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Recent advances and prospects of inkjet printing
in heterogeneous catalysis
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Recent advances in inkjet printing technology for applications relating to heterogeneous catalysis are

presented. Catalysts lie at the heart of most chemical reactions where raw materials are converted to

value-added products. Therefore, synthesis and immobilization of active catalysts in the reactor are of great

importance. Inkjet printing is an additive manufacturing technology introduced recently as a useful method
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for the fabrication and application of catalysts as a class of functional materials. Inkjet printing provides
special features which can be tailored to the design of high-efficient catalytic processes. This review
presents an overview of the technology along with developments and challenges associated with the

combination of inkjet printing and heterogeneous catalysis, such as ink preparation, thin-film properties

rsc.li/catalysis and real-life applications.

1 Introduction

Heterogeneous catalysis plays a key role in the production of
about 90% of chemicals worldwide." Because of its
significant impact, researchers in chemical and energy areas,
have invested much effort in the development of this field.”
In heterogeneous catalysis, reactions usually occur at the
solid catalyst-fluid interface, and the activity depends on the
interactions of reactants and the catalyst surface. Thus, the
catalyst surface morphology is as important as the surface
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chemical composition.® A great variety of reactors have been
developed to immobilize solid catalysts efficiently for
catalytic reactions, such as conventional fixed-bed and
fluidized-bed reactors or, more recently, using monolithic
reactors, membrane reactors and microreactors.*® For
example, in microreactors, higher surface-to-volume ratio due
to small length-scale would lead to heat and mass transfer
enhancement. Therefore, this type of reactor is utilized for
various reaction types and in-depth kinetic studies.®’

In heterogeneous catalysis, the solid catalyst is normally
deposited onto the reactor channel walls for various reaction
conditions. Different deposition techniques have been
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integrated into reactor and microreactor technologies for
efficient and uniform catalyst immobilization.®® Dip-coating
is often used for the layered deposition of catalyst by
immersion and withdrawal of the substrate into the catalyst-
based solution.'® This method can be used for coating of
packed-bed pellets or monolithic reactors which are widely
used as automotive catalytic converters."' Doctor blade and
spin-coating are generally used for the coating of flat
substrates.">"® Despite the fast processing and ease of
operation, these methods produce large waste of materials.™*
Furthermore, they are not suitable for patterned deposition
and for producing ultra-thin films."”> Vacuum deposition
refers to a class of deposition methods used to coat materials
atom-by-atom or molecule-by-molecule onto the substrate."®
Vacuum deposition methods are operated under low
pressures (i.e., vacuum) and can create ultra-thin films."”
Physical and chemical vapour deposition methods have been
recently used for catalyst deposition."®° In spite of the
potential advantages provided by vacuum deposition
methods, such as monitoring of film thickness and purity,
they involve expensive multi-step operations at elevated
temperatures.>*

Inkjet printing is a fast-growing technology for deposition

of functional materials on various substrates in
electronics,””*> pharmaceutical®*** and micro-engineering
25-27

industries. Inkjet printing is a non-contact deposition
method which takes an image or pattern data from a
computer and applies it onto a substrate using ink in the
form of microdroplets.*® This method has a high-precision
control over homogenous deposition of picolitre-sized
droplets and can be operated at ambient temperature and
pressure.”* Moreover, complex patterns can be easily
produced by using inkjet printing without the use of physical
masks.’® Therefore, it offers cost-effective rapid mass
production of various materials from thermosensitive
substances®™*> to metal oxides**> with minimal waste of
materials. Table 1 presents a summary of different deposition
techniques in comparison to inkjet printing.

Due to the advantages of inkjet printing and the large
number of applications, many research groups are active in
developing this technique in different fields of technology.
Moreover, several review articles have been published
focusing on different aspects of the technology such as: (i)
inkjet printing of metal oxide-based precursors,®®?” (ii) ink
formulation of metal nanoparticles and metal-organic
compounds for printed electronics,*® (iii) development of

Table 1 Comparison of typical deposition technologies
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printing technologies and
fabrication of flexible electronics,
and interaction with the substrate® etc.

The main goal of this work is to summarize and introduce
various applications and perspectives associated with the
inkjet printing method for designing novel catalytic systems.
There have been sporadic reports on the applications of
inkjet printing in catalysis.’”*" Liu et al®”
applications of inkjet printing for photo- and electro-catalysts
as a family of functional metal oxides. Here, there will be
more focus on the synthesis of catalyst materials by inkjet
printing for chemical and photochemical reactions.
Furthermore, the contribution of this technique towards
heterogeneous catalysis, future outlooks as well as recent
research developments are described.

sintering
21,39

approaches for
(vi) ink drop impact

reviewed some

2 Inkjet printing: methodology

The first modern movable printing press was developed by J.
Gutenberg in the 15th century.*> In this printing machine
and later conventional derivatives such as offset printing and
screen printing, the pressure is applied on the substrate
during the ink transfer, which is known as contact-printing.*’
In recent printing technologies, ink is transferred to the
substrate without applying physical contact between the ink
dispenser and the substrate, which is referred to as non-
contact-printing.** In non-contact printing, the substrate is
only in contact with the ink containing the printing material,
and there is no mechanical pressure on the substrate, which
removes the risks of damaging the pre-patterned substrate or
of causing contamination. Furthermore, non-contact printing
allows for patterned printing and multilayered deposition
with high accuracy, resolution and speed.*!

Inkjet printing as a non-contact method emerged for
direct patterned deposition of solution-based materials. In
this method, ink is delivered to the nozzle-head from the ink
reservoir and ejected in the form of microdroplets. The
released ink droplets hit the substrate at specific rates to
perform the printing.>® The printed patterns can be created
by controlled displacement of either the substrate or the
print-head. Then, the printed ink goes through the
evaporation and solidification process. Usually, the printed
substrate is post-processed at high temperatures in form of
thermal annealing, sintering or calcination to remove
solvents, increase the adhesion and modify the material
structure.®

Spin/dip-coating Lithography Vapour deposition Inkjet printing
Material waste High High Low Low
Working area Medium Small Small Large
Patterning capability Low Medium Low High
Temperature Low High High Low
Mask required Yes Yes Yes No
Process Simple Multi-step Multi-step Simple
Cost Low High High Low
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2.1 Inkjet printing modes

Inkjet printers have two main operational modes: continuous
and drop-on-demand (DOD). In continuous inkjet printing,
the ink fluid is released from the nozzle in the form of a
liquid jet. The liquid jet undergoes the surface tension-driven
jet break-up, which is known as Plateau-Rayleigh instability,
and breaks up into droplets.*” Continuous inkjet printing is
normally used in textile printing and labelling due to high-
speed operation.*” Drop-on-demand (DOD) inkjet printing is
the method of choice, in most cases, alongside the
continuous mode due to higher precision and smaller drop
size and flexibility of ink formulations.*®

In DOD mode, two types of actuators are widely used:
piezoelectric actuators and thermal actuators.”” In
piezoelectric DOD printing, ink droplets are formed and
released by deformation of the piezoelectric actuator induced
by an electric field.*® By applying a certain electric potential
to the piezoelectric transducer, a pressure wave is created
due to a small volume change. The pressure wave moves
towards the nozzle and drives out the ink droplet as shown
in Fig. 1a. In a thermal drop-on-demand inkjet printer, the
ink solution is heated using a Joule heating element placed
near the nozzle. A bubble of ink vapour is formed, which
routs out an ink microdroplet. In other words, the thermal
DOD process uses the evaporation of a tiny volume of ink to
create the ink droplet and jetting driving force.* Therefore,
the ink selected for this method should have volatile
components such as water or short-chain alcohols. On the
other hand, piezoelectric DOD printing is suitable for a wide
variety of ink solvents since the ink drop formation and
release are based on the ink volume change caused by the
fluctuation of the piezoelectric membrane. Furthermore, the
rate and size of jetted droplets can be adjusted precisely by
regulating the working voltage without the need for
temperature alteration.>'*?

