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Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design
biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial
consideration is devoted to the design and validation of biomaterials, the nature of their interactions
with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could
be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for
designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial
properties after implantation. The success of host responses to biomaterials, known as biocompatibility,
depends on chemical principles as the root of both cell signaling pathways in the body and how the
biomaterial surface is designed. Most of the current review papers have discussed chemical engineering
and biological principles of designing biomaterials as separate topics, which has resulted in neglecting
the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of
chemistry, what it is and how to assess it, while describing contributions from both biochemical cues
and biomaterials as well as the means of harmonizing them. We address both biochemical signal-
transduction pathways and engineering principles of designing a biomaterial with an emphasis on its
surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface
Received 8th February 2020 physicochemical properties and body responses, we concisely highlight the main biochemical signal-
transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and
challenges associated with the current strategies used for improving the chemical and physical

DOI: 10.1039/d0cs00103a

rsc.li/chem-soc-rev interactions between cells and biomaterial surface.

function of the body, to maintain or improve the quality of life
of the individual”.” Biomaterials engineering is a highly
interdisciplinary research field in which scientists (mostly with

1. Introduction

In the case of severe tissue injuries, the body is not able to

successfully repair the injured tissues." Owing to the emergence of
tissue engineering and regenerative medicine fields, many promis-
ing treatment strategies are currently available for repairing and/or
replacing damaged tissues.>® However, there is no doubt that, if
not all, most of these approaches are dependent on using chemical
principles for designing biomaterials as biological substitutes that
mimic and/or stimulate tissue functions. The American National
Institutes of Health defines a biomaterial as “any substance or
combination of substances, other than drugs, synthetic or natural
in origin, which can be used for any period of time, which
augments or replaces partially or totally any tissue, organ or
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a background in chemistry) introduce biological alternatives for
replacing or enhancing tissue and/or organ functions.”® Over
the past few decades, chemical scientists and engineers have
achieved substantial progress in designing promising bio-
materials as key diagnostic or therapeutic solutions for several
disorders.””

Although considerable effort is devoted to developing
biomaterials as successful tissue replacements for clinical
applications, most of the suggested strategies fail to match
the functional properties of targeted tissues in vivo, due to their
poor biocompatibility." The nature of the interaction of bio-
materials with the surrounding biological microenvironment
defines their biocompatibility. There is still a critical gap in
successfully matching the biomaterial surface physicochemical
characteristics to biochemical signal-transduction pathways
in vivo. This gap could be owing to our poor understanding of
biochemical signaling pathways, lack of reliable techniques for
designing biomaterials with optimal physicochemical properties,

This journal is © The Royal Society of Chemistry 2020
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and/or poor stability of biomaterial properties after implan-
tation.’®™® The designed biomaterials for tissue engineering
applications should have a strong affinity to targeted cells by
sending chemical and physical signals to stimulate neo-tissue
formation. Establishing strong positive interactions between
the biomaterial surface and cells is entirely dependent on both
the materials and targeted biological system chemistry.™
From the biochemical point of view, the features of cellular
niche are highly important. The cellular niche is a highly
complex tissue-specific microenvironment within a particular
anatomic location providing physicochemical signals for cell
communication.'> Different mechanotransduction, macro-
molecular adsorption and biochemical signaling pathways,
which can be dependent on the tissue type, play key roles in
determining the material’s success after implantation. The main
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biochemical signaling pathways of local innate immune cells and
their receptors, the other neighboring tissues or factors around
the targeted tissue, and the biological systems a material might
face are very diverse in different tissues.'®'”

From the materials engineering point of view, each physico-
chemical property of the biomaterial surface (such as topo-
graphical features, stiffness, functional groups, and interfacial
free energy) can profoundly affect biochemical mechanisms
(Fig. 1). In addition, the commonly applied techniques and
chemical strategies for modifying the surface properties can
influence biomaterial-cell interactions.

