Catalysis Science & **Technology**

CORRECTION

View Article Online

Cite this: Catal. Sci. Technol., 2020, **10**, 7067

Correction: Activity enhancement of Pt/MnO_x catalyst by novel β-MnO₂ for low-temperature CO oxidation: study of the CO-O2 competitive adsorption and active oxygen species

Ninggiang Zhang, a Lingcong Li, *a Rui Wu, a Liyun Song, a Lirong Zheng, c Guizhen Zhang^a and Hong He*ab

DOI: 10.1039/d0cy90095h

rsc.li/catalysis

Correction for 'Activity enhancement of Pt/MnO₂ catalyst by novel β-MnO₂ for low-temperature CO oxidation: study of the CO-O2 competitive adsorption and active oxygen species' by Ningqiang Zhang et al., Catal. Sci. Technol., 2019, 9, 347-354, DOI: 10.1039/C8CY01879K.

The authors regret an error in Fig. 2B in the original article. The X-ray diffraction data of Pt/MnO_x-COM was accidentally replaced with the data of the Pt/MnO_x sample. The correct patterns are shown below. The corresponding Rietveld refinement for these samples can be found in the ESI.

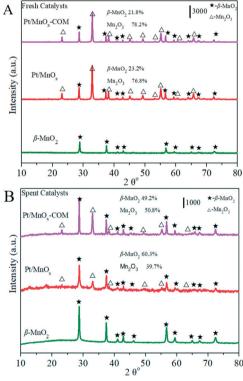


Fig. 2 Powder X-ray diffraction patterns of fresh and spent catalysts.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, P. R. China. E-mail: hehong@bjut.edu.cn

^b Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, P. R. China

^c Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China