2.2 Ink properties and printing conditions

In the inkjet printing technology, the ink solution should be
carefully formulated to have specific properties such as
particle size distribution, density, surface tension and
viscosity.”” In addition to the ink characterization, the
printing condition needs to be regulated to yield stable
droplets. In other words, ink solutions should be prepared

Vapor bubble

Piezoelectric ) Heater:
actuator /

Nozzle

Droplet Substrate

(a) (b)

Fig. 1 Schematic illustration of drop-on-demand inkjet printing
process: (a) piezoelectric DOD mode and (b) thermal DOD mode.
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for a particular printing condition both in terms of stability,
and in terms of rheological and interfacial properties.
Nanoparticles dispersed in the ink solutions tend to form
secondary micron-sized agglomerates leading to particle
sedimentation. Moreover, rapid evaporation of the solvent at
the nozzle and large particle agglomerates may cause nozzle
clogging.®® Therefore, it is preferable to stabilize the inkjet
solution using dispersing agents, and use particles with
average size as small as 1/50th of the nozzle diameter."®""
The ink viscosity and surface tension also strongly influence
the dynamics of microfluidic droplets and must be carefully
controlled and/or optimized. The suggested range for
viscosity in DOD inkjet printers is 1-25 mPa s.°> Ink
solutions with higher viscosity cannot release smoothly from
the nozzle. At the same time, low viscous inks form unstable
droplets during the printing process resulting in the
formation of satellite micro drops. The suggested surface
tension range in DOD mode is 20-50 mN m™".*° Higher
surface tensions hinder the drop formation process and
lower surface tensions would lead to air ingestion and
dripping of droplets towards the substrate.’

Although surface tension and viscosity are the main
physical properties that determine the drop formation and
size, the jetting capability of the formulated ink also depends
on the nozzle size and the printing conditions. These
parametric quantities are merged into the Reynolds number

and the Weber number, representing the ink fluidic
properties:**>°
d
Re = 7%, (1)
n
2d
We:pvy . )

Here, y, p and # are the surface tension, density and
dynamic viscosity of the fluid, respectively, d is the nozzle
size, and v is the fluid drop velocity. These dimensionless
values are usually combined into a single parameter, the
inverse Ohnesorge number:

_Re__ vord @
We_ n '

which is often used to describe the inkjet printing condition.
As given in eqn (3), the Ohnesorge number does not depend
on the fluid velocity, v, therefore Oh™ only accounts for the
physical properties of the fluid and the characteristic
length.”® According to the literature, ink droplets are
printable in a DOD inkjet printer when 1 < Z < 10.°° Fig. 2
displays the defined regions for the printability and drop
formation in the We vs. Re chart. In the high viscous region
(Z < 1), the fluid cannot turn into droplets, and in the low
viscous region, inkjet printing would result into the
generation of satellite droplets (Z > 10).>” However, the
parameter Oh™" gives only an approximate quantification of
the ink printability. Stow and Hadfield®® reported that

Z= Oh'l=

This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Ink printability region-based the Reynolds and Weber numbers.
Reproduced from J. Eur. Ceram. Soc., vol. 31, B. Derby, Inkjet printing
ceramics: from drops to solid, pp. 2543-2550, Copyright (2011), with
permission from Elsevier.®®

splashing occurs when the droplet falls onto a surface at a
speed above a critical limit, or We'*Re’’* > 50. Duineveld
et al.>® suggested a minimum value for Weber number, We =
4, above which there is enough kinetic energy in the ink flow
to overcome the surface tension and form smaller diameter
droplets. These limiting thresholds attempt to define regions
where drop formation and DOD inkjet printing are
achievable as shown in Fig. 2. Furthermore, they can predict
the printability of the newly formulated inks. There exist
comprehensive textbooks and reviews to understand the
fundamentals of inkjet ink preparation which would be
helpful for further studies.’”**"%*

3 Catalyst-based ink development

Ink formulation is a key step in the inkjet printing
technology, since the prepared ink should maintain specific
properties to meet the printing requirements. The inkjet inks
for DOD mode usually contain functional species precursor,
carrier solvent and additives. The precursor for catalyst-based
inks is composed of metal oxide particles, metal salts or
metal-based solutions. To date, there are limited reports on
the ink development of inorganic materials due to
preparation and storage challenges. This
summarize the ink formulation requirements and specific
approaches to use various components for catalyst-based ink
preparation.

section will

3.1 Prerequisites

While the basic principles of inkjet printing are rather
simple, the printer components such as the printhead and
nozzles are complex structures which can operate reliably
only with ink fluids with specific properties.®® Therefore,
some points need to be addressed in the design of catalyst-
based inks:

i) The ink formulation should be compatible with the
printer components. For example, the carrier solvent should
not damage the nozzles and the ink delivery system.

This journal is © The Royal Society of Chemistry 2020
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if) The ink should have viscosity and surface tension
within specific ranges to operate in the inkjet printer, and
these properties may differ in different printing systems.

iii) Stability is key in designing inks since the
agglomeration of ink components would cause nozzle
clogging and blockage of ink delivery system thereby limiting
the ink lifetime.

iv) The prepared ink should have effective adhesion to the
substrate with sufficient hardness after the printing process.

3.2 Carrier solvent

The carrier solvent constitutes the bulk of the ink solution,
which mainly determines the ink properties such as viscosity,
surface tension, stability, density and evaporation rate. It also
dissolves and disperses the metal species and other additive
components. The carrier solvents can be categorized into
aqueous (or water-based) and non-aqueous solvents.

Aqueous inks consist of functional species, -catalyst
nanoparticles (or metal precursors in our case), and some
additives dissolved/dispersed in water. Aqueous inks usually
have lower viscosity and evaporation rate, and higher surface
tension compared to their non-aqueous counterparts.
However, these properties can be tuned to meet the specific
inkjet printer requirements by using co-solvents such as
alcohols, glycols and surfactants.®* Water is often used in the
printing industry as the carrier solvent in aqueous inks due
to its safety and availability; however, water-based inks have
slow drying rates on non-porous substrates such as glass and
steel.®® In addition, they exhibit relatively low stability for
dispersed metal nanoparticles.®®

Solvent-based inks use organic solvents such as short-
chain alcohols (e.g., ethanol, isopropanol, glycols) and
toluene as carrier fluid. This class of inks is usually selected
to improve the ink stability, lower the surface tension, or
increase the viscosity and the evaporation rate.”” One factor
in the choice of solvents is the optimum drying rate. Using
slow-drying solvents would increase the drying time and
energy required. On the other hand, volatile solvents would
reduce the solvent removal time and ease the multilayer
deposition process; however, fast solvent evaporation at the
nozzle may cause clogging. One approach is to use a mixture
of solvents to optimize the evaporation rate.®® The solvent
interaction with the substrate should also be considered as it
affects adhesion and print quality. By choosing a suitable
solvent, the formulated inks can be deposited onto various
substrates with enhanced print quality and uniformity.

3.3 Functional species precursor

Catalyst species used as functional precursors can appear in
the form of either colloidal catalyst nanoparticles or metal-
based solutions in the ink medium. The colloidal
nanoparticles in the solution could be the result of direct
synthesis (e.g., sol-gel method), or could be added and
dispersed as dry nanopowders.

Catal. Sci. Technol,, 2020, 10, 3140-3159 | 3143
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3.3.1 Catalyst-based solutions. In this approach, catalyst-
based compounds such as metal salts are dissolved in the
carrier solvent to produce stable ink solutions.*” This process
is relatively simple, and the formulated inks can be used
continuously in the inkjet printing system without the risk of
nozzle blockage. Furthermore, inkjet printing is a part of the
synthesis process, and printed layers will be converted to
metal oxides by heat-treatments or post-reactions. In other
words, catalyst materials would be synthesized and
immobilized through a simple one-stage process.
Furthermore, the growth of metal oxides on the substrate
may produce various material structures.