Despite several reviews in the literature that address
the importance of surface properties in regulating cell
responses, 1131820 none of the recently published reviews
have comprehensively discussed the vital roles of chemistry in
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Fig. 1 An illustration of the key surface physicochemical properties in directing biological responses to biomaterials. Biomaterials can manipulate
molecular and cellular signaling pathways through their surface physicochemical properties (e.g. topography, stiffness, functional groups, biological

moieties, ions, charges, and surface free energy).

regulating biological pathways, manipulating biomaterial surface
properties, and directing molecular and cellular responses after
biomaterial implantation. In addition, it is time to provide an
updated state-of-the-art and future perspective for researchers in
this field based on the recent chemical, physical and biological
research findings. This review aims at emphasizing the key roles
of chemistry in determining the biocompatibility of biomaterials
by presenting an overview of both biochemical and chemical
engineering principles and challenges in designing biocompatible
systems. As biochemical signaling pathways of the immune
system are critical factors in determining the success of

Professor Haugen is the leader of
Biomaterials group, Faculty of
Dentistry, University of Oslo. He
received his master’s degree in
chemical engineering from Imperial
College, UK, in 2001, and his PhD
in biomaterials from Technische
Universitdt Miinchen, Germany, in
2004. He worked as a scientist at
the Central Institute for Medical
Engineering, Munich, Helmholtz
Institute for Biomedical Engi-
neering, Aachen and the Tissue
Engineering Centre of Imperial
College, London. Haugen has been awarded many research
grants and innovation awards from both the European Research
Council and the Research Council of Norway. Haugen was the past
President of the Scandinavian Society for Biomaterials.

Havard J. Haugen

5180 | Chem. Soc. Rev., 2020, 49, 5178-5224

biomaterials, we briefly highlight the main biochemical signal-
ing mechanisms and concepts of biocompatibility. Then, we
address the current progress and challenges in biological
responses to biomaterial surface physicochemical properties
such as topographical features, functional groups, interfacial
free energy, ion enrichment, and biological moieties. Although
we use biomaterials in different tissue engineering applications,
reliable evaluation of biological responses is still a big challenge.
Altogether, this review provides an overview of the progress
and challenges of each part to the readers; however, due to the
complex nature of biological responses to biomaterials, not all
related issues are possible to discuss here.

2. Using biomaterials for tissue
regeneration applications

The self-renewal potential of tissues decreases or completely
disappears over time due to several reasons such as increasing
age, reducing the amount and capability of host stem cell/
progenitor populations, naturally poor repair potential of
tissues, or undesirable inflammatory responses in damaged
tissues and/or organs.”"** Tissue engineering and regenerative
medicine approaches represent a clinically appealing and pro-
mising strategy to repair biological processes associated with
injured tissues.> In the past few decades, scientists have used
various cell types as key elements in different tissue regenera-
tion therapies.**”>®> However, if cells are transplanted freely into
the body, only a small proportion might reach the targeted
tissue.”®

Biomedical scientists use naturally occurring chemical
processes as an inspiration to design new biomaterials. Different

This journal is © The Royal Society of Chemistry 2020
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classes of biomaterials are designed to offer suitable micro-
environments for enhancing cell engraftment, including both
naturally occurring and synthetic polymers, ceramics, metals
and composites (Fig. 2).2>” Implanted biomaterials in tissue
engineering are categorized generally into two main groups:
(i) auto-, allo- or xeno-based cellularized or decellularized
scaffolds known as natural/physiological polymers (e.g. proteins,
polysaccharides and decellularized tissue matrices) and (ii) other
materials such as synthetic polymers, implants, ceramics and
composites.” Chemical strategies can be employed for designing a
wide range of naturally occurring and synthetic biomaterials while
stimulating cells to secrete and deposit the native extracellular
matrix (ECM) locally.>*° The substantial progress in chemical
and tissue engineering fields has led to the existence of smart
biomaterials as promising therapeutic solutions for several
devastating disorders. Nowadays, we clinically use biomaterials
as valid therapeutic candidates for various tissue regeneration
applications such as musculoskeletal system,*" cardiovascular
system,** neural system,** and skin.** In addition, biomaterials
can affect the results of regenerative medicine strategies such as
cell-based therapies, and engineered living tissues or organs.*

For successfully using biomaterials in the medicine world,
designed biomaterials should be able to enhance the cell
survival and functions after transplantation as well as stimulate
autologous tissue growth.*®?” The designed biomaterials for
tissue regeneration applications should provide provisional
mechanical support and mass transport to stimulate biochemical
signaling pathway functions toward tissue healing.*® Additionally,
biomaterials could increase the success of tissue regeneration by
sending physicochemical signals with spatiotemporal precision
toward cells.*® With this concept, a biomaterial is dynamically
involved in providing some physicochemical cues to targeted cells
resulting in neo-tissue formation.** For initiating biochemical
signaling pathways, considering the presence of soluble signaling
molecules such as growth factors and cytokines is also
important.*!

