex combination of both intrinsic material

properties and process variables. This is evident from the ranking of the materials being different for a process

with optimizable pellet size and porosity, compared to the reference case where these two properties are fixed.

Analysis of the cycles on the Pareto fronts reveals common patterns for these variables for all the materials

under consideration. We demonstrate that this observation reflects some optimum balance in the competition

between diffusive processes into the pellet and convection flow processes across the bed. We attempt to

capture this balance in a universal dimensionless metric which is explicitly proposed here for the first time.

Application of such universal metrics could be very important in improving the efficiency of the optimization

algorithms by narrowing down the multidimensional search space.

Broader context
Carbon dioxide capture from industrial streams, such as power plant flue gas, is an important strategy in control of green-house gas emissions and in climate change
mitigation. Pressure-swing adsorption (PSA) technologies have been considered as an energy efficient alternative to the conventional amine-based absorption processes.
At the heart of the PSA process is the adsorbent material. It has been proposed that promising materials for carbon capture must exist among tens of thousands of
already synthesized and potentially millions of hypothetical MOF and ZIF structures. Computational screening strategies have been employed to identify these materials,
with more recent studies based on realistic process simulations. In this article, we show that the optimal performance of a material, and hence its ranking, is not only a
function of its intrinsic adsorptive properties, but also depends on other variables such as how the material is structured within the adsorption column and the
characteristics of the cycle. We discover some common patterns among the processes corresponding to the optimal performance of the materials and reflect these
patterns in a universal metric that can be exploited to accelerate computational screening of materials for energy efficient carbon capture.

1. Introduction

Over the course of the last decade, application of computa-
tional materials screening has gained momentum among
material scientists, chemists and chemical engineers as a
strategy to search for the best performing materials for a variety
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of different separation applications, especially for adsorptive
gas separation1–8 and CO2 capture.7,9–16 This interest has led to
the development of different screening strategies, adoption of
various modelling techniques, and suggestion of a number of
performance metrics for materials ranking.7,12,14,16–20 One
important outcome of the recent developments in this area is
the realization that adsorbent metrics (usually obtained from
molecular simulations) do not directly correlate with process
performance properties such as productivity and energy con-
sumption of a particular separation process, hence should not
be used as standalone criteria for materials screening.21

A group of recent studies has proposed that to realistically
predict performance of porous materials in pressure or vacuum
swing adsorption (PSA/VSA) processes, one need to adopt a
multiscale screening strategy where a series of molecular
simulation techniques are combined with process modelling
and optimization.17,21,22 In this approach, key characteristic
properties of adsorbent materials, such as equilibrium adsorp-
tion isotherms and micropore diffusivity of gas components,
are calculated from microscale molecular simulations, however
the actual performance of materials (e.g. productivity, energy
consumption, purity and recovery of the product) is evaluated at
the process level22,23 using optimization of PSA/VSA processes.
The current research thrust is to extend these strategies to screen
a large number of porous materials available within recently
assembled databases of porous solids, such as CSD,24 CoRE-
MOFs25 and DZS.26 For this to be achieved, a few important
considerations should be made:

(a) Performance-based screening of porous materials in VSA/
PSA processes significantly depends on the implementation of
the system at the process level (i.e. process configuration and
model assumptions). Any screening conducted solely based on
intrinsic physiochemical properties of adsorbent materials may
lead to incorrect order of materials in the ranking.21,23 Also, it is
challenging to consistently compare ranking of the materials
produced for different process configurations (e.g. rankings
produced based on basic 4-step VSA/PSA versus 4-step VSA/
PSA with LPP or more complex process cycles27).

(b) Accurate calculation of intrinsic adsorbent properties are
essential for realistic performance-based ranking of porous
materials. There are some characteristics of the porous solids
that are so far poorly estimated in multiscale screening
approaches (e.g. specific heat capacity).

(c) Development of self-sufficient and fully in silico materials
screening strategies requires consistent implementation of
process parameters that are not available from molecular
simulations (e.g. pellet size, pellet porosity). These parameters
can be explored as new sources of efficiency for process
performance.

(d) High-throughput performance-based screening of large
databases of porous materials requires access to robust, auto-
mated and computationally efficient multiscale workflows
where various modelling modules operating at molecular simu-
lation and process modelling/optimization levels are connected
to one another so that the data can be seamlessly passed on
from one simulation level to the other as calculations progress

from microscale systems to macroscale processes. However,
such multiscale workflows are computationally very demanding,
considering a series of consecutive molecular simulations must
be completed in advance to estimate key physical properties of
materials. This stage is then followed by process modelling and
optimization which normally requires thousands of process
configurations to be examined for each material. Thus, an
important element in successful implementation of multiscale
screening approaches is to minimize the computational burden
of the workflows by exploiting the hidden relationships between
various optimization variables. These relationships can be
used as new sources of computational efficiency to reduce the
optimization search space. This approach can particularly benefit
from advanced numerical methods and emerging machine-
learning techniques.28,29

In our recent publication,23 we discussed some of the
challenges associated with the implementation of such multi-
scale workflows including estimation of pellet size and pellet
porosity as two important parameters that are required
for process modelling but are not available from molecular
simulations. In a specific case study of VSA process for separa-
tion of CO2/N2 mixture using Zeolite 13X,23 we demonstrated
that variation of pellet size and pellet porosity have a significant
impact on process performance and efficiency. We also showed
that the optimal values for these properties seem to correspond
to some complex trade-offs between efficient mass transfer into
the pellets and pressure drop across the bed.

This investigation led us to pose the following questions: are
there unique values of optimal pellet size and pellet porosity
exclusive to each material or there are some universal values of
these properties dictated by some other factors? Answering
these questions will have important implications for process
optimization and computational screening strategies: in the
first case, process optimization should treat these properties as
optimization variables in order to achieve the best performance
for a specific material; whereas in the second case, the same
values of pellet size and pellet porosity can be used for all
materials, significantly improving computational efficiency of
materials screening process. Motivated by these questions, we
extended our investigation by exploring the impact of pellet size
and pellet porosity, as new sources of process efficiency, on
separation performance of four different materials (Cu-BTC,
MOF74-Ni, Silicalite-1, Zeolite 13X) in a similar VSA cycle. Our
new study suggests that there are some characteristics of the
VSA process including correlations of pellet size and pellet
porosity that are common for all materials at the optimal
performance; this has led us to develop a new metric associated
with these conditions which is discussed in the current paper.
Existence of such metrics is extremely important for improving
computational efficiency of materials screening approaches, as
they would make it possible to expedite process optimization
by limiting the search space to the most relevant process
conditions. This metric also reflects the complex interplay
between different competing phenomena which ultimately
drive the process optimization towards higher efficiency and
productivity.
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In the process of addressing the above questions, we also
explored what data is needed and what data is available for each
material case. Generally, three groups of properties/parameters
are required for process modelling: (a) properties of the crystal
material (e.g. adsorption data, microporosity, crystal density,
thermal properties), (b) properties of the structure of the adsor-
bent within the column (e.g. pellet size, pellet density, amount of
binder, pellet packing density), and finally, (c) properties of the
process unit (e.g. column size, column wall length, material of
the shell, etc.). Among these properties, the last category is
explicitly specified for the reference process model and is not
of a concern here. Also, depending on the model, some of the
properties listed above may not be needed. One particular
property that is required for a non-isothermal VSA model (which
will be the likely industrial case) is heat capacity of the adsorbent
materials. It has been customary to assume that separation
performance of porous materials in PSA/VSA processes is not
very sensitive to the variation of adsorbent specific heat capacity
(Cp)17,21,22 and that specific heat capacities of typical porous
materials are largely similar.30–32 This justified the use of some
average but representative values (i.e. proxy values) for this
parameter in all previous PSA-based screening studies.11,17,22

This is in part due to the fact that specific heat capacity of a very
limited number of porous materials (such as MOFs) has been
reported experimentally31–33 and the alternative ways, if not derived
from experiment (e.g. empirical group contribution method31)
mainly rely on quantum mechanical calculations34–36 which
are deemed to be computationally expensive. Here, we use this
opportunity to reflect on the impact of using some proxy values
of Cp on process performance and material ranking. Although
generally a secondary effect, the extent of the uncertainty intro-
duced by using a proxy value for Cp (rather than its true intrinsic
value) depends on the diversity of the materials under study,
structural flexibility of their porous frameworks (reflected in the
level of phonon vibrations) and the level of accuracy required
for materials ranking. For example, for a very small group
of metal–organic frameworks investigated so far (o30 out of
thousands of known MOFs), values of specific heat capacity vary
between 700 to 1500 J kg�1 K�1.31–33 The wider this range is, the
more difficult it would be to propose a reasonably representative
proxy value for all of them.