Parkinson et al.®”~® developed libraries of electrocatalysts
(e.g., Cr, Fe, Cu, Pt, Ru, Ir) for oxygen evolution reaction via
combinatorial studies using the inkjet printing technology.
Metal salt precursors (e.g., metal nitrates and chlorides) were
added to the ink solutions containing water and glycols. The
formulated inks were then printed onto the substrate using a
lab-scale inkjet printer. The printed layers were converted to
mixed metal oxides under air pyrolysis process. After kinetic
studies, the optimised electrocatalysts were obtained and
further characterized.

Hu et al.”® used the inkjet printing method for the direct
synthesis and fabrication of platinum catalysts by using a
chloroplatinic ~ solution as catalyst precursor. The
chloroplatinic acid solution was added to water/ethylene
glycol as a carrier solvent and then sent to a commercial
microdispensing system. After printing, the coated substrates
were placed in a furnace under methanol flow at 250 °C to
produce the platinum catalyst.

3.3.2 Colloidal dispersion of catalyst nanoparticles. The
catalyst nanoparticles can be dispersed in a colloidal ink
solution and printed onto the substrate using inkjet printing.
In this case, the colloidal dispersion should have both a high
stability and a narrow particle size distribution; otherwise,
the small particles would create agglomerates which block
the nozzle microchannels. Therefore, catalyst powders should
be prepared as fine nanoparticles with narrow
distribution via chemical and/or mechanical techniques such
as sol-gel chemistry,">”"”> hydrothermal method”®’* and
ball milling.”””® A general approach to provide ink stability
and prevent particle agglomeration is using additives such as
surfactants, copolymers and dilute acid solutions. In these
ink formulas, a mixture of water and alcohols such as
ethylene glycol are used as a solvent to disperse the
nanoparticles and control the viscosity and the surface
tension. This ensures that the inks are jettable and can be
released from the nozzle to create homogeneous print
layers.*’

The nanoparticle concentration in the ink formulation can
be increased to some extent; however, this could lead to
sedimentation and viscosity increase at high concentrations
due to particle-particle interactions.®® The relation between
the ink viscosity and dispersion concentration may be
described according to the hard-sphere model of viscosity
developed by Krieger and Dougherty:””

size
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In eqn (4), ¢ is the particle volume fraction and ¢, is the
maximum packing fraction which is 0.74, 0.64 and 0.6 for
monodispersed spheres, dense random packing and loose
random packing, respectively.”®”° [5] is the intrinsic viscosity
which is 2.5 for hard spheres, while the relative viscosity, #x,
shows the ratio of dispersion fluid viscosity to the viscosity of
the pure fluid.”®®°

Gebauer et al.”” studied the dispersion of various metal
oxide powders (CuO, ZnO, SnO, and In,O;) prepared by
chemical vapour synthesis. The nanoparticles were dispersed
in ethylene glycol/water (xgg = 0.865) mixture as ink medium.
A dilute solution of nitric acid was added to enhance
stability. The stability measurements of several prepared inks
as well as measured viscosities at different volume fractions
(¢) are shown in Fig. 3.

Dittmeyer et al®' developed a procedure for inkjet
printing of AlLO; nanoparticles in stainless steel
microchannels. The inkjet inks were prepared by dispersing
alumina nanoparticles in different mixtures of water/ethylene
glycol, and ink properties were optimized by changing the
solvent ratios and adding polyethylene glycol as a copolymer.
The ink formula containing only water showed
agglomerations resulting into sedimentation. However, the
ink formulations based on water/ethylene glycol provided
good stability and yielded stable droplets during the inkjet
printing process.

The colloidal ink solution can also be obtained directly
from the synthesis product during the catalyst preparation.
The synthesis of metal oxides normally starts from a metal
precursor (e.g., metal chlorides or alkoxides) dissolved in
water or organic solvents. The metal precursor reacts with a
proper reagent (e.g., water, acid/base solutions or complexing
ligands) wunder optimal temperature and pressure
conditions.?” The produced colloidal nanoparticles are then
printed onto the substrate, followed by drying and
calcination process. The formulated inks based on synthesis
medium exhibit higher stability compared to the inks based
on dry nanopowders.*®”*

Some studies used hydrothermal”™’* and sol-gel
methods®™® for direct formulation of stable colloidal inks
through hydrolysis/condensation reactions. Dzik et al®"%
studied the synthesis and inkjet printing of photoactive TiO,
colloidal inks prepared by sol-gel chemistry on glass substrates.
The TiO, sol was prepared using titanium isopropoxide (TTIP)
in a controlled hydrolysis reaction with water. TTIP was added
dropwise to the xylene/Triton X-102 (ref. 84) or ethanol/acetyl-
acetone® solutions to control the particle growth and
hydrolysis/condensation process. Afterwards, water was added
gradually to the ink solution. The as-prepared sol was stable for
a long time and directly used in the inkjet printer. The printed
substrates were dried and gelled followed by calcination at 450
°C for 4 h to obtain TiO, layers.

l.66
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(a) Stability measurements of CuO (4 wt%), In,O3 (1 wt%) and SnO, (2 wt%) based ink solutions containing ethylene glycol (xgg = 0.865), (b)

measured viscosities for different concentrations of SnO, (2, 4, 6 wt%), In203 (1 wt%) and ZnO (4 wt%), and ¢, = 0.6 line calculated according to
Krieger-Dougherty model.”” Reproduced from J. Colloid Interface Sci., vol. 526, J. S. Gebauer, V. Mackert, S. Ognjanovi¢, M. Winterer, Tailoring
metal oxide nanoparticle dispersions for inkjet printing, pp. 400-409, Copyright (2018), with permission from Elsevier.®®

Maleki and Bertola®® prepared two series of titanium-
based inks: 1) TiO, dry powders dispersed in ethylene glycol
in weak acidic conditions and 2) TiO, dispersion product
from hydrolysis of TiCl, with water in ethylene glycol. Both
solutions were successfully printed onto polypropylene
substrates in a microfluidic reactor for photocatalytic studies.
The TiO, ink based on hydrolysis synthesis showed higher
stability and lower particle size distribution.

3.4 Additives

Additives are ingredients such as surfactants, co-polymers,
dispersing agents and acids/bases added to the ink solutions
in small amounts for different purposes. Surfactants such as
Abesone and Triton X-100 act as dispersing agents and
reduce the surface tension of metal oxide colloidal
solutions.'®”'*"  Co-polymer macromolecules such as
polyethylene glycol (PEG) are used to increase the layer
uniformity and prevent cracking during the post thermal
treatments.'®” They also hinder the coffee ring effect caused
by the capillary flow of particles from the droplet centre to
the evaporation interface.'® The use of an acidic medium
(e.g., HCI, HNO3) maintains the pH and generates a repulsive
charge on the particle surface leading to stabilization of
dispersed metal oxide nanoparticles.*®®® Recent reports on
the ink formulation of metal oxides in different inkjet
printing systems for catalysis applications are summarized in
Table 2. Despite the efforts to utilize inkjet printing
technology for inorganic materials, synthesis and
development of stable jettable inks still remain the principal
challenge. Therefore, further studies are required in order to
make progress in this area.

4 Catalyst layer properties

The printed metal-oxide layers should have specific
properties such as porosity, surface activity and mechanical

This journal is © The Royal Society of Chemistry 2020

strength to be used effectively in a catalytic system. Some of
these properties are discussed and reviewed in this section.