On the other hand, scaffolds designed from one material
type would not be able to meet the requirements for tissue
regeneration applications, which is owing to the absence of a
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controlled degradation rate, optimal physicochemical properties,
and stimulating ideal biochemical signaling pathways.**** Thus,
composite biomaterials designed by combining the chemistries of
different materials tend to exhibit greater success in stimulating
tissue regeneration after implantation.’**> Manipulating the
biomaterial surface physico-chemistry based on the targeted
site is essential for achieving optimal biological performance.
Indeed, selecting biomaterials for tissue engineering applications
is reliant on their physicochemical surface properties such
as surface roughness,*® architecture,”” charge,*® energy,” and
functional groups.>® Hence, the effects of each physicochemical
surface property on the biological performance of biomaterials
should be precisely investigated in vitro and in vivo.’”

3. The evolution of the definition of
host responses

In the early 20th century, a prodigious revolution took place in
both therapeutic and diagnosis strategies through designing
synthetic biomaterials by manipulating the chemistry of
materials.’" Since naturally occurring chemistry was used for
designing biomaterials, modifying and/or proving their biolo-
gical safety were among the most challenging issues in this
field. Some decades ago, James Anderson defined foreign body
reactions to biomaterials by demonstrating short- and long-term
inflammatory responses to biomaterials and the substantial roles
of macrophages in each step.'®*>™* Owing to Anderson group’s
work, the biomedical scientists’ understanding of molecular and
cellular responses to biomaterials increased so that these days at
the time of designing each biomaterial its effects on the foreign
body responses determine its biocompatibility.

Although this definition favors non-degradable inert bio-
materials, it cannot thoroughly define the body responses to
the recently developed biomaterials with bioactive degradable
surfaces suitable for tissue regeneration.'®'"'*3* Owing to the
advances in chemistry, the recently developed biomaterials
are designed and formulated to stimulate different bio-
chemical signaling pathways. In these cases, we could not define
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Fig. 2 Anillustration of the role of chemistry in bridging the gap between biomaterials engineering and biology. The chemistry-driven processes in the
body have inspired biomedical engineers to fabricate biomaterials using chemical strategies. Chemistry promotes tissue regeneration through designing
different biomaterials for stimulating cells to deposit the native extracellular matrix (ECM).

This journal is © The Royal Society of Chemistry 2020

Chem. Soc. Rev., 2020, 49, 5178-5224 | 5181


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00103a

Open Access Article. Published on 09 July 2020. Downloaded on 10/27/2025 3:19:19 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chem Soc Rev

biocompatibility as only not having any adverse effects.”® The
designed biomaterials should have a strong affinity for targeted
cells to stimulate biochemical signaling pathways toward the
neo-tissue formation. This ability is entirely dependent on the
specific chemical characteristics of both the material system and
the biological environment of targeted tissue.'*

The biomaterial surface physicochemical properties such
as charges, functional groups, biological moieties, and ion
enrichment play key roles in directing biological responses to
biomaterials."*>® From the biochemical perspective, different
mechanotransduction, physiological, macromolecular adsorp-
tion and biochemical signaling pathways are crucial, which can
be different from tissue to tissue. Because different tissues and
cells have different chemical signals and physical characteristics,
it is hard to say whether a material compatible with one
tissue will make positive interactions with other cell types and
tissues.'>"® In addition, although both innate and adaptive
immune systems respond to biomaterial implantation, their
biochemical cues are different from each other, which requires
evaluating their responses individually.””

4. The classical perspective of
biological responses to biomaterials

The host responses to biomaterials mainly originate from
biochemical signals and cues. As our knowledge in the bio-
chemistry field has tremendously grown since the first defini-
tion of biocompatibility, we should update our definitions
regarding host responses to biomaterials. Here we briefly discuss
the out-of-date concept of cellular responses and biochemical
signaling pathways involved in foreign body responses to bio-
materials. Then, we provide an overview of the recently updated
biochemical signaling pathways in the next sections.