The current article is organized in four main sections. In the
next section, we explain the methodology and provide details of
the molecular and process simulations. The results section first
focuses on the equilibrium adsorption data obtained from
molecular simulations and particular features of the adsorption
isotherms. Next, we investigate the sensitivity of the process
simulations to the data used for heat capacity of the materials
under consideration. The article then reports on improvement
of the process performance achieved through simultaneous
optimization of pellet size and pellet porosity. It also explores
universality of these properties across different materials for
the particular VSA process considered here. The last part of the
results section is dedicated to exploring the relationships
between the decision variables for the cycles laying on the Pareto
front and to the metrics that may capture these relationships.

The implications of the existence of these metrics are reviewed in
the final section, discussed along with some concluding remarks.

2. Computational details

We investigate process-level performance of four different porous
solids namely Cu-BTC (HKUST-1), MOF74-Ni (CPO27-Ni), Silicalite-1
(MFI) and Zeolite 13X for adsorptive separation of CO2 from a
gas mixture containing 15% CO2 + 85% N2 using vacuum swing
adsorption (VSA) process with the light product pressurization
(LPP). These four materials are selected to represent both zeolites
and metal–organic frameworks (MOFs) families of materials. We
compare performance of these materials in a simplified post-
combustion carbon capture process by probing the effects of
specific heat capacity, and by exploring the pellet size and pellet
porosity as additional sources of process efficiency. Materials
performance is calculated based on the overall energy consumption
and productivity of the separation process for each material. We
rationalize the observed trends by invoking the time constant
analysis and detailed understanding of the properties of the cycles
on the resulting Pareto front.

As demonstrated in our previous publication,23 our multiscale
computational framework combines grand canonical Monte Carlo
(GCMC) simulation with process modelling and optimization to
simulate a four-step vacuum swing adsorption cycle with light
product pressurization (4-step VSA-LPP). A schematic representa-
tion of this framework is shown in Fig. 1.

Here, structural characteristics of adsorbents (such as their pore
volume and crystal density) in addition to adsorption isotherms of
CO2 and N2 are calculated using molecular simulation techniques
at the crystal level. Properties such as macropore diffusivity (e.g.
Knudsen, molecular and pellet diffusivities) are estimated using
established transport theories for adsorbent pellets which are made
of crystallites (small crystals of the porous material glued together
by an inert binder). Performance of the four-step VSA-LPP cycle is
predicted using process modelling and optimization.

2.1. Molecular simulation

We perform grand canonical Monte Carlo (GCMC) simulations
to generate single-component adsorption isotherms of CO2 and
N2 in Cu-BTC, MOF74-Ni, Silicalite-1 and Zeolite 13X at several
temperatures. The temperatures are chosen in such a way to
produce adsorption isotherms with sufficiently diverse shape
(linear vs. rectangular) within the operating conditions relevant
to post-combustion carbon capture process. Details of the
crystallographic data and force field information used in
our GCMC simulations are provided in Table S1 of the ESI†
document. The choice of the force field requires an additional
comment. In a separate thread of research our intention is to
evaluate the accuracy of the state-of-the-art molecular simulations
in prediction of adsorption isotherms for various classes of porous
materials. Therefore, force fields summarized in the ESI† corre-
spond to the specialized developments for each set of material and
adsorbate molecule which are shown to reasonably reproduce
reference data. Currently, no universally transferable force field is
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available even within a particular class of porous materials such
as MOFs.

We note that, only for simulation of nitrogen adsorption in
MOF74-Ni, we had to rely on the use of a force field which was
unable to reproduce experimental data accurately. The Universal
Force Field (UFF) is a generic force field known to provide poor
estimates of binding energies for adsorption of CO2 and N2 in
MOFs with coordinatively unsaturated metal sites (open-metal
sites),37,38 where MOF74 class of materials is a prominent
example.39–41 In this type of MOFs, the coordinatively unsaturated
metals provide favourable adsorption sites to which CO2 and N2

have strong affinity. As shown by multiple researchers, the binding
energy of adsorbate molecules attracted to these metal sites cannot
be correctly modelled using generic force fields.39,40,42 To accurately
estimate the binding energies in such systems, force fields derived
from quantum-mechanical calculations must be employed to treat
variation of chemical environment at the vicinity of open metals.39

Hitherto, a handful of first-principle force fields have been devel-
oped to correctly model adsorption of CO2 in open-metal site
MOF74s,39–44 one of which is also used in this study for adsorption
of CO2 in MOF74-Ni.40 However, to the best of our knowledge, there
is only one such force field developed for adsorption of nitrogen
(i.e. Mg-MOF74).39 For other MOF74s, we have no choice but to rely
on generic force fields. This will affect accuracy of our molecular
simulations for adsorption of nitrogen in MOF74-Ni which will be
discussed in Section 3.1.

In this study, all GCMC simulations are performed using
RASPA 2.0 simulation package.45 Simulations are sufficiently
run to ensure the systems are fully equilibrated before any
statistical data is collected. Four different trial MC moves,
including insertion, deletion, translation and rotation, are
attempted. All materials simulated in this study are assumed
to have rigid frameworks consisting of an array of unit cells in
the periodic boundary conditions. Properties of adsorbent
frameworks are provided in Table S2 of the ESI.† Molecular
visualizations of the adsorbent materials used in this study are
provided in Fig. 2.

The 12-6 Lennard-Jones (LJ) potential model is employed to
calculate dispersion interactions, while long-range electrostatic
interactions are treated using the Ewald summation. Details of

the potential cut-off distances for both dispersion and electro-
static interactions in real space are also provided in Table S2 of
the ESI.† To speed up our GCMC simulations, we use grid
potentials with 0.1 Å resolution for both LJ and electrostatic
interactions. To consistently convert pressure values to fugacity,
we employ the Peng-Robinson equation of state throughout
this study.

We note that for the case of Zeolite 13X (Na-exchanged
faujasite), positions of Na+ cations are not fixed in contrast to
framework atoms of the faujasite. These cations are allowed to
access the Sodalite (b-cage) cages of faujasite, however molecules
from the outside of the framework cannot penetrate into these
cages.46–48 Therefore, adsorption of CO2 and N2 molecules into
Sodalite cages is prevented by blocking them during GCMC
simulations. Atomistic modelling of the Na-FAU structure is
detailed in our previous publication.23

2.2. Process modelling

As described in our previous publication,23 we have developed a
multiscale modelling platform for simulation of a cyclic vacuum
swing adsorption process with light product pressurization
(VSA-LPP) to separate binary mixture of 15% CO2 and 85% N2.
The VSA-LPP model is implemented in our in-house adsorption
cycle simulator, CySim,49 and consists of four consecutive steps
detailed below (also depicted in Fig. 3):

(1) Adsorption step: adsorption at atmospheric pressure
with feed.

(2) Blow-down step: co-current blowdown to an intermediate
pressure to remove nitrogen.

(3) Evacuation process: counter-current evacuation to low
pressure to obtain CO2 product.

(4) Pressurization: counter-current pressurization with light
product.

The above cycle is the simplest process that has been
experimentally shown to recover 90% of CO2 with a purity
greater than 95%.50 However, this is only achieved by using
very low evacuation pressures (Pevac o 0.04 bar).51 In order to
achieve the same purity-recovery using the commonly used
industrial pumps, more complex VSA cycles (e.g. 6-step dual
reflux VSA) will be needed.51 Further details regarding the

Fig. 1 A multiscale approach in modelling of a VSA process for post-combustion carbon capture.
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process flowsheet of the 4-step VSA-LPP cycle are shown in
Fig. 4.