4.1 Porosity

Catalytic reactions normally take place on the catalyst
surface. Hence, it is desirable to design catalysts with high
surface area to volume ratios to reduce the reactor volume
and the amount of catalyst used. Catalyst materials with high
specific surface area usually exist as porous structures with
narrow pores. Inkjet printing of porous catalysts onto the
substrate would be favourable for catalytic reactions.
However, the catalyst structure should be optimized since
high surface area materials with too narrow pores lead to
internal resistance to the mass transfer of diffused molecules
inside the pores, thereby reducing the reaction rate and the
reactor performance.® Porosity can be formed all over the
printed layer either by inkjet printing of porous
nanoparticles, or during the inkjet synthesis and post-
treatment process.®" %1

Several studies on the inkjet printing of porous catalysts
have been reported in the literature. For instance, porous
alumina  nanoparticles were printed precisely in
microchannels as a catalyst support layer.”” Rh/Al,O; catalyst
was then prepared by impregnation of rhodium nitrate, and
BET surface area of 79.7 m> g ' was obtained after
calcination at 600 °C. Liu et al®® used the inkjet printing
assisted cooperative-assembly technique for the production
of mesoporous mixed oxide catalysts. The synthesis
procedure and calcination led to the formation of
mesoporous structures with high surface area and tunable
pore size.

Chang et a reported a simple preparation
approach to deposit porous, transparent tin oxide films. Tin
tetrachloride (SnCl,) was selected as precursor dissolved in
acetonitrile. The formulated ink was deposited via a thermal
inkjet printer. As shown in Fig. 4, the SnO, porous layer was

1104 ink
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(a) (b)

Fig. 4 Top view and cross-sectional SEM images of as-printed SnCl,
precursor film before (a and b) and after annealing (c and d) in air at
500 °C for 15 min. Reprinted with permission from Electrochem. Solid-
State Lett., 10, K51-K54 (2007). Copyright 2007, The Electrochemical
Society. 14

shaped after heat treatment at 500 °C for 15 minutes. The
treated layer exhibited an increase in thickness with a
mesoporous structure from 5 nm pores near to the surface to
20 nm at deeper zones. The formation of a porous structure
may be caused by solvent evaporation, water absorption,
hydrolysis reaction and gas removal. The SiCl, precursor
reacts with absorbed water and yields SnO, and HCI gas
through the hydrolysis reaction: SnCl, + 2H,0O — SnO, +
4HCI(g) 1. The HCI gas bubbles are generated within the film
creating the nanopores and finally removed through
diffusion. The remains constitute the tin oxide porous thin
film.

Martinez et al.”® fabricated Mg(OH), films on aluminium
foils by inkjet printing method for photocatalytic reaction
studies. The ink was formulated from magnesium acetate
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dissolved in NH,OH as precursor, cured by formic acid.
Magnesium inks were printed onto the aluminium foil and
treated at 200 °C for 5 h. Printing was continued to deposit
various layers of Mg(OH), denoted as AIMgX, where X is the
number of layers. Their study showed that the morphology of
Mg(OH), layers changed from the smooth surface (X = 1-10)
to flake-like particles (X = 20) to porous spherical structures
(X = 30), as shown in Fig. 5. Similarly, the specific surface
area was calculated to be 4.5, 12.1, 44.3 and 50.2 m* g for
AlMgX layers, where X = 1, 10, 20 and 30, respectively.
Accordingly, the most photoactive sample (AIMg30) was made
of porous particles with high surface area and roughness.
Thus, the formation of porous structures could increase the
gas-liquid-solid interactions in the catalyst layers and
enhance the photocatalyst performance.”

4.2 Surface activity

In heterogeneous catalysis, the reaction is literally catalyzed
at active sites on the catalyst surface. An active site is an
ensemble of atoms or crystal planes which determines the
catalyst activity for the specific reaction.’® Aside from that,
most of the catalyst surface is catalytically inactive.
Therefore, the formation of catalytic active sites should be
considered in the ink development stage and deposition of
catalytic films via inkjet printing technology. Research on
the catalyst active sites is technically challenging and is
normally performed by the study of catalytic activity and
catalyst material characterizations such as diffraction,
spectroscopic methods and chemical adsorption/desorption
techniques.’®'®” The synthesis approach (e.g., choice of
precursors and ligands, pH condition, process temperature
and curing time) and post-synthesis treatments such as

UANL IIC 20KV X10,000 1pm UANL lIc

UANL IICS& 20kV  X2,000 10um UANL I

Fig. 5 SEM images of AIMgX layers: X = 0 (a), 1 (b), 3 (c), 5 (d), 10 (e), 20 (f), 30 (g and h) and 40 (i). Reprinted with permission from Top. Catal., 15

(2018). Copyright 2018 Springer Nature.*®

This journal is © The Royal Society of Chemistry 2020
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calcination or sintering play key roles in creating active sites
on the catalyst surface.

Case in point, Demel et al®” fabricated ZnO thin films
from synthesized ZnO nanosheets on the substrate using dip-
coating and inkjet printing methods. ZnO nanosheets were
prepared from Zn(OH), intercalated with dodecyl sulfate
suspended in BuOH. Nanosheets were then dispersed in
CHCl; and BuOH solutions and deposited by using dip-
coating and inkjet printing, respectively. The ZnO thin films
showed high photocatalytic activity due to the preferentially
oriented high-energy {001} plane identified by XRD patterns.
They concluded that the large surface area of the ZnO
nanosheet {001} planes can be used for catalytic applications.
Furthermore, the deposition method affected the film
morphology differently. The inkjet-printed layers were rough
and porous with the void volume of 60-70%, while the dip-
coated layers had relatively smooth and non-porous
morphology. The synthesis and deposition process of ZnO
nanosheets is illustrated schematically in Fig. 6.

4.3 Adhesion

A thin-film is normally a fragile structure, and its mechanical
properties depend on the underlying substrate and the
adhesion between them. Furthermore, the formation and the
morphology of thin-films rely on the adhesive forces between
the depositing layer and the substrate surface.'”® In
heterogeneous catalysis, the catalyst materials normally work
under dynamic reaction conditions. The fluid (ie., gas and
liquid) flows through the catalyst zone at various velocities
under different temperatures and pressures during the
reaction cycle. Therefore, the stability of catalyst thin-film
should be satisfactory for the operating environment. Thus,
the adhesion properties of deposited layers should be
considered in the inkjet printing of catalyst materials to
deposit robust catalyst thin-films. In addition, adhesion
affects the printed layer quality and uniformity as well as its
morphology. Generally, the free-standing metal oxide
nanoparticles or as-prepared catalyst layers have limited
adhesion to the substrate and catalyst immobilization

OH

ERRRe pieRRRRe L

Dip-coating 7

Smooth, transparent films
UV degradation

Inkjet /
Colloidal dispersion printing
of few-layer ZnO
| e e |

nanosheets

Facet enhanced
> photocatalytic

Porous, transparentfilms activity

Fig. 6 Schematic illustration of deposition of active ZnO nanosheets
via dip-coating and inkjet printing for UV degradation reaction.
Reprinted with permission from Langmuir. 30, 380-386 (2014).
Copyright 2014 American Chemical Society.®?
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requires to be improved by heat treatment or modification of
inkjet ink formulation.'>'*® There is no comprehensive
quantitative approach to measure adhesion comparatively,
and different tests sometimes show contradictory results.'**
One conventional technique is using the scratch test for thin-
film hardness examination.

Cerna et al.” used a hydrothermal synthesis route to
prepare titanium dioxide colloidal dispersions in an acidic
environment. The dispersion ink solution was printed onto a
soda-lime glass substrate, and the deposited films were
heated at 500 °C to sinter the TiO, particles and enhance
their adhesion to the glass substrate. They used the “pencil
hardness test” to study the hardness of TiO, thin-films based
on the standard ISO 15184.""* Pencils with different hardness
were tested using a mechanical device. Accordingly, the TiO,
films were resistant to hardness B while some defects were
observed in case of pencil with hardness HB (Fig. 7).