Foreign body responses to implanted biomaterials are
generally defined as a sequence of body reactions, which start
instantly after biomaterial implantation.'®® With this concept,
after biomaterial implantation, the tissue injury stimulates
several chemical signaling cascades, which result in a sequence
of acute and chronic inflammatory as well as wound healing
responses.’®*® Protein adsorption, neutrophils, and type 1
macrophages direct the acute inflammatory phase. This phase
is essentially responsible for provisional matrix formation and
wound site cleaning, which can take from some hours to days.*

After the release of some biochemical cues, blood vessels
start expanding and consequently more blood flows into the
injured area. Some blood and tissue proteins (such as fibro-
nectin, fibrinogen, vitronectin, complement C3, albumin and
growth factors) as well as leukocytes are released, which adhere
to the blood vessel endothelium.>*™**

Proteins are made from 20 natural amino acids. A linear
chain of amino acid residues is called a polypeptide. A protein
contains at least one long polypeptide. Short polypeptides,
containing less than 20-30 residues, are rarely considered as
proteins and are commonly called peptides, or sometimes
oligopeptides. Each amino acid has a general backbone

5182 | Chem. Soc. Rev., 2020, 49, 5178-5224
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network of {-NH-CoHR-CO-}, where R describes a specific
side group structure that gives the amino acid its specific
functional properties. Based on the R structure, the amino
acids are divided into three main types: nonpolar, polar, and
charged amino acids, in which each class has an affinity to
surfaces with unique physicochemical properties.'*®* Furthermore,
the size of proteins affects their adsorption to the biomaterial
surface. Small proteins move faster and are responsible for the
primary adsorption on surfaces. However, the larger proteins
have higher affinity to the surface, which is owing to their greater
surface area.®®

Moreover, the protein conformation defines its structure,
bioactivity and communication with other biomolecules on the
surface.® Most proteins have at least one active region to
adsorb on the biomaterial surface, ligands, and receptors.
The receptor domain of extracellular molecules accepts a signal
from the upstream part and as a result changes its conformation,
leading to stimulating the formation of a ligand binding
domain.™ These receptor binding proteins are connected into a
chain, which transmit the biochemical signals across the cell
membrane.'* Researchers can achieve different protein-surface
interactions through modifying the physicochemical properties of
proteins.™*

Monocytes released into the area differentiate into type 1
and type 2 macrophages. Type 1 macrophages are responsible
for the acute inflammatory phase and release pro-inflammatory
factors. On the other hand, type 2 macrophages are responsible
for the chronic inflammatory phase and release anti-
inflammatory factors.>®¢%6>:

Monocytes, type 2 macrophages, and lymphocytes control
the chronic inflammatory phase. During this phase, tissue
granulation, fibroblast infiltration, and neovascularization
occur, which can subsequently lead to the formation of blood
vessels and connective tissue to allow wound healing to
proceed.®®®” In the wound healing phase, the proliferation of
fibroblasts and vascular endothelial cells changes the fibrin
clot into an extremely vascularized granulation tissue. The
presence of several growth factors is important in this phase
including platelet-derived growth factor, fibroblast growth
factor, transforming growth factor-f, transforming growth
factor-o/epidermal growth factor, interleukin-1 (IL-1), and
tumor necrosis factor.®®”7° Fibroblasts are also active in synthe-
sizing collagen and proteoglycans, which lead to replacement
of the granulation tissue with ECM (Fig. 3). Depending on the
severity of injury at the implanted site, tissue type, and bio-
material properties, the acute phase takes less than one week
and the chronic phase about two weeks.”"”*

Based on this traditional definition of foreign body responses
to biomaterials, the ability of a biomaterial to stimulate minimal
inflammatory responses defines its success. Hence, the focus in
designing biomaterials is on reducing foreign body responses
through directing macrophage responses. However, because
allowing natural body responses to occur is more useful for both
biomaterial integration and function, this definition started to
be redefined over the past few years.”>”> The synchronization
between inflammation and its resolution is essential for wound