As shown in this figure, there are four streams in the
flowsheet including two splitters, four valves and one adsorp-
tion column. During the adsorption step, valves V1 and V2 are
open, however valves V3 and V4 are closed. This introduces feed
stream F into the adsorption column, AC. Adsorption product is

then stored in stream unit AP. During the second step (i.e.
blowdown) valve V4 is opened, while valves V1 and V2 are now
closed. The blowdown product is stored in the stream unit BP.
By closing valve V4 and opening valve V3 during the evacuation
step, the product of this step can be stored in the unit EP.
Finally, during LPP step, only V2 is open and adsorption
product is used to re-pressurize the column. The behaviour of
the adsorption column and its auxiliary units are described by

Fig. 2 Molecular visualizations of adsorbent frameworks for (a) Cu-BTC, (b) MOF74-Ni, (c) Silicalite-1 and (d) Zeolite 13X.

Fig. 3 Schematic depiction of the employed VSA-LPP process consisting
of four consecutive steps: (1) adsorption, (2) blowdown, (3) evacuation and
(4) light product pressurization.

Fig. 4 Process flowsheet of the VSA process implemented in the CySim
modelling suite.
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mass, momentum and energy balances that form a system of
differential algebraic equations implemented in CySim using
the SUNDIALS library.49,52 The complete set of the equations
along with the boundary conditions and other technical details
of the model are provided elsewhere.53 We note that our
process simulator (CySim) has been previously shown to repro-
duce both experimental49,54–56 and published modelling data23

accurately.
Here, we reiterate the following model assumptions for the

VSA-LPP model which are consistent with the previously pub-
lished process models for the four-step VSA with LPP:22,51,57

1. Ideal gas law is valid.
2. Axial dispersed plug flow in the column takes place.
3. The pressure drop across the column is described by the

Ergun equation.
4. Non-isothermal model accounts for energy balances

inside the column. The heat transfer between the column,
column wall and ambient environment is employed.

5. The adsorption equilibrium is described by the dual-site
Langmuir model.

6. The mass transfer mechanism is controlled by diffusion
through macropores with contributions from Knudsen and mole-
cular diffusion mechanisms.58,59 The mass transfer rate equation is
described by the linear driving force (LDF) approximation.

Similar to the cases of Zeolite 13X58 and MOF74-Ni,60 trans-
port of CO2 and N2 in other two materials studied here is also
controlled by macropore diffusion, which is the most likely
scenario for all pelletized microporous materials that have pore
openings greater than 4 Å within their crystal structure.61,62

During optimization, CySim makes sure that all simulations
achieve a cyclic steady state (CSS) condition by checking
simulations against the specific criteria explained here. Based
on our preliminary tests, the system achieves CSS before the
number of cycles exceeds 700 or when the following mathema-
tical criteria are met:

ERMS ¼
1

N

Xn
j¼1

ykj � yk�1j

max ykj

��� ���; atol� �
0
B@

1
CA

20
B@

1
CA

1=2

oCSS tolerance

(1)

Emax ¼ max
ykj � yk�1j

max ykj

��� ���; atol� �
������

������; j ¼ 1; . . . ;N

0
B@

1
CAo 10

� ðCSS toleranceÞ (2)

where ERMS is root mean-square error, Emax is maximum devia-
tion error, and yk

j are the fluid and pellet temperatures and fluid
and solid concentrations along the column in the system at the
k-th cycle and for j-th component. The CSS tolerance is set to
10�4 in all process simulations conducted in this study.

Multi-objective optimisation of the 4-step VSA-LPP process is
carried out by coupling CySim with the Platypus framework in
Python,63 which uses the third generation of non-dominated
sorting genetic algorithm (NSGA-III).64 In a recent study conducted
by Rajendran and co-workers, the ability of multi-objective

optimization techniques to guide the design of VSA processes
has been validated against experimental process data.65 Here,
for a given adsorbent, the objective is to minimize energy
penalty of the process while at the same time trying to maximize
its productivity, which is how much CO2 product is produced
during the evacuation step of the process per unit of volume of
the adsorbent per unit of time. The optimization is subject to
two constraints requiring purity and recovery of CO2 product to
be always higher than 95% and 90% respectively. Mathematical
definitions of purity, recovery and productivity are provided in
our recent publication.23

The Pareto front (energy-productivity trade-off curve) produced
as a result of process optimization is monitored periodically for its
variation in the minimum energy and maximum productivity and
when no significant change in the progress of the Pareto front is
observed, it is assumed to be converged. Our analysis shows that a
maximum of 30 000 CySim evaluations within the genetic algo-
rithm (GA) is adequate for the Pareto front to converge. We assume
100% efficiency in the energy consumption of the isentropic
compression processes. The decision variables for the process
optimization are the durations of adsorption step (tads), blowdown
step (tbd) and evacuation step (tevac), pressures in the evacuation
(Pevac) and the blowdown (Pbd) steps, feed flow rate (F) and
coefficient of the valves (CV) used in the blowdown and evacuation
steps in addition to the radius (Rp) and porosity (ep) of adsorbent
pellet. Here, we note that valve coefficient is a measure for the size
of the valve. It has the unit of m2 � 10�2.5. The meaning of this
coefficient is clear from eqn (3) provided below:

F ¼ sign P0 � P1ð Þ � CV � CT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 � P1j j

rf

s
(3)

where F is molar flow rate, CV is the valve coefficient, P0 � P1 is the
pressure difference across the valve, CT is the total gas concen-
tration and rf is the fluid density.

The upper and lower limits of the decision variables are provided
in Table 1. Similar to our previous study,23 we use an adsorption
column with the length and internal radius of 1.0 m and 0.1445 m
respectively. The feed pressure is fixed at slightly above atmospheric
pressure and the adsorption product stream AP is set to 1.0 atm.
Valve V2 has a large valve coefficient ensuring the column outlet to
be at atmospheric pressure. We also fix the duration of the LPP step
to 20 seconds, which is the lower bound for the adsorption step
time. As mentioned above, the optimizations are performed for
30 000 GA evaluations. Other parameters relevant to our process
simulation set-ups are provided in Table S3 of the ESI.†

We have previously validated our multiscale modelling
approach and its model assumptions by reproducing energy-
productivity Pareto front of Zeolite 13X for separation of CO2–
N2 mixtures as published in the literature.23

3. Results and discussion
3.1. Modelling adsorption isotherms

Adsorption isotherms of CO2 and N2 are predicted using GCMC
simulations at three different temperatures relevant to working
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temperatures of a conventional VSA process for post-combustion
carbon capture. All simulated adsorption isotherms are scaled
down to account for the mass fraction of pellet binder in experi-
ment. The exact amount of binder is typically estimated to be
around 15–25%.66 Here, we use a scaling factor of 20% as obtained
for adsorption in Zeolite 13X in our previous publication.23

The dual-site Langmuir (DSL) adsorption model is used to fit
the adsorption data obtained from GCMC simulations. For
fitting, we have adopted the fitting method explained in our
previous publication.23 In this method, a procedure is employed
where the importance of the Henry’s constant of CO2 adsorption
in the accuracy of the 4-step VSA-LPP model is recognized. This
approach also emphasizes the significance of the lower tempera-
ture adsorption isotherms as they contain more information
about the parameters of the model compared to higher tem-
perature data. GCMC simulated adsorption isotherms of CO2

and N2 in Cu-BTC, MOF74-Ni, Silicalite-1 and Zeolite 13X along
their corresponding DSL-fitted isotherms are shown in Fig. 5.
Details of the fitting parameters for the DSL isotherms are
provided in Table S4 of the ESI.†

Here, we note that the simulated adsorption isotherms of N2

in MOF74-Ni (Fig. 5(d)) largely underestimate experimental
data reported in the literature60 which is shown in Fig. S2 of
the ESI.† As discussed in Section 2.1, this is due to inaccuracy
of currently available generic force fields in capturing binding
energy of nitrogen in the vicinity of unsaturated nickel atoms
(i.e. open metal sites) within the structure of MOF74-Ni. In our
recent publication, we demonstrated that inaccurate represen-
tation of nitrogen adsorption at the molecular level has a large
impact on energy-productivity predictions at the process level
for post-combustion carbon capture.23 This observation has
been previously reported by other researchers as the process
level screening of porous materials attracts more attention
among scientists.19,21,67 Yet, the need for development of
accurate first-principle force fields for molecular simulation
of nitrogen adsorption has remained widely unrecognised
among the molecular simulation community.