The deposited layer adhesion can also be examined during
long-term reaction runs or harsh simulated environments.
Dittmeyer et al®® used a DOD mode to print alumina
nanoparticles in stainless steel microchannels. After the drying
and sintering process, the adhesion test was performed in an
ultrasonic bath at 25 kHz for 10 min. The coated microchannels
were immersed in the ultrasonic bath and the weight loss was
monitored. The thin-layers showed less than 10% weight loss,
which is satisfactory for typical gas-phase catalytic reactions.""?
In another study,”” they printed GaPd, catalyst into stainless
steel microchannels, and the adhesion was examined with
sticking tape and dropping from a 30 cm height. Pressurized air
was also used to test the layer adhesion. The deposited layers
passed all the tests and were stable during the experiments
when exposed to gas flow inside the channels. In a recent report,
the stability of TiO, nanolayers printed onto polypropylene
substrates was studied in a microreactor for the
photodegradation of methylene blue.*® The reaction was
conducted for a 48 h continuous run, and almost constant
conversion rates were observed. Thus, the printed titania layer
was stable under the reaction condition: flow rate = 1 mL h™%;
Cmpo (methylene blue concentration in water) = 4 ppm and
room temperature.

The ink formulation and the substrate surface properties
can also influence the thin-film adhesion and the printed
layer properties. The behaviour of ink droplets on the
substrate during printing is related to its wetting properties.
Wetting shows the affinity of a liquid to maintain contact
with a solid substrate caused by intermolecular
interactions."™* Ink droplets hit the substrate and go through
a dynamic spreading phase over the surface initially driven
by kinetic energy (inertial spreading), and then by the wetting
of ink on the substrate (capillary spreading and/or recoil).
Finally, ink droplets reach thermodynamic equilibrium with
the surface and the environment."*® All of these stages are
complex and strongly related to the nature of ink, surface
and environmental conditions. Among these stages,
understanding the equilibrium phase is critical to describe
the print quality and the layer adhesion. In addition,

This journal is © The Royal Society of Chemistry 2020
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Fig. 7 TiO, thin-films after pencil hardness test: HB pencil hardness test (a) and B pencil hardness test (b). Reprinted from Appl. Catal., B., vol.
138-139, M. Cerna, M. Vesely, P. Dzik, C. Guillard, E. Puzenat, M. Lepi¢ova, Fabrication, characterization and photocatalytic activity of TiO, layers
prepared by inkjet printing of stabilized nanocrystalline suspensions, pp. 84-94, Copyright (2013), with permission from Elsevier.”*

developing methods for the measurement of wettability of
solid substrates is essential. The droplet equilibrium state on
the substrate can be characterized by the contact angle at the
liquid-gas-solid interface, which is quantified theoretically
by Young equation:'"®

7sG ~ Vs~ YuG €08 Oc =0 (5)

Here, the equilibrium contact angle is denoted by 6, and
¥sGs ys. and yg are the solid-gas, the solid-liquid and the
liquid—-gas interfacial energies, respectively. The contact
angle, which is measured as the angle between the tangent to
the solid-liquid interface and the tangent to the liquid-gas
interface (Fig. 8), quantifies the wettability of a surface.

Practically, the surface wettability and print quality could
be enhanced by changing the surface energy (i.e., solid-gas
interfacial energy) or the ink surface tension (i.e., liquid-gas
interfacial energy). Surface modification is particularly
necessary for materials with low surface energies such as
polymers. Normally, good wetting occurs for the inks with
surface tension (y.g) lower than that of the substrate (ysg)-
Polymeric substrates have relatively inert surfaces with low
surface energies (ysg = 20-50 mN m™'). Therefore, using
aqueous-based inks (y;g for H,O = 72 mN at2s °C) printed
onto untreated polymeric substrates may lead to poor
wetting.*® In these cases, wettability can be increased by
using non-aqueous-based inks with lower surface tensions
such as alcohols or improving the substrate surface energy
via surface treatment techniques such as plasma-assisted
treatments and chemical methods.''” Furthermore, surface
treatment methods would activate the substrate and enhance

Fig. 8 Schematic illustration of a liquid droplet on a substrate
showing the drop contact angle based on Young equation.

This journal is © The Royal Society of Chemistry 2020

bonding between the substrate and the functional groups
within the ink solution. In order to obtain uniform and
defect-free printed layers, substrates need to be cleaned
thoroughly before surface treatment and printing, using
water/alcohols rinse and sonication.

Busato et al®® deposited patterned palladium catalyst
layers onto flexible polyimide film for electroless copper
plating by using the inkjet printing method. Prior to printing,
polyimide films were treated by wet-chemical method to
create a hydrophilic surface receptive to palladium(u) ions.
The polyimide film was immersed in 10 M KOH at ambient
temperature for 48-72 h then washed with distilled water
and dried. The treated films showed about 1.7% weight loss
(calculated by gravimetric method) during the surface
treatment, which can be ascribed to the oxidative removal
from the polyimide surface. Moreover, the contact angle of
water droplets was measured to be 21-52° and 66-74° for
treated and untreated films, respectively, showing an increase
in surface wettability.

Plasma treatment has been used to activate polymeric
substrates for inkjet printing of functional metal oxides.**'®
Surface treatment methods such as UV-curable coatings,""’
corona discharge,’® and flame treatment'*" are also practical
alternatives for surface modification of substrates before printing.
Furthermore, adhesion promoters such as silane-based chemicals
can be used to functionalize dispersed nanoparticles* or the
substrate for enhancing the wetting properties and increasing the
affinity of the printed layer to the surface.'*

Surface treatment also affects the deposited drop size and
printing conditions. Printed droplets on hydrophobic
surfaces have smaller size.’® Therefore, surface treatment
would make the surface more hydrophilic and enlarge the
deposited droplets. On the other hand, the printing speed
and the drop spacing depend on the droplet size and should
be adjusted to obtain uniform coverage of the surface."®

5 Inkjet printing: features

This section describes the peculiar features of inkjet printing
which can be exploited effectively in heterogeneous catalytic
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processes. These features can be advantageous in the design
of catalysts, reactors and comprehensive kinetic studies.

5.1 Fast catalytic probe

In catalysis, multi-component metal-oxide catalysts have
shown better performance due to the complementary or
synergic impacts on the reaction mechanisms."”*'** Mixed-
oxide catalysts can assist the reaction in different ways: i)
One catalyst component can activate a specific reaction
pathway while other components would activate other
pathways, ii) double activation catalysts are used for some
reactions which require two catalyst components for
activation, iii) in some parallel reactions each consecutive
reaction is activated by one component of the catalyst and iv)
multi-catalyst systems may change the reaction selectivity or
hinder the catalyst poisoning."**""*® The catalyst performance
(i.e., activity, selectivity and stability) is highly sensitive to its
structure, compositional and electronic properties. This fact
makes the design of optimal catalysts an arduous challenge.
Furthermore, due to the lack of theoretical knowledge about
complex catalytic kinetics, a large number of catalysts with
different compositions should be synthesized and tested by
trial and error to find the most efficient catalyst material.*”
Therefore, an optimal multicomponent catalyst for a specific
reaction is found through the synthesis and reaction tests of
various ratios of metal components which could be a
challenging and time-consuming procedure.

Several studies have been reported on the generation of
catalyst libraries of multi-component catalysts for catalytic
reaction explorations."**™** Among various techniques,
inkjet printing has been reported to be a powerful tool for
the rapid synthesis of catalyst nanomaterials.”®"?**3
Normally the catalyst species precursors are prepared in the
form of inks and a variety of composition ratios can be
produced by changing the gradient of designed patterns.’*”

Parkinson et al®’%>*>37 followed the combinatorial
approach to prepare and print metal precursors for the
(photo)-electrochemical water-splitting reaction. They studied

Fig. 9 Screening of gradient mixtures of platinum group metals (Pt,
Pd, Ru, Rh and Ir) deposited using inkjet printing. Reprinted with
permission from ACS Comb. Sci., 15, 82-89 (2013). Copyright 2013
American Chemical Society.®°

3150 | Catal Sci. Technol,, 2020, 10, 3140-3159

View Article Online

Catalysis Science & Technology

a variety of precious and non-precious metal combinations
from various metal precursors such as metal nitrates,
chlorides and organometallic precursors. In these studies,
libraries of multi-element catalysts were fabricated on glass
substrates using commercial inkjet printers and examined
through the water splitting and hydrogen evolution reactions.
The screening experiments for gradient compositions of
platinum group metals are shown in Fig. 9.