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 An illustration of the traditional concepts regarding foreign body
responses to the biomaterial surface. The foreign body responses are a
combination of both acute and chronic phases of inflammation. The
mechanism starts with protein adsorption and desorption (Vroman bind-
ing) on the surface of the biomaterial after its implantation. It continues
with thrombin formation through activating platelets. After that, mono-
cytes differentiate into type “1" macrophages which are responsible for the
acute phase of inflammation. After some days, type “1" macrophages
differentiate into type “2"” macrophages which are responsible for chronic
infammation. T cells and mast cells also express cytokines that increase
foreign body giant cell (FBGC) creation. In addition, FBGCs express
fibroblast-recruiting factors and consequently by collagen deposition, a
capsule starts forming around the biomaterial.

healing, which is dependent on the biochemical signaling path-
ways and cues.”® To enhance the healing process, biomaterials are
currently designed with a focus on improving their chemical
interactions with immune system components.”””®

5. The role of innate and adaptive
immune systems and biochemical cues
in biological responses to biomaterials

The immune system is the main biological network, which
releases biochemical cues responsible for protecting the body
against foreign materials and keeping homeostasis. It consists
of two main parts: innate and adaptive immune systems.
Just after the instant recognition of foreign materials, the
innate immune system causes a non-specific inflammatory
response through a chain of biochemical reactions.'®””-8%8

This journal is © The Royal Society of Chemistry 2020
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Responsible cells in the innate immune system consist of
phagocyte cells (including dendritic cells, monocytes, and
macrophages) and lymphocytes (natural killer cells, gamma
delta T-cells, and innate lymphoid cells).'®3"®> However, the
adaptive immune system is responsible for showing particular
antigen responses and making a long-term memory through B
and T lymphocytes.'®*"%

A suitable immune system response requires organized
crosstalk between these two systems, where chemical cues are
intrinsically present and play pivotal roles. After biomaterial
implantation, the degradation products and subsequent
chemical surface changes of biomaterials can stimulate the
immune system.”' The interactions between the surface and
the immune system are reliant on the targeted tissue nearby the
biomaterial causing tissue-specific biochemical responses.®'
After biomaterial implantation, the native vasculature is likely
to be disrupted, which could induce interactions between blood
and the implanted biomaterial.”®

Depending on the biomaterial surface physicochemistry, the
plasma constituents including proteins, lipids, sugars, and ions
can be adsorbed on it.”” Platelets, which through aggregation
and coagulation form a fibrin-rich clot, are also a part of the
blood exudate. The formed clot is a temporary provisional
matrix for supporting cellular and molecular functions.®* The
adsorbed proteins elicit biochemical signaling pathways and
make interactions with the innate immune system cells such as
neutrophils, monocytes, fibroblasts and endothelial cells
through their particular recognition sites including C-termini,
N-termini, proline-histidine-serine-arginine-asparagine (PHSRN)
and arginine-glycine-aspartic acid (RGD).**®

Neutrophils are commonly the first responders to foreign
materials. These cells are stimulated when the adsorbed pro-
teins (RGD, PHSRN), microbes (pathogen associated molecular
patterns or PAMPs), and/or dead cell residues (damage-
associated molecular patterns or DAMPs) bind to their ligands
through biochemical reactions.®”””*° The adsorbed proteins
bind to macrophage type 1 antigen, lymphocyte function-
associated antigen 1, and integrin alphaXbeta2. However,
DAMPs and PAMPs bind to toll-like receptors (TLRs) and some
specific pattern recognition receptors (PRRs), which also exist
on the surface of macrophages and dendritic cells.*””!

Neutrophils stimulate the expression of cytokines as pro-
inflammatory chemical mediators through sending biochemical
signals.””*® These chemical mediators stimulate directed chemo-
taxis of other innate inflammatory cells and dendritic cells, which
leads to the stimulation of adaptive immunity responses through
B and T lymphocytes.””**

DAMPs are endogenous molecules that under normal phy-
siological conditions are sequestered intracellularly and cannot
be recognized by the innate immune system.’® Nevertheless,
under cellular stress or injury conditions, they are released into
the extracellular environment leading to the transmission
of biochemical signals to cells for initiating inflammatory
responses under sterile conditions.®® The DAMP release from
cells depends on the type of cell injury or death. Chromatin-
associated protein, high-mobility group box 1, heat shock

Chem. Soc. Rev., 2020, 49, 5178-5224 | 5183
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proteins, and purine metabolites are prototypical DAMPs
derived from damaged cells.””®® Furthermore, ECM degrada-
tion can send biochemical signals for releasing DAMPs. DAMPs
can initiate inflammatory responses, and the lack of DAMPs
in the environment leads to a decrease of inflammatory bio-
chemical cues.”