Therefore, for the sake of the current study, GCMC simu-
lated adsorption isotherms of N2 for MOF74-Ni should not be
compared against what is known to be typical experimental
isotherms of nitrogen for this material. It is also important to
note that, this study is not meant to reproduce the exact
performance of porous materials in experiments. Instead, the
goal is to investigate and reveal the interplay of various factors
in the process performance which could be potentially used to
improve the efficiency of the VSA-LPP process and the compu-
tational efficiency of multiscale simulation workflows. Hence,
the conclusions made at the end of this study are not affected
by the artificial behaviour of nitrogen adsorption isotherms for
MOF74-Ni which are presented in Fig. 5(d).

Adsorption isotherms of the four materials considered here
feature various characteristics which are important for their
process-level performance. Fig. 6 compares N2 and CO2 adsorp-
tion isotherms of these materials at 298.15 K, which is the
operating temperature of our VSA cycle. As shown in Fig. 6(a),
all sub-atmospheric adsorption isotherms of nitrogen are com-
pletely linear, however adsorption isotherms of CO2 exhibit
very different shapes and level of non-linearity for different
materials, which is shown in Fig. 6(b).

As depicted in this figure, CO2 isotherms are very diverse in
terms of their maximum adsorption capacities, level of non-
linearities (shape of the isotherm) and Henry’s constants (slope
of the isotherm at low pressures). For instance, the non-linear
shapes of the CO2 isotherms for Zeolite-13X and MOF74-Ni are
in sharp contrast to almost linear forms of Cu-BTC and
Silicalite-1, which will have important implications for separa-
tion performance of these materials in the VSA cycle. Likewise,
largely different values of Henry’s constant (KH) are expected to
dictate very different diffusion rates during desorption process,
when such low pressures are achieved in the VSA cycle. As
illustrated in Fig. 6(b), Zeolite 13X has the highest KH value,
while Silicalite-1 demonstrates the lowest KH. It can also be
seen that MOF74-Ni possesses the highest adsorption capacity
at 1 bar, while Zeolite-13X has a significantly smaller capacity at
this pressure despite its large KH. This is associated with
smaller total pore volume of Zeolite-13X compared to MOF74-
Ni. Different characteristics of adsorption isotherms, similar to
what observed here, will play important roles in process-level
separation performance of adsorbent materials which have
been already discussed in the literature.17,68 In the following
sections of this article, we will focus on the process-level
properties which have important effects on separation perfor-
mance of adsorbent materials.

3.2. Effect of adsorbent heat capacity on performance-based
screening of porous materials

As briefly mentioned in the introduction, specific heat capacity
(Cp) of adsorbent materials is one of the parameters required
for process modelling of PSA/VSA processes under non-
isothermal conditions. It has been customary to assume that
the separation performance of porous solids in such processes
is not very sensitive to variation of Cp.17,21,22 It is also presumed
that specific heat capacities of typical porous materials are
within a very similar range so that one could safely use a typical
value of Cp for all the materials used in a screening study without
the need to calculate this property independently.11,17,22 Unfor-
tunately, specific heat capacity of very few porous materials has
been measured experimentally,31–33 which is particularly true for
large and diverse family of MOFs. In this section, we analyse
sensitivity of process performance in our VSA-LPP cycle to

Table 1 Lower and upper bounds for the decision variables used in optimization of the 4-step VSA-LPP process

Decision variable tads [s] tbd [s] tevac [s] Pbd [bar] Pevac [bar] CBd
V [m2 � 10�2.5] Feed [mol s�1] CEvac

V [m2 � 10�2.5] Rp [mm] ep [—]

Lower bound 20 1 10 0.05 0.01 0.05 0.01 0.1 0.5 0.1
Upper bound 200 200 200 0.50 0.03 0.50 2.50 2.0 2.5 0.8
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variation of Cp based on the experimental values reported in the
literature for Cu-BTC, MOF74-Ni, Silicalite-1 and Zeolite 13X. Fig. 7
illustrates how positions of the Pareto fronts change in response to
variation of Cp by comparing the following two scenarios:

(1) For the first scenario, experimental Cp value of each
material (as obtained from the literature) is used to predict
performance of the VSA-LPP process. Here, it is assumed that
the specific heat capacities of pelletized samples are identical

Fig. 5 GCMC simulated adsorption isotherms of CO2 and N2 in Cu-BTC (a and b), MOF74-Ni (c and d), Silicalite-1 (e and f) and Zeolite 13X (g and h)
scaled down by 20%. Symbols and dashed lines represent GCMC data and DSL fits respectively.
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to those of their crystal structures (i.e. binder has no thermal
effect). For this, following literature values are used for specific
heat capacity of each material: Cu-BTC = 1457 J kg�1 K�1;69,70

MOF74-Ni = 1100 J kg�1 K�1;‡ 60 Silicalite-1 = 771 J kg�1 K�1;71

Zeolite 13X = 920 J kg�1 K�1.72

(2) For the second scenario, it is assumed that the specific
heat capacity of all materials is similar to that of Zeolite 13X
(i.e. 920 J kg�1 K�1), thus Cp = 920 J kg�1 K�1 is consistently used
for process simulation of all materials. Using a single proxy value
for Cp as the specific heat capacity of other materials in a
screening study is similar to the approach adopted by Khurana
et al.17 for performance-based screening of 74 porous materials
for post-combustion carbon capture.

According to Fig. 7, performance of materials is over-
estimated (i.e. the position of Pareto front is shifted towards
bottom-right corner of the graph) when a proxy value larger than
actual Cp of the material is used in process simulation (which is the
case for Silicalite-1). In contrast, performance of materials is under-
estimated (i.e. the position of Pareto front is shifted towards top-left
corner of the graph) when a proxy value smaller than actual Cp of
the material is used (that is the case for Cu-BTC and MOF74-Ni). As
evident in this figure, displacement of Pareto fronts is more
apparent, when the proxy value of Cp represents a particularly poor
estimate of the actual heat capacity of the material which is the case
for Cu-BTC here (1457 vs. 920 J kg�1 K�1). Within large databases of
structurally and chemically diverse materials it is not necessarily
obvious which of the material will present a strong deviation from
some chosen proxy values. Therefore, our study suggests that
although the ranking does not seem to be very sensitive to variation
of Cp, process performance can still vary considerably if a poor
estimate of the actual heat capacity is used for process simulation.
To what extent the errors introduced in position of the Pareto
fronts can be tolerated largely depends on diversity of the materials
under study, structural flexibility of their crystalline frameworks
(which is reflected in their phonon vibrational frequencies) and the
level of accuracy required for materials screening. Several methods
have been proposed to estimate the specific heat capacity of
porous materials including group contribution methods,31 clas-
sical molecular simulations based on optimized force fields30

and quantum mechanical calculations through analysis of pho-
non frequencies.34–36 These methods can be used to increase
accuracy of multiscale simulation workflows in predicting
separation performance of porous materials, and will be inves-
tigated in our future publication.

3.3. Simultaneous optimization of pellet size and porosity

In our recent publication we demonstrated how separation
performance of the VSA-LPP process can be tuned by manipulating
size and porosity of the adsorbent pellet.23 In this section we seek to
find out whether universal values of optimal pellet size and porosity
exist across different materials. For this, we treat size and porosity
of the pellet as two additional decision variables, which are

Fig. 6 Adsorption isotherms of N2 (a) and CO2 (b) in four different materials as predicted by the DSL model.

Fig. 7 Effect of specific heat capacity on position of the Pareto fronts for
Cu-BTC (black), MOF74-Ni (green), Silicalite-1 (blue) and Zeolite 13X (red).
Dashed lines illustrate the first scenario where experimental Cp of each
material is used for process simulations. Solid lines represent the second
case where Cp is assumed to be equal 920 J kg�1 K�1 for all materials.