Fan et al®°*°° developed an inkjet printing synthesis
method for the fast optimization of multicomponent
mesoporous catalysts. The catalyst libraries were generated at
high rates with up to eight-component compositions through
the cooperative-assembly method. The inks were prepared
using various metal precursors, appropriate block copolymers
or surfactants and deposited onto different substrates. They
used a modified inkjet printer coupled with a self-developed
software package for the high-precision deposition of catalyst
layers with specific quantities of ink components. Fig. 10
displays the ternary metal oxides case study including inkjet
printing, synthesis and calcination process as well as the
strategy used to optimize the catalyst compositions.”®

5.2 Patterning

In microreactors and gas sensors, the response of the system
to target molecules occurs at the catalyst zone. The
thermokinetic properties of the process such as the
temperature profile and the response time are controlled by
the catalyst performance, and the system output is
interpreted based on the chemical reactions on the catalyst
surface.”*®*° In addition, the catalyst location determines
where the chemical reaction occurs and where the system
response should be detected by a transducer. Therefore, the
catalyst material should be locally deposited in the form of
patterns on the substrate. Catalyst patterning decreases the

Calcination

Printed Sample

(b)

Multi-dimensional groups

Fig. 10 Inkjet printing synthesis and guiding strategy for optimal
catalyst exploration. (a) Colloidal ink solutions based on sol-gel
chemistry used in a modified inkjet printer. (b) Division of the multi-
dimensional space into several groups by the bisection method.
Catalytic performance was tested and narrowed down to smaller
groups until the optimal catalyst was obtained. Reprinted from ref. 96
with permission from the Royal Society of Chemistry.

Optimal catalysts
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amount of catalyst used and hinders the overoxidation and
overheating, which results into better heat transfer and
mechanical stress distribution at high temperatures. Hence,
the catalyst patterning is widely desired in the design of new
microsystems.**°

Two critical factors in developing catalytic microsystems
are the choice of catalyst, and the development of a simple
method for local deposition of the catalyst close to the
transducers. Vapour deposition or magnetron sputtering
techniques can be used for patterned thin-film coating.
However, the output usually has a non-porous structure, and
these methods are not effective for patterning sol-gel-based
catalysts, which are typically used in microfluidic
systems.'**'**  Other alternatives, such as lithography
methods, involve time-consuming multistep procedures at
high temperatures.”® Inkjet printing can be a promising
alternative for local deposition of catalysts due to its mask-
free non-contact nature and simple one-step process.

Hu et al.'*' fabricated 2D patterns using inkjet printing
for the catalytic combustion reaction. This system can be
used as a heat source for gas-sensors and micro-electro-
mechanical systems (MEMS). Methanol was selected as
catalytic combustion fuel and platinum as the heterogeneous
catalyst. The Pt-based ink was formulated by dissolving
chloroplatinic acid (H,PtCls) powders into water, and then
printed onto heated substrates via a micro-dispensing system
in the form of different patterns. Afterwards, the printed
patterns were treated under methanol stream at 400 °C, and
reduced to Pt catalyst. The catalytic combustion reaction of
deposited Pt catalysts was studied in a stainless-steel reactor,
and an infrared thermographic camera was used to visualize
the temperature profiles of printed platinum patterns
(Fig. 11). In this work, the ultra-thin deposition and precise
patterning of Pt catalysts could be obtained using inkjet
printing.

Kassem et al."** used the inkjet printing technique for the
fabrication of a fully SnO,-based gas sensor on flexible
polyimide foils. All of the sensor components, including a
platinum heater, gold electrodes, a polyimide insulating
layer, and the SnO, catalyst layer, were deposited on the top
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Fig. 12 Schematic illustration of flexible SnO, gas sensor: 3D view of
multilayer configurations. Reproduced from ref. 144 with permission
from the Royal Society of Chemistry.

side of the substrate by using a commercial inkjet printing
system. The physico-chemical properties of the inks and the
printer settings were adjusted to obtain high-resolution
printed patterns. An aqueous SnO,-based ink was prepared
by sol-gel chemistry and crystallized SnO, layers could be
obtained at 350 °C. Afterwards, the sensor response to
different concentrations of gases was examined at 300 °C in
dry and wet air conditions. The schematic view of the
multilayer flexible SnO, sensor is shown in Fig. 12.

Catalyst patterning by inkjet printing has been recently
used as an intermediate fabrication step for other
applications. Busato® used the inkjet-printed Pd catalyst
patterns on polyimide films for the electroless copper plating
process. Beard et al.'*® deposited ink solutions of magnetite
nanoparticles onto Al,O; film as a base for the growth of
vertically aligned carbon nanotubes (Fig. 13).

5.3 Catalyst support

Solid materials can be used directly as a catalyst; however,
more often catalysts are fully dispersed on the surface of a
second solid structure called “catalyst support”. Catalyst
supports usually have a robust structure with high surface
area to maximize the distribution of the catalyst as active
material, and increase the catalyst stability. Catalyst supports
may participate in the reaction or may be catalytically
inert."*® Alumina, carbon and zeolites are typical support
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Fig. 11 The infrared thermographic image (a) and 3D temperature profile (b) of inkjet-printed Pt catalyst pattern “SH” during the methanol
catalytic combustion. Reproduced from J. Power Sources, vol. 271, X. Luo, Z. Zeng, X. Wang, J. Xiao, Z. Gan, H. Wu, Z. Hu, Preparing two-

dimensional nano-catalytic combustion patterns using direct inkjet printing, pp. 174-179, Copyright (2014), with permission from Elsevier.
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Fig. 13 SEM images of vertically aligned carbon nanotubes placed at
catalyst sites coated by inkjet printing method. Reproduced with
permission from ACS Appl. Mater. Interfaces, 5, 9785-9790 (2013).
Copyright 2013 American Chemical Society.**®

materials widely used in the catalysis industry."*” Therefore,

synthesis of catalyst support and its loading by active
materials are critical steps in the design of catalysts.

Inkjet printing may be an efficient approach for the
synthesis/deposition of support materials. Catalyst can be
added later to the support via impregnation or using inkjet
printing again. Dittmeyer et al. applied the inkjet printing
technology for deposition of alumina nanoparticles as
catalyst support film in microchannels. After layer deposition
and calcination, Rh was doped into the support layer by
impregnation®® and used in the methane steam reforming
reaction.

Inkjet printing could also be utilized to dispense
microdroplets on non-planar porous substrates such as
mesoporous films and flexible substrates as a support layer.
Thus, the effect of supports on the catalyst performance
could be studied by high-precision control of the catalyst
load. As an example, Hu et al’® used inkjet printing to
deposit a Pt precursor onto Si substrates which were already
coated by AlL,O; films. The Pt/Al,O; catalyst layers were later
used in the catalyzed methanol combustion process. Li et al.
used inkjet printing for deposition of LiMgMn (ref. 94) and
NaMnW (ref. 95) catalysts onto pre-coated La,0; and SiO,
supports, respectively. The supports were prepared by
injection of metal precursors (La(NOs); and Si(OC,H;),) into
filter paper by a pipette. The catalyst-based ink formulations
were then printed onto the support substrates followed by
drying and calcination. The printed catalyst layers were tested
in the oxidative coupling of methane reaction.