There are different types of PRRs in the innate immune
system that stimulate the expression of various types of pro-
inflammatory cytokines and biochemical markers. According to
the subcellular location of PRRs, they are classified into two
main groups: (i) TLRs and C-type lectin receptors, which are
transmembrane proteins, and (ii) RIG-I-like receptors (retinoic
acid-inducible gene-I-like receptors, RLRs) and NOD-like
receptors (NLR), which exist in the intracellular compartments.
PAMPs and DAMPs activate these receptors and subsequently
inflammasome complexes.'®%*%!

The inflammasome complex contains a cytosolic sensor that
can be a PRR of the NLR, absent in melanoma 2 (AIM2) receptors,
and an effector protein.'®* There are various types of PRRs, which
can form inflammasomes such as NLRP1, NLRP3, NLRC4 (the
NLR family of intracellular proteins) and AIM2.'%*7'%

In response to PAMPs and DAMPs, the pentameric or
heptameric assembly of PRRs can oligomerize the caspase
recruitment domain in filaments. This might cause the inflam-
masome formation through stimulating caspase-1."°° The
NLRP3 inflammasome is the most known inflammasome,
which contains the NLRP3 scaffold, caspase recruitment domain
adaptor protein, caspase-1, and accessory protein serine/
threonine-protein kinase.'”'®® Monocytes, macrophages,
granulocytes, dendritic cells, epithelial cells and osteoblasts
mainly express this inflammasome."%°

After cellular injury through biomaterial implantation,
DAMPs and PAMPs activate the NLRP3 inflammasome through
sending biochemical signals."'®'"" Examples of such stimuli
from the DAMP group are crystalline matter such as asbestos,
calcium influx, mitochondrial reactive oxygen species (ROS),
and extracellular neurotransmitter adenosine triphosphate
(ATP).""> However, this process is not yet fully understood
and needs further detailed studies.”’ The inflaimmasome
can through subsequent control over the rest of immune
response processes either cause the resolution of inflammation
and tissue regeneration, or lead to chronic inflammation
and fibrosis.""® After inflammasome expression, the migrated
monocytes/macrophages adhere to the temporary provisional
matrix formed on the biomaterial surface.'™

After 24 to 48 hours, the activated neutrophils die through
apoptosis and release some vesicles and lipids through bio-
chemical signals (e.g. lipoxins and resolvins), which have anti-
inflammatory influences.®””"*>"'® Hence, neutrophils through
binding to PAMPs and DAMPs and initiating inflammasome
responses are vital for activating type 1 macrophages and the
acute inflammatory phase. Apoptotic neutrophils are also crucial
for stimulating macrophage polarization from type 1 to type 2 and
the following inflammation resolution. Therefore, if their lifespan
is extended and/or if they increase in number at the biomaterial
surface, chronic inflammation can occur at the site.*'”
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After the polarization of type 1 macrophages to type 2, they
locally release several growth factors (such as transforming
growth factor beta and vascular endothelial growth factor)
while stimulating fibroblast and endothelial cell migration
and proliferation by sending biochemical signals. Fibroblasts
produce collagen to form the ECM, whereas endothelial cells
nourish the formation of new blood vessels to offer essential
nutrients for neo-tissue formation as well as for waste
removal.’*® In the chronic inflammatory phase, T lymphocytes,
mainly helper T cells, play key roles in controlling the expression
of pro- and anti-inflammatory mediators."* In this system, B
lymphocytes are responsible for making antibodies (Fig. 4)."*°
Immune-modulatory biomaterials should direct biochemical
signaling pathways and cues, which are responsible for the
functions of neutrophils, PAMPs, DAMPs, inflammasomes,
endothelial cells, and mesenchymal stem cells (MSCs).'*!
As describing the details of innate and adaptive immune
system mechanisms and the responsible biochemical cues is
out of the scope of this review, we refer the readers to the