‡ Specific heat capacity of pelletized MOF74-Ni measured by Krishnamurthy
et al.60 using the thermogravimetric differential scanning calorimetry (TGA-
DSC) method. We obtained this information through direct communication with
the authors, although they have not reported this value in their recent
publication.
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simultaneously optimized along with eight other decision variables
in the process. The optimal values of these properties established
in our previous study for Zeolite 13X indicate some trade-offs
between competing effects and it is instructive to briefly review
how these trade-offs emerge. Therefore, we begin this section by
introducing several essential elements of the VSA process, whereas
for the complete picture the reader is referred to our previous
publication.23

In a conventional PSA/VSA process, adsorbents are used in
the form of pellets, which are made of small crystallites held
together by an inert binder. Schematic structure of an adsor-
bent pellet is provided in Fig. 8.

As depicted in this figure, the space between crystallites in
the pellet constitutes inter-crystallite macroporosity of the
sample material. As mentioned before, transport of CO2 and
N2 is controlled by these macropores in any pelletized micro-
porous material that have pore openings greater than 4 Å
within their crystalline structures.61,62 This has been experi-
mentally demonstrated for diffusion of CO2 in pelletized sam-
ples of Zeolite 13X58 and MOF74-Ni.60

Here, we start with the overall mass balance for the adsorp-
tion column which can be formulated as follows:

@ci
@t
þ 1� ebð Þ

eb
� @Qi

@t
þ @ ci � vð Þ

@z
þ @Ji
@z
¼ 0 (4)

Qi = epcm
i + (1 � ep)qi (5)

where ci, cm
i and Qi are the gas phase, macropore gas phase, and

total pellet concentrations of component i, respectively. The
diffusive flux is given by Ji and the interstitial flow velocity by v.
The independent parameter z represents the spatial coordinate
along the column length. qi is the concentration of component i
in the crystals of porous materials within the pellet. eb, ep and t
are the column bed porosity, pellet porosity and adsorbent
tortuosity, respectively. For the diffusion of the gases into the
pellet we adopt the Linear Driving Force (LDF) model:

ep
@cmi
@t
þ 1� ep
� �@qi

@t
¼ kpi ci � cmi

� �
(6)

@qi
@t
¼ kci q�i � qi

� �
(7)

Here, we use the Glueckauf’s approximation73 to describe the mass
transfer rate into the pellet, according to which the pellet LDF
coefficient is inversely proportional to the square of the pellet radius:

kpi ¼
15

Rp
2
De

macro;i ¼
15

Rp
2

ep
t
Dmacro;i ¼

15

Rp
2

ep
t

1

Dm
i

þ 1

DK
i

� 	�1
(8)

where Dm
i , DK

i , Dmacro;i ¼
ep
t

1

Dm
i

þ 1

DK
i

� 	�1
and De

macro;i ¼
ep
t
Dmacro;i are molecular, Knudsen, macropore and effective macro-

pore diffusivities of component i, respectively. The formalism
presented above provides a helpful framework to rationalize the
existence of optimal values of pellet size and pellet porosity. From
eqn (8), it is clear that smaller particles should lead to higher LDF
coefficient and lower resistance to mass transfer. Reduced mass
transfer resistance in turn will move the process closer to an
equilibrium-controlled process which could potentially improve
efficiency of the process. On the other hand, smaller pellet size will
cause higher pressure drops across the column, as described by
the Ergun equation:

�dP
dz
¼ 150m 1� ebð Þ2

eb24Rp
2

vþ 1:75 1� ebð Þ2rf
eb2Rp

vjvj (9)

where m and rf are fluid viscosity and fluid density respectively.
Thus, the system should arrive to an optimal trade-off between
enhanced mass-transfer into the pellets and higher energy costs
associated with pulling vacuum. Similarly, from eqn (8) it can be
seen that higher pellet porosity (ep) should lead to enhanced mass-
transfer, however, again up to a point. Under all other conditions
kept constant, higher porosity implies lower amount of adsorbent
in the column and as a result shorter adsorption cycles. This, in
turn, will increase the relative contribution of the blowdown,
evacuation and LPP steps to the overall energy cost of the process.

With the complex interplay between various competing
effects reviewed here, we now turn our attention to the case
study of performance of four materials in the 4-step VSA-LPP
process. Our investigations show that one could indeed achieve
a better separation performance (i.e. lower energy penalty and
higher productivity) in this process for all materials when size
and porosity of adsorbent pellet are simultaneously optimized.
Fig. 9 compares fully converged Pareto fronts of Cu-BTC,
MOF74-Ni, Silicalite-1 and Zeolite 13X for two different cases:
(1) when the process is optimized using all the decision vari-
ables provided in Table 1, including size and porosity of the
pellet (i.e. optimization with 10 decision variables); (2) when the
size and porosity of the pellet are fixed at Rp = 1 mm and ep =
0.27 respectively. In this case, the process is optimized using
the remaining 8 decision variables listed in Table 1. Values of
Rp = 1 mm and ep = 0.27 are the ones used in our previous study
of the VSA-LPP cycle with Zeolite 13X as adsorbent23 and are
obtained from experiment.58 As evident from Fig. 9, Pareto
fronts obtained through optimization of 10 decision variables
are consistently better than their counterparts obtained based
on optimization of 8 decision variables which is when size and
porosity of adsorbent pellets are kept constant at some chosen
reference values.

Additionally, Fig. 9 reveals another interesting behaviour of
the process arising from simultaneous optimization of pellet
size and pellet porosity. As shown in this figure, not only
concurrent optimization of pellet size and pellet porosity makes
it possible to significantly enhance separation performance of
the VSA-LPP cycle, it also leads to a different order of topFig. 8 Schematic illustration of an adsorbent pellet.
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performing materials for this process. As shown in this figure,
positions of Zeolite 13X and MOF74-Ni (as the two best materials
in this figure) are swapped once the size and porosity of pellets
are allowed to vary. This finding will have profound implications
for screening studies of porous materials, considering it shows
that material hierarchies produced based on similar perfor-
mance metrics at fixed values of pellet size and pellet porosity
are subject to change, if optimum values of these parameters
(and possibly other process variables) are considered.

To obtain additional insight on the role of pellet size and
pellet porosity for enhanced separation performance of materials,
we set to investigate how the mass transfer kinetics is altered in a
system with optimizable pellet morphology. For this, we calculate
diffusional time-constant of CO2 during the evacuation step of the
VSA-LPP cycle, where macropore diffusivity is the controlling
mechanism. Diffusional time-constant reflects on the characteristic
time required for the diffusion across the pellet of size Rp as
described by

tdiff ¼
Rp

2

De
p

(10)

where De
p and Rp are effective pellet diffusivity and pellet radius

respectively. Here, effective pellet diffusivity (De
p) is given by

De
p ¼

De
macro

ep þ 1� ep
� �dq

dc

(11)

where ep and t are porosity and tortuosity of pellet,
dq

dc
represents

the local slope of the adsorption isotherm, and Dmacro and De
macro

are macropore and effective macropore diffusivities as defined in
the notation for eqn (8).

Variation of the diffusional time-constant (tdiff) for CO2

across Pareto fronts of four different materials is illustrated
in Fig. 10 for both optimization cases presented in Fig. 9

(i.e. optimization using 8 and 10 decision variables). Here,
dq

dc

for each material is calculated at the limit of 0.01 bar when the
adsorbed CO2 is ultimately evacuated.