6 Inkjet printing: case studies

Catalytic systems fabricated by inkjet printing technology
have been developed for various applications, ranging from
electronic devices to different catalytic reactions. This section
reviews the recent applications of inkjet printing in chemical
and  photochemical reactions fluid-solid
interactions.

involving

6.1 Photocatalysis

Photocatalysis can be used as an efficient approach for the
decomposition of complex organic molecules such as dyes
and environmental pollutants for air/water treatment."*® For
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Fig. 14 Rate of 2,6-dichloroindophenol decomposition per gram of
TiO, photocatalysts synthesized at different conditions. Reprinted from
Appl. Catal., B., vol. 138-139, M. Cerna, M. Vesely, P. Dzik, C. Guillard,
E. Puzenat, M. Lepicovd, Fabrication, characterization and
photocatalytic activity of TiO, layers prepared by inkjet printing of
stabilized nanocrystalline suspensions, pp. 84-94, Copyright (2013),
with permission from Elsevier.”*

instance, self-cleaning technology provides surfaces which
can be cleaned easily by water and can be applied to fabrics
and glass for different applications."*® A number of studies
have been recently reported on inkjet printing of photoactive
materials onto different substrates for photodegradation and
self-cleaning applications.

The well-known photocatalyst TiO, is used in several
studies for the decomposition of organic pollutants.'”® Dzik
et al. prepared titania nanoparticle suspensions by various
methods (e.g., sol-gel®**>%° and hydrothermal synthesis’*)
for inkjet printing of TiO, layers on glass substrates. The
thermally treated layers were then examined to test the
photocatalytic activity. For example, the TiO, nanoparticles
synthesized by hydrothermal method at different
temperatures and process times exhibited competitive
activities for the degradation of 2,6-dichloroindophenol, as
shown in Fig. 14.7*

Demel et al®® used the inkjet printing method for the
deposition of ZnO nanosheets on glass supports. Different
number of layers were printed and tested for photoactivity
based on the degradation of 4-chlorophenol. The printed
nanosheets were superior to sol-gel synthesized samples in
terms of performance. Furthermore, the photocatalytic
activity was enhanced by increasing the layer numbers. The
UV/vis spectra of inkjet-printed layers showed sharp
absorption  edges, common for wide  bandgap
semiconductors. Furthermore, the thin films were
transparent, and the absorption increased linearly with an
increase in the number of printed layers (Fig. 15).

Recently, Mg(OH), photoactive films were deposited onto
aluminium foils via inkjet printing.’® The photocatalyst films
were used for the conversion of H,O and CO, to H, and CHj;-
OH, respectively. This process as an example of
heterogeneous photocatalysis has been utilized for solar fuel
production using natural or artificial light as a green
alternative to fossil fuels. The printed substrates were placed

This journal is © The Royal Society of Chemistry 2020
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(a) Photodegradation of 4-chlorophenol on printed ZnO films: 1 to 5 layers. Reproduced with permission from Langmuir, 30, 380-386

(2014). Copyright 2014 American Chemical Society. (b) UV/vis absorption spectra of 1 to 5 printed layers of the ZnO nanosheets; inset: absorbance
at 350 nm with increasing number of the ZnO layers. Reprinted with permission from the supplementary information of the same reference.®?

in a Pyrex tube as a batch reactor for photocatalytic studies.
The reactions were carried out at 25 °C and 2 psi under
external irradiation provided by two halogen lamps. The
reaction products (H, and CH3;OH) were analysed by gas
chromatography and UV-vis spectroscopy. Various numbers
of Mg(OH), layers (1 to 40) were deposited on the Al
substrate, and the photocatalytic activity of the reactions was
examined. The activity of Mg(OH), photocatalyst was
attributed to the porous structure of printed films with high
surface areas and sufficient pore volumes and roughness,
which increased the number of active sites and enhanced the
diffusion of gases within the catalyst layers. These
performance and structural properties were measured and
characterized by Kkinetic results, scanning electronic
microscopy (SEM) and N, physisorption by BET method.

6.2 Chemical reactions

Several studies have been recently reported on the
development of inkjet printing for heterogeneous catalytic
reactions inside chemical reactors. Here, the reaction takes
place at the solid-fluid interface at different operation
conditions, ranging from mild to harsh reaction
environments at elevated temperatures and high pressures.
Selective catalytic reduction (SCR) is an advanced
technology developed for the emission control of industrial
boilers, gas turbines and combustion engines in
automobiles.”®® In a typical SCR process, NO, is converted
through a catalytic reaction with gaseous reductants (e.g.,
NH;, H, and urea) to N,, H,0 and byproducts. Costa et al.®®
used the inkjet printing method for the synthesis and
deposition of 0.1 wt% Pt/Al,O; catalyst. Catalyst alternatives
with the same compositions were prepared by wet-
impregnation, and all of them were examined on the selective
catalytic reaction of NO by H, at the low-temperature range:
100-200 °C. The ink solutions were prepared from metal
precursors dissolved in isopropanol with additives such as
F127 polymer under an acidic environment and then coated
onto a stainless steel substrate. The SCR study was performed

This journal is © The Royal Society of Chemistry 2020

in a fixed bed quartz microreactor with 0.05 vol% NO and 1
vol% H, in the feed stream. The printed catalysts showed
superior activity at lower temperature range compared to the
wet-impregnated samples. This performance may be due to
the synthesis method which leads to a better catalyst
morphology (i.e., higher surface area and pore volume) and
formation of more active sites.

A combinatorial approach was followed by using inkjet
printing technique for the rapid optimization of Cu-Ce-Zr-O
mixed oxides for catalytic oxidation of n-hexane.”® Hexane
was used as the reactant case as it is a by-product of
numerous chemical processes. The inks were prepared by the
solution of various ratios of metal precursors in structure-
directing agent (SDA), acid and solvent, and printing was
performed in a desktop inkjet printer. Fig. 16 shows the
uniform morphology of a ternary mesoporous catalyst printed
onto the substrate. The kinetic study was performed in a
fixed-bed microreactor with 1000 ppm of n-hexane in air
stream, and the n-hexane conversion was recorded at 350 °C
for all catalyst samples. Finally, the Cuy3,Ceg 8211 00Oy
catalyst composite was obtained as the optimal catalyst after

Fig. 16 (a) STEM image and elemental mapping of the mixed metal
components. (b) TEM images of the mesoporous Cu-Ce-Zr-O
structure at different magnifications. Reprinted from ref. 96 with
permission from the Royal Society of Chemistry.
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probing more than 4000 alternative candidates. Similarly,
this procedure could be applied to other gas-solid catalytic
systems.

Hu et al®® prepared platinum films for the catalytic
combustion of methanol. Chloroplatinic acid (H,PtCls6H,0)
was used as the metal precursor, and the ink solution was
printed onto Si (111) substrate after optimization. The
methanol combustion process was examined in a stainless
steel reactor, and the temperature profile was analysed by an
infrared thermographic camera. This micro-catalytic system
could provide heat energy for microsized devices.

A DOD inkjet printing mode was chosen to print GaPd,
nanoparticles as thin, uniform catalyst
microchannels for selective hydrogenation of acetylene.’” The

layers in

catalyst prints were applied using three different approaches:
(A) the GaPd, layer into the bare micro-channels; (B) a-Al,O;
layer followed by a layer of GaPd, and (C) a layer of GaPd,/a-
Al,O; catalyst. The reaction was then conducted in the micro-
channels at 250 °C and feed stream of C,H,/H,/C,H, in He
gas. The catalytic activity and selectivity results are compared
with the literature reports in Fig. 17. Accordingly, the printed
GaPd,/a-Al,0; catalyst exhibited the highest catalytic
performance and a selectivity of 76% for the semi-
hydrogenation of acetylene reaction.