following seminal review papers.'®7377:80:95

6. The roles of ion channels in
regulating immune system responses

Cell surface receptors play key roles in receiving biochemical
signals (from chemical substances such as hormones, growth
factors, cell adhesion molecules, nutrients, and neurotransmitters)
and initiating biochemical and/or biophysical signaling in the
cells.’*™%% Ton channels are a class of surface receptors, which
control many cellular signaling events in cells."”"*° lon exchanges
between the intra and extracellular environments create the
mechanisms essential for controlling the cell metabolism and
activation state.’*® In addition, ion channels are important
regulators of cell-cell communication. As a result, genes
encoding proteins responsible for regulating membrane perme-
ability to ions are also vital in most of the complex intra and
extracellular signaling events.”® Because of the key roles of
immune cells in controlling foreign body responses, we discuss
some ion channels that regulate innate and adaptive immune
system responses here.

Ion channels direct immune responses mostly by regulating
endosomal pH and intracellular calcium concentrations."*""3>
Regulating the intracellular calcium amounts is dependent on
the biophysical properties of the ion channels and their ability
to control the calcium passage across the membrane.’*® The
calcium permeability can be changed by activating particular
ligands, feedforward responses to the calcium release from
intracellular stores, changes in cell polarization, and the
strength of sodium driving force."*°

In adaptive immune system cells (B- and T-lymphocytes),
regulating the intracellular calcium amount is important as
releasing calcium from intracellular stores activates the
immune response pathways."** In addition, the CAV1 (caveolin 1)
ion channel (as a subfamily of L-type voltage-gated calcium channels)
is vital in activating B- and T-lymphocytes."**"%
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00103a

Open Access Article. Published on 09 July 2020. Downloaded on 10/27/2025 3:19:19 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review Article

Monocyte

CSFIR
‘\\

CCR2 Resident
macrophage

KLyéch'\
CSFIR /
Fibroblast

o IL4R P=S 4
FS s
-8R Stemcell 16 W — S
pSTAT! ARG . OGCR1 Bhos2

PPARY
DMAPS and PAMPS

CCR8 \
CX3CR1 .
V/:t:%% 1 //7 IFN-y, necroptosis,
Stem cell O L K
& ! %

cholesterol crystals
S
&
<

Lipids and fatty acids

IL-4, IL-13, 1L-33, IL-25, IL-21 Endothelial cells

PDGF, IGF-1

Parenchymal cells
ARE 6, TGF-a

ccL

CSFIR

Healing
macrophage

Blood coat

Neutrophil
B cell

Tcell

'qdaptive resPO“Se
ic

IL-10R

Treg cell socst \

socs3 \ Resolvins

Phagocytosis
IL-10
Immune complex
HDL

‘\CPD-U

PD-L2

TGF-B.

Macrophage type 2
Fig. 4 Innate and adaptive immune system responses. Recruited and
resident macrophages start experiencing marked phenotypic and func-
tional changes in response to damage-associated molecular patterns
(DAMPs), pathogen associated molecular patterns (PAMPs), growth
factors, cytokines, and other mediators released into the interface area.
The main phenotypic changes regulate inflammation, tissue repair,
regeneration, and resolution. Macrophages then express different types
of factors which can direct different functions in fibroblasts, epithelial cells,
endothelial cells, and stem and progenitor cells to promote tissue repair.
During the final stages of the healing process, a regulatory pro-resolving
phenotype, which confirms the suppression of the tissue-damaging
inflammatory response, is expected. If the process does not successfully
proceed, persistent inflammation and/or maladaptive repair processes can
cause tissue-destructive fibrosis. Sometimes, the recruited monocytes
lead to the formation of a resident macrophage phenotype in tissues.*??
Abbreviations: DAMP, damage-associated molecular pattern; PAMP,
pathogen-associated molecular pattern; Treg cell, regulatory T cell; IRF5,
interferon regulatory factor 5; NOS2, nitric oxide synthase 2; LXR, liver X
receptor; AREG, amphiregulin; Argl, arginase-1; IRF4, interferon regulatory
factor 4; PPARg, peroxisome proliferator-activated receptor g; FGF, fibro-
blast growth factor; GAL-3, galectin-3; TGF, transforming growth factor;
GR, glucocorticoid receptor; ATF3, activating transcription factor 3; SOCS,
silencer of cytokine signaling.