As shown in Fig. 10, tdiff is consistently larger for the Pareto
fronts obtained using fixed values of pellet size and pellet
porosity (i.e. Rp = 1 mm, ep = 0.27). In contrast, when Rp and
ep are allowed to vary during optimization, tdiff is noticeably
decreased which is a clear indication of enhanced kinetics giving
rise to better separation performance of the system. The
enhanced performance detected here is a result of increased
pellet porosity to some optimum values greater than ep = 0.27.
Interestingly, at the same time, the optimization arrives to
slightly larger values of Rp, which according to the analysis
above should lead to more hindered mass transfer. Nevertheless,
the process still favours larger values of Rp considering they give
rise to lower pressure drops according to eqn (9). Therefore, it is
clearly the combined effect of Rp and ep values that leads to the
overall improved mass transfer into the pellets. Having said that,
there will be a limit to the kinetic improvements achieved
through optimization of pellet morphology beyond which the
process performance will drop again due to a combination of
different factors. Before proceeding to a deeper discussion
related to the complex interplay observed here, we will first focus
on some findings related to distribution of optimal pellet size
and pellet porosity across Pareto fronts of different materials.

3.4. Are there universal values for pellet size and pellet
porosity?

Simultaneous optimization of pellet size and pellet porosity not
only allows a typical PSA/VSA process to perform with lower
energy requirement while having higher productivities, it also
provides an opportunity to propose new process-level metrics
which can be used in the context of materials screening. Our
study shows that there seem to be some levels of universality in
optimum values of pellet size and pellet porosity in the VSA-LPP
process, at least within the four materials studied here. This
means that optimum size and porosity of adsorbent pellets
always fall within a relatively narrow but somewhat similar
range which seems to be independent of adsorbents intrinsic
properties. This is evident from Fig. 11 where variations of
pellet diameter (dp = 2Rp) and pellet porosity (ep) across Pareto
fronts of Cu-BTC, MOF74-Ni, Silicalite-1 and Zeolite 13X
are shown.

Analysis of Fig. 11(a) shows that B95% of all the points
located on Pareto fronts of the above four materials favour an
optimum pellet diameter between 2.0 and 3.0 mm, out of which
B80% of the points are spread between 2.5 and 3.0 mm. A
histogram in Fig. 12(a) details the distribution of pellet dia-
meters for the Pareto fronts shown in Fig. 11(a). Likewise,
analysis of Fig. 11(b) indicates that more than 96% of all the
points located on the Pareto fronts have an optimum pellet
porosity between 0.5–0.7. As detailed in Fig. 12(b), pellet
porosity of B54% of all the points are located between 0.5
and 0.6, while for B43% of them pellet porosity falls between
0.6 and 0.7. Similar information can be obtained from the
detailed distribution of the pellet diameter and pellet porosity

Fig. 9 Pareto fronts of Cu-BTC (black triangle), MOF74-Ni (green square),
Silicalite-1 (blue circle) and Zeolite 13X (red diamond) obtained using eight
(solid symbol) and ten (open symbol) decision variables in process
optimization.
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across Pareto fronts of the individual materials as shown in
eight separate histograms in Fig. S3 of the ESI.†

The somewhat similar values of pellet diameter and pellet
porosity (universality of Rp and ep) reported here could suggest

Fig. 10 Variation of the diffusional time-constant for CO2 across Pareto fronts of Cu-BTC, MOF74-Ni, Silicalite-1 and Zeolite 13X. Circle symbols
represent the case where size and porosity of pellets are constant (i.e. optimization with 8 decision variables), and square symbols denote the case where
both of these parameters are simultaneously optimized along with other decision variables (i.e. optimization with 10 decision variables).

Fig. 11 Variation of pellet diameter, dp (a) and pellet porosity, ep (b) across Pareto fronts of Cu-BTC (down-pointing triangle), MOF74-Ni (square),
Silicalite-1 (circle) and Zeolite 13X (up-pointing triangle).
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the use of these two parameters as new process-level metrics
for identifying the best performing adsorbents in materials
screening studies. These metrics can facilitate more efficient
screening of porous materials by narrowing the highly multi-
dimensional optimization space to smaller regions where most
promising process configurations are likely to be located. We
acknowledge that this hypothesis is currently only tested for the
four porous materials studied here, and a more extensive investiga-
tion with a larger pool of materials is required to draw a general
conclusion. Nevertheless, given the four materials investigated in
this study represent a fairly diverse group of porous solids (siliceous
and ion-exchanged zeolites, as well as open-metal site MOFs), we
believe there is a good chance that this type of metrics can be
effectively used for screening larger groups of porous materials
within the same context studied here.

Here, we note that although the optimal values of pellet
porosity reported above exceed typical experimental values,
other adsorbent optimization studies do suggest a similar
range (0.4 o ep o 0.6).74 Production of pellets with very high
porosity may be limited by their mechanical stability under cyclic
VSA conditions, although we do not exclude that under encouraging

economic incentives, some novel ways to produce high porosity
pellets will eventually develop (e.g. 3D printing). Therefore, we
revisit the process optimization problem described above under
an additional constraint of upper pellet porosity (ep = 0.4) for all
the materials. The results for variation of pellet size and pellet
porosity of this new calculation are presented in Fig. 13.

As shown in Fig. 13(b), limiting the upper boundary of the
pellet porosity to ep = 0.4 results in a situation where optimal
values of ep for all the points located on the Pareto fronts
become essentially very close to this upper limit. In fact, our
optimizations show that 100% of the process configurations
adjust themselves to ep values between 0.39 and 0.4. This is
consistent with the previous results shown in Fig. 11(b) signifying
that, if allowed by a wider optimization boundary, the process
tends to achieve its best performance at ep 4 0.4 which is
restricted in the case shown in Fig. 13. Smaller values of ep

increases diffusional time-constant as defined by eqn (10)
resulting in a reduced mass-transfer into the pellets. To maintain
performance, process optimizer will adjust to smaller sizes of pellet
(Rp) which helps to counter that effect, considering at smaller pellet
size diffusional time-constant will decrease. This is consistent with

Fig. 12 Distribution of pellet diameters (a) and pellet porosities (b) on Pareto fronts of Cu-BTC, MOF74-Ni, Silicalite-1 and Zeolite 13X associated with Fig. 11.

Fig. 13 Variation of the pellet diameter, dp (a) and pellet porosity, ep (b) across Pareto fronts of Cu-BTC (down-pointing triangle), MOF74-Ni (square),
Silicalite-1 (circle) and Zeolite 13X (up-pointing triangle) after imposing an upper limit of ep = 0.4 to the pellet porosity during process optimization.
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what is shown in Fig. 13(a) where pellet diameter of B95% of all
the points on the Pareto fronts fall into a range between 1.5 to
2.5 mm (Fig. 14) which is clearly smaller than what is observed
before in Fig. 11. Similar information can be obtained from the
detailed distribution of pellet diameters across Pareto fronts of the
individual materials as reported in Fig. S4 of the ESI.†

Based on what was reported in this section about variation
of pellet size and pellet porosity under different optimization
constraints (Fig. 11 and 13), it is clear that these two properties
respond to the perturbation in one another through a complex
interplay between pressure drop (eqn (9)) and diffusional time-
constant for mass transfer across pellets (eqn (10)). It was shown
that when mass transfer is reduced by forcing the system to smaller
values of pellet porosity (ep o 0.4), the process responds by
switching to smaller values of Rp to improve diffusional time-
constant as far as the trade-off between energy penalties associated
with larger pressure drops and faster mass transfers allows. Con-
versely, when ep is allowed to increase (0.1 o ep o 0.8), the system
can afford to go to larger values of Rp to reduce pressure drop and
maintain the same fine balance.

3.5. A new correlation to search for optimum solutions

As mentioned earlier in the introduction, multiscale screening
of porous materials constitutes workflows of consecutive
simulations which are computationally very demanding. To
efficiently adopt such multiscale simulation workflows for
screening of larger groups of materials, computational burden
of the workflow must be reduced. Usually, one of the most
computer-intensive stages of the workflow is process optimiza-
tion whose final product is obtained in the form of a Pareto
front (i.e. trade-off curve between energy penalty and produc-
tivity of the process). In the previous section of this paper, we
showed that several properties such as the diffusional time-
constant, pellet size and pellet porosity exhibit certain common
trends characteristic for the conditions on the Pareto fronts for
the materials under consideration. In addition to that, we have
already speculated (in our previous23 and the current article) on the
possible trade-offs between energy penalties associated with the
increased pressure drop, fast cycles and enhanced mass transfer as

the pellet size decreases and pellet porosity increases. This
prompted a hypothesis that the Pareto fronts in these processes
indeed correspond to some optimal balance between these trends,
which is likely to be reflected in some relations between the values
of decision variables on the Pareto front. Moreover, these relations
might be universal and independent of the materials. The univers-
ality of these process properties can be exploited to reduce the
search space during optimization in order to arrive at the optimal
solution (i.e. the Pareto front) in a shorter time. In the current
section, we use a similar approach, but this time we try to find a
more general metric to search for the approximate position of the
Pareto front during process optimization.

Here, we recognize two characteristic time scales associated
with our system:

(a) Diffusional time-constant as described by eqn (10).
(b) The mean residence-time for the convective flow through

the adsorption column.
As described earlier, diffusional time-constant reflects the

characteristic time required for the diffusion across the pellet of
size Rp. We can envision, that if the gas flow through the system
is considerably faster compared to the diffusion process, process
productivity will be low because CO2 will eventually break
through without being completely adsorbed. On the other hand,
if the flow of gas is very slow compared to the pellet diffusion
process, negative effect of a slow cycle will also decrease pro-
ductivity of the process. Hence, intuitively, the second time scale
is associated with the flow of the gas through the system, which
can be encoded in the mean residence-time (in other words, the
first moment of the residence time distribution):

tres ¼
Vc � CT � eb þ ð1� ebÞ ep þ ð1� epÞ �

Dq
Dc

� 	� 	
F

(12)

where, eb is the bed void fraction, Vc is the volume of the column,
CT is gas concentration, F is the molar flow rate of the feed

during the adsorption process, and
Dq
Dc

is the secant of the

isotherm (in other words, the working capacity). This equation
can be recast in terms of the interstitial flow velocity, v:

tres ¼
L � eb þ 1� ebð Þ ep þ 1� ep

� �
� Dq
Dc

� 	� 	
v � eb

(13)

Now, we consider the ratio of the two characteristic time scales,
which should give us the desired parameter reflecting the
competition between the convective and diffusive processes:

a ¼ tres

tdiff
(14)

According, to the formulae provided above:

a ¼
L � eb þ 1� ebð Þ ep þ 1� ep

� �
� Dq
Dc

� 	� 	

v � ebð Þ

� �

Rp
2

,
De

macro

ep þ 1� ep
� �dq

dc

0
B@

1
CA

2
64

3
75

(15)

Fig. 14 Distribution of pellet diameters on Pareto fronts of Cu-BTC,
MOF74-Ni, Silicalite-1 and Zeolite 13X associated with Fig. 13.
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In this expression, the terms containing either secant of the

isotherm
Dq
Dc

or the local slope of the isotherm
dq

dc
will be

significantly higher in magnitude compared to all other terms
(with porosities taking values of 0 o ep o 1 and 0 o eb o 1);
therefore these other terms can be eliminated to produce a
simplified and approximate expression:

a ¼
L � 1� ebð Þ � 1� ep

� �
� Dq
Dc



v � ebð Þ

� �

Rp
2

,
De

macro

1� ep
� �dq

dc

0
B@

1
CA

2
64

3
75

(16)

To understand the behavior of this property, consider a
simplified case, where the isotherm is strictly linear with a
slope equal to K. In this case, both the local slope and the
secant are also equal to the slope of the isotherm, and hence to

each other:
Dq
Dc
¼ dq

dc
¼ K . Consequently, the above expression

can be rewritten as:

a ¼
L � 1� ebð Þ � 1� ep

� �
� K

v � ebð Þ

� �
Rp

2

,
De

macro

1� ep
� �

K

 !" # (17)

which after cancellation of the terms (1 � ep) and K produces:

a ¼ L � 1� ebð Þ= v � ebð Þ
Rp

2

De

macro

(18)

and after some further rearrangement:

a ¼ De
macroL � 1� ebð Þ
Rp

2 � v � eb
(19)

Even a simpler property can be introduced if we eliminate
the bed porosity (as it is a fixed property in our system):

a ¼ ep2DmacroL

Rp
2 � v (20)

where De
macro = (epDmacro)/t E ep

2Dmacro given the Bruggeman

relation (i.e. ep ¼
1

t
). In the last equation, we keep L to make the

property dimensionless. In fact, the structure of dimensionless
parameter a is very similar to that of the Péclet number, which
is used to describe the ratio of characteristic residence and
diffusion times in the reactor. In the context of PSA/VSA
process, the Péclet number is mainly studied to understand
correlations of axial dispersion flow in packed bed columns
which is jointly caused by molecular diffusion and turbulent
flow around adsorbent pellets in the column.75,76 Hence, to
avoid the confusion, we simply call the property defined above
as a.

As shown in the previous section, the optimization process
will be driven to improve its diffusion performance (smaller Rp

and larger ep) but this can happen only up to a point beyond
which having very small Rp will lead to energy costs associated
with the pressure drop across the bed; or having too large of the

ep will incur additional inefficiencies associated with the
amount of the active material in the column being too small.
Hence, the property defined above is likely to converge to some
characteristic values during optimization. Nevertheless, the ana-
lysis presented so far has been based on the condition of a linear
isotherm. To what extend is this condition relevant to the actual
dynamic process and the non-linear isotherms associated with
the materials under consideration? Our analyses show that the
cycle optimization drives the process to operate along more
linear portions of the CO2 isotherm. This leads to lower than
expected working capacities during a single cycle, however the
negative effect is compensated by the efficient evacuation step.
In Table S5 of the ESI,† we provide detailed analyses of several
configurations (corresponding to various points on the Pareto
fronts of different materials) to demonstrate that our system
does operate with relatively low working capacities along some
portions of CO2 isotherm that have lower curvature (smaller non-
linearity). This behaviour is associated with particular properties
of the 4-step VSA-LPP cycle and the imposed constraints (speci-
fically, the 90% recovery of CO2). However, on the hindsight, this
may not be very surprising after all: previous studies suggest that
CO2 isotherms with lower curvature is beneficial in VSA cycles for
post-combustion CO2 capture, although complete linearity of
CO2 isotherms are not necessarily preferable.68,77

Hence, to summarize, it may be possible that other cycles
(for various materials) also operate close to some linear por-
tions of the adsorption isotherm with lower curvature. In this
case, we theorize that the optimization process is likely to arrive
to a particular trade-off between the pellet size and pellet
porosity (essentially, diffusional time-constant) and convective
flow rate as encoded in the dimensionless parameter of a which
should have a narrowly varying value for points closer to/on the
Pareto front. This property is expected to be material-
independent, as the final expression does not contain anymore

the actual characteristics of the adsorption isotherm (i.e.
dq

dc
).

Using the above definition, we calculate a for all process
configurations simulated during optimization of each material.
The results show gradual evolution of a as process optimization
is progressed towards position of the converged Pareto fronts.
This is demonstrated in Fig. 15 where distinct colour grouping
shows process-evolution of parameter a.

Fig. 15(a), (c), (e) and (g) clearly show that as productivity of
the system increases, a switches from one colour band to
another colour band starting with the grey band at the lowest
productivities (a 4 5). It then progresses towards higher values
of productivity following the illustrated trend: blue (4 o ao 5),
green (3 o a o 4), yellow (2 o a o 3) and red (1 o a o 2).
Although there are some overlapping areas between different
colour bands, the trend described above remains generally
valid for all four materials studied here which is particularly
evident for the case of Zeolite 13X (Fig. 15(a)), Silicalite-1
(Fig. 15(c)) and Cu-BTC (Fig. 15(e)).

For the location of Pareto fronts, we need to look at the
subsets of the process configurations whose purity and recovery
are greater than 95% and 90% respectively which are shown in
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Fig. 15(b), (d), (f) and (h). It is evident in these figures that,
except for Silicalite-1, Pareto fronts of all other materials fall
within the red band where 1 o ao 2. If resolution of the colour
grouping scheme is increased (Fig. 16), we will notice that even

for the case of Silicalite-1, a is predominantly located within
2.0 o ao 2.3 which is essentially in the vicinity of the red band.

Therefore, it can be reasonably concluded that parameter a
is always between 1.0 and 2.3 at points located on the Pareto

Fig. 15 Evolution of parameter a for CO2 during process optimization shown for the entire process configurations (a), (c), (e) and (g); and those
configurations with purity and recovery larger than 95% and 90% respectively (b), (d), (f) and (h).
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front for all the materials studied here. The significance of this
observation will be more obvious when we notice that a actually
varies within a much wider range of values throughout process
optimization for each material (e.g. from 0.01 to 269). Although
this is not easily detectable from Fig. 15, it can be seen in a
histogram provided in Fig. S7 of the ESI.†

The process-evolution of parameter a and its grouping beha-
viour as reported in this study is quite important for materials
screening, considering it provides a material-independent corre-
lation between some of the process variables, which can be then
used to guess the approximate location of the Pareto fronts
without the need for performing expensive brute-force optimiza-
tions. In other words, if one can demonstrate that a always lies
within a narrow range of values for a large group of materials, it
would be relatively easy to guide process optimizer to solely
explore the optimization space within that narrow range to
search for the position of a converged Pareto front, which will
be otherwise a computationally expensive task. For instance, the
proposed a value can be implemented as a constraint in the
process optimization to limit variation of flow rate, pellet size
and pellet porosity beyond certain values.

The analysis presented in this study reveals the correlation
between pellet size, pellet porosity and convective flow rate, however
it is not a substitute for a more in-depth investigation on the
relationships between other decision variables on the Pareto front.
To discover the complex relationships between various process
parameters, we will require further understanding of the fundamen-
tal processes during the steady-state PSA/VSA cycle operation, which
could be aided by the novel machine-learning techniques.28,53,78

Ultimately, revealing the hidden relationships between the process
parameters can be exploited for reducing the dimensionality of the
optimization space, and to develop more efficient optimization
algorithms. This will be pursued in our future studies.

4. Conclusion

Practical implementation of self-sufficient and fully in silico
multiscale workflows for performance-based screening of

porous materials requires (a) accurate calculation of various
properties of materials some of which are poorly estimated so far
(e.g. specific heat capacity), (b) consistent treatment of the process
variables that cannot be estimated from molecular simulations but
are crucial for process modelling (e.g. pellet size, pellet porosity);
and (c) computational efficiency of the workflow to be able to scan
through a significant number of materials and process configura-
tions. In this paper, we attempted to explore these issues and
highlight their importance by:

(1) Analysis of the sensitivity of the process performance to
the variation of specific heat capacity of adsorbent materials.

(2) Including pellet size and pellet porosity as additional
decision variables in the process optimization and monitoring
the response of the process to this new flexibility.

(3) Proposing new universal metrics to search for the
approximate position of the Pareto front without the need for
brute force optimization; hence, potentially, reducing the com-
putational requirements of process optimization.

In the following, we summarize our findings for each of the
above investigations:

Specific heat capacity: one particular property that is impor-
tant for accurate implementation of non-isothermal VSA models
is specific heat capacity of adsorbent materials. We investigated
sensitivity of process performance to variation of this property
and showed that the current practices in the use of empirical
proxy values for Cp reduce the accuracy of performance-based
materials rankings. This is likely to be a particular issue for a
large database of chemically and structurally diverse materials
whose energy-productivity Pareto fronts can be very close to each
other; thus higher screening accuracies are required. We there-
fore propose to adopt more reliable computational techniques
for estimation of adsorbents heat capacity (e.g. phonon analysis
method). In our future publication, we will implement first-
principles methods into our multiscale screening workflow to
reliably estimate specific heat capacity of porous materials and
improve accuracy of our materials ranking.

Pellet size and porosity: we proposed to treat size and
porosity of adsorbent pellets as two additional decision

Fig. 16 Variation of parameter a for Silicalite-1 illustrated using a higher resolution colour grouping scheme (a). Magnified view of the same illustration
focusing on the areas closer to the Pareto front (b).
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variables for optimization of VSA processes, considering
they cannot be calculated from molecular simulations. With
the pellet size and pellet porosity being treated as decision
variables, several avenues to achieve a better separation perfor-
mance become available to the process optimizer: by increasing
the pellet porosity, reducing the pellet size and some combina-
tions of these factors in conjunction with other decision vari-
ables. We argue that optimal values of pellet size and pellet
porosity correspond to a complex trade-off between efficient
mass transfer into the pellets, pressure drop and convective
flow rate across the bed. Not only we showed that simultaneous
optimization of pellet size and pellet porosity significantly
improves process performance, we also suggested that simul-
taneous optimization of these two parameters is essential for
consistent ranking of porous materials. Our results demon-
strate that the ranking of materials according to the limiting
Pareto fronts (with fixed pellet size and pellet porosity) is
different compared to the ranking obtained from simulations
optimization of these two parameters. We showed that upon
optimization, we arrive to pellet porosities which are quite
higher compared to the conventionally accepted values, reflect-
ing the current industrial practices that are governed by the
factors of mechanical stability of the pellets in cyclic processes.
This, however, poses an interesting new question. Can perfor-
mance of materials in PSA/VSA processes be improved by
creating more sparse adsorbents with better mechanical stability
(e.g. structured adsorbents)? The answer to this question will
depend on the economic incentives and the availability of new
technologies (e.g. 3D printing) to produce new generations of
novel adsorbents79,80 such as monoliths and shaped adsorbent
materials (granulated MOF81,82) which are designed to enhance
process performance (enhanced mass transfer, reduced pressure
drop, improved thermal management), while increasing physical
stability of adsorbents.83–85

Efficiency of multiscale workflows: process optimization is
one of the most computationally demanding elements of a
multiscale workflow for performance-based materials screen-
ing. Efficiency of process optimization can be largely improved,
if it could be demonstrated that optimal values of different
process variables on the energy-productivity Pareto front are
universal for all materials or at least within a group of materials
which are being investigated. For this, we looked into univers-
ality of pellet size and pellet porosity across four different
materials and showed that size and porosity of adsorbent
pellets for all of these materials fall within a more or less
similar range of values on the Pareto fronts, which can be used
to guide the search for optimal process conditions. We showed
that the Pareto fronts, resulting from optimization of ten
decision variables (including size and porosity of pellets),
reflect some trade-offs between the tendency of the process to
search for better mass-transfer conditions (higher porosity,
smaller pellet size) and the counteracting factors associated
with the pressure drop and cycle frequency. We proposed that
this trade-offs can be effectively captured in a dimensionless
parameter (i.e. parameter a) related to the diffusional- and
convection-time constants. Although the current investigation

is only limited to four materials, the preliminary results are
promising. The proposed dimensionless parameter tends to
take a narrow range of values on the Pareto fronts for all four
materials considered in this study. Considering effects of
several competing mechanisms including mass-transfer, con-
vective flow rate and pressure drop are simultaneously realized
through this dimensionless parameter, it can be used to more
efficiently search for the location of the Pareto fronts in high-
throughput materials screening in which materials are ranked
based on the position of their energy-productivity trade-off
curves. Our study also highlights importance of new investiga-
tions focused on decoding the complex relationships between
various process variables in expediting process optimization
and materials screening. This branch of study can particularly
benefit from the fast evolving machine learning techniques.

In this article, we discussed that the reason behind univers-
ality of our dimensionless parameter a is the special behaviour
of the 4-step VSA-LPP cycle in which process optimizer drives
the system to operate with relatively low working capacities
along somewhat linear portions of the adsorption isotherm. If
working capacity of the process was to be improved, more
complex cycle configurations would be required which would
be associated with higher capital costs. To date, the community
working on high-throughput screening of porous materials has
been predominantly focused on the intrinsic physiochemical
properties of the adsorbents, such as adsorption isotherms,
selectivity, Henry’s constant, etc. However, our investigations
show that the actual process, its efficiency and productivity
depend on a multitude of factors, with only a subset of them
being related to the properties of the materials. This very
important observation leads to a rather philosophical conclu-
sion in which we can no longer state superiority of one material
over the other solely based on its intrinsic characteristics, but
we can only attempt to find promising materials for a particular
separation process, in a particular process configuration, and
under very well-defined operating assumptions.
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