6.3 Microreactors

The use of inkjet printing can be easily extended to other
types of gas/solid and liquid/solid reactions. One potential
application would be in microreactor technology.
Microreactors have been used to synthesize organic and

133 and have

pharmaceutical compounds, shown high
performance due to high mixing degree, fast heat transfer
and better control over the chemical reactions. Therefore,
they are practical in laboratory experiments for reaction
monitoring and studying kinetic models.">* For fluid/solid
reactions, the catalyst requires to be uniformly and precisely

immobilized into the microreactor. Therefore, inkjet printing

90
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80 A on support (B)
i N A GaPd,/a-AlLO3 (C)
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Fig. 17 Activity and selectivity of different printing approach A-C and
comparison with the literature'®? for Pd,oAgge, Pd/a-AlL,Oz and GaPd,
bulk as well as nanoparticle samples. Adapted from ref. 97 with
permission from John Wiley and Sons.
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Fig. 18 Schematic illustration of deposition of nanoparticle-based inks
in microchannels: inkjet printing, drying and calcination process.
Reprinted from Appl. Catal, A, vol. 467, S. Lee, T. Boeltken, A. K.
Mogalicherla, U. Gerhards, P. Pfeifer, R. Dittmeyer, Inkjet printing of
porous nanoparticle-based catalyst layers in microchannel reactors,
pp. 69-75, Copyright (2013), with permission from Elsevier.>®

can be helpful in high-precision local deposition of catalysts
onto microreactor walls.

Dittmeyer et al.®°”°° performed several studies on the
inkjet printing of catalyst-based ink solutions in both
semicircular and rectangular microchannels fabricated by
wet-chemical etching method and micro-milling, respectively.
The ink solutions were printed inside the channels and
printing was continued to acquire a specific amount of
catalyst. The procedure was followed by drying and
calcination, and printed microchannels were obtained. The
overall catalyst immobilization process is shown in Fig. 18.
The deposited microreactors were then used to study the

High

Low I

Level of elemental density 50 pm

Fig. 19 Cross sectional elemental mapping images of Rh/Al,Oz layers
printed in a rectangular microchannel. Reprinted from Appl. Catal, A,
vol. 467, S. Lee, T. Boeltken, A. K. Mogalicherla, U. Gerhards, P. Pfeifer,
R. Dittmeyer, Inkjet printing of porous nanoparticle-based catalyst
layers in microchannel reactors, pp. 69-75, Copyright (2013), with
permission from Elsevier.%®

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cy00040j

Open Access Article. Published on 16 April 2020. Downloaded on 2/20/2026 5:48:42 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Catalysis Science & Technology

<— nlet/Outlet
-<—Transparent sheet
~—Black sheet

~—Transparent sheet

Fig. 20 Polypropylene microreactor manufactured by laser welding
with specified parts for photocatalytic studies. Available in “TiO,
nanofilms on polymeric substrates for the photocatalytic degradation
of methylene blue” under a Creative Commons Attribution 4.0
International Licence. Full terms at https://creativecommons.org/
licenses/by/4.0.4¢

methane steam reforming®® and hydrogenation of acetylene®”
reactions at different reaction conditions. The cross-sectional
elemental mapping image of Rh/Al,O; catalyst onto stainless
steel microchannel is shown in Fig. 19. The aluminium and
rhodium maps indicate the uniform deposition of catalyst
and support zone all over the channel with 13 + 0.5 pm
thickness at the bottom of the channel. The shape of catalyst
deposition depends on the rate of solvent evaporation and
agglomeration during the drying/calcination process.””

Maleki and Bertola*® developed a scalable microreactor
made of polypropylene for photocatalytic studies. The
microreactor was manufactured by welding a snakelike
channel cut out in a black polypropylene sheet, sandwiched
between two transparent sheets of the same polymer (PP) by
selective transmission laser welding. Fig. 20 shows the
different parts of the manufactured microreactor. The black
polymeric sheet thickness determines the microchannel
thickness which in this case was 700 um. Before the
microreactor fabrication, the transparent polypropylene at
the bottom was used as a substrate for deposition of TiO,
nanoparticles in a serpentine pattern. The TiO, deposition
was carried out using a desktop inkjet printer, and the
printing process was continued to obtain a film with a well-
defined thickness of the catalyst layer. The photocatalytic
tests were conducted in the microreactor at ambient pressure
and room temperature. Methylene blue was used for the
photodegradation studies with an initial concentration of 4
ppm and UV light as the irradiation source. In this study, the
manufacturing procedure and inkjet printing were effective
in developing flexible lightweight microreactors and
deposition of photoactive TiO, thin-films.

The inkjet printing technology has been developed for
deposition of other types of catalysts such as enzymes and

electrocatalysts for the fabrication of sensors,">*"’
biodevices'*®'*® and various electrochemical energy
160-162

conversion and storage devices which have been

reviewed elsewhere.

7 Challenges and outlooks

Heterogeneous catalysis is a multidisciplinary research area,
and the combination of inkjet printing and catalysis should
be performed with caution and common sense in order to

This journal is © The Royal Society of Chemistry 2020
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develop the field without limiting the new possibilities.
Furthermore, this combination requires fundamental
knowledge of both fields. Despite recent developments, there
are still challenges in the integration of the inkjet printing
technology within catalytic processes. There are limited
records of catalyst-based ink solutions designed for inkjet
printing, while a large number of catalysts and catalytic
processes exist in the literature. Therefore, further studies are
essential to develop novel printable ink formulations with
high stability and long storage life, and to broaden our
knowledge of ink nano-fluids.

The blockage of print-head nozzles is a significant issue in
inkjet printing of functional materials. Clogging can be
caused by aggregation of dispersed particles, build-up of
materials inside the nozzle microchannels or solvent
evaporation from the outside. Therefore, the ink solution
must be stable, and ink delivery system must become
resistant to clogging. Furthermore, the exact drop positioning
is uncertain in the current inkjet printing technology mainly
due to the drop horizontal velocity and the relative velocity
between the nozzle and substrate. Nozzle wetting and
contamination and jet-to-jet variations would also lead to
deviation of printed patterns from the designed patterns.

To date, few commercial inkjet printers have been adapted
for printing metal oxide materials. The current technology is
still in lab-scale, with high costs ($5k-50k) and low
deposition rates due to the low number of nozzles (1-4) and
low drop rates. There are also limitations in controlling
substrate and nozzles at high jetting frequencies to enhance
the printing resolution and speed. Moreover, the inkjet
printing technology should be improved in terms of
reliability and lifespan. Current inkjet printers normally have
a short lifetime and are not fully reliable for the continuous
uniform material printing. Hence, these technical issues
should be addressed in the new generations of inkjet
printing systems.

Furthermore, inkjet printing has been mostly performed
on flat surfaces with hydrophilic properties. Introducing new
substrates for catalyst deposition and printing onto curved
and irregular surfaces would utilize this technology for
heterogeneous catalysis in more complex geometries. Finally,
the current inkjet printing technology is limited to the
deposition of thin-film structures due to the ink synthesis
methods mostly based on sol-gel chemistry. It would be
interesting to extend inkjet printing for the fabrication of
three-dimensional (3D) structures. One approach is the
combination of inkjet printing with other additive
manufacturing techniques as integrated systems for the
design of heterogeneous catalytic processes.

8 Summary

This work provides an insight into inkjet printing technology
in the context of heterogeneous catalysis including a brief
introduction and discussion on inkjet synthesis and
methods, its potentials and limitations as well as recent
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developments. Inkjet printing is an emerging attractive material
deposition technology for a variety of applications in science
and industry due to its efficient, low-cost and scalable nature.
Recently this technology has been used in the fabrication and
deposition of catalyst materials for catalytic reaction studies.
However, it is still in an early stage of development, and there is
considerable scope for further growth in inkjet printing for
catalysis applications. Furthermore, current challenges such as
ink stability and limits to the precursor formulations need to be
addressed by improving the understanding of the ink fluid
behaviour and of the printing parameters.
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