Increasing ROS activates transient receptor potential mela-
statin (TRPM) 2 ion channels."*® The TRPM2 activation causes the
release of calcium from immune cells. In addition, TRPM2 has a
key role in activating the NLRP3 inflammasome causing the
expression of cytokines and chemokines from immune cells.'*®

Some studies have reported the importance of ion channels
in regulating microglia functions as the resident macrophage
cells of the central nervous system."*”**® In microglia, the P2X
and N-methyl-p-aspartate (NMDA) receptor families respond
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to the neurotransmitters adenosine triphosphate (ATP) and
glutamate, respectively.*® By regulating the intracellular
calcium concentration, these receptors can affect microglial
activation. P2X receptors (P2XRs) are trimeric plasma
membrane channels, permeable to small inorganic cations
(e.g. Na*, K*, and Ca®")."*”"'*® However, some P2XR channels
are permeable to both cationic and anionic organic ions."*'
Ferreira et al.'** studied the Ca*"-activated K* channel (KCa3.1)-
dependent responses in microglia under ROS."*> They concluded
that increasing the cyclic guanosine monophosphate (cGMP)
concentration leads to protein kinase activation and, subsequently,
ROS formation in mitochondria. The ROS formation causes endo-
plasmic reticulum calcium release, which subsequently binds to
calmodulin to activate the KCa3.1 channel."**

Connexin and pannexin cell-cell channels, unopposed
hemichannels as well as P2 receptors are essential in initiating
and regulating the inflammatory responses."** For instance,
the activation of connexin and pannexin channels leads to the
release of ATP and other metabolites to the extracellular media.
Extracellular ATP can stimulate intracellular signaling pathways by
acting on P2 receptors, which leads to inflammation.'**

Overall, the activation of ion channels can be ‘“danger”
signals propagating the inflammatory responses of immune
systems.'** Their biochemical effects on cell homeostasis affect
the immune system functions."*® Therefore, the activation of
ion channels can be vital in directing the host responses to
biomaterials. However, more research on understanding
the ion channel roles in regulating signaling pathways and
directing cell-biomaterial interactions is vital.

7. The role of mesenchymal stem cells
in biological responses to biomaterials

MSCs have many roles in modulating the immune system
responses to implanted biomaterials, particularly in bio-
chemical signaling pathways responsible for stimulating the
innate immune system.'**'**> These cells can have immuno-
suppressive roles by releasing several soluble biochemical
factors responsible for controlling the functions of lymphoid
and myeloid cells."*>™*” For example, prostaglandin E2 (PGE2)
synthesized by MSCs can stimulate macrophages to have an
adapted directing phenotype by increasing IL-10 and decreasing
tumor necrosis factor-o. and IL-12 expression."*® The biochemical
soluble factors released by MSCs (e.g. IL-10, PGE2 and IL-1b) can
play vital roles in the crosstalk between MSCs and macrophages,
mainly in macrophage type 1 to 2 polarization."*® In addition,
interferon gamma and tumor necrosis factor-alpha cytokines
expressed from T cells can stimulate macrophage polarization
by stimulating MSCs to release cyclooxygenase-2 and indoleamine
2,3-dioxygenase."°

MSCs can also control T regulatory lymphocytes (Tregs) and
T helper-based immunosuppressive activities by releasing heme
oxygenase-1 and its metabolic by-product carbon monoxide.'*>"*>*
Because type 2 macrophage polarization is linked with Tregs
stimulation, MSCs are vital in controlling the crosstalk between
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145,151 These cells can down-

innate and adaptive immune systems.
regulate the expression of some lymphocyte growth factors,
differentiation of antigen presenting cells and effector T cells as
well as epithelial cell proliferation by releasing PGE2.'*> The
readers can find a good level of details concerning the role of
MSCs in regulating immune system responses to foreign materi-

als in these review papers.'*>'*&1>>

8. The role of mechanotransduction
pathways in biological responses to
biomaterials

The local microenvironment and physical forces surrounding
the cells can play a crucial role in several physiological mechan-
isms including embryonic development, in adult physiology, and
in a wide variety of different disorders and diseases. For example,
in tissue development, the local physical forces can control dorsal
closure, epithelial morphogenesis and skeletal growth, ECM
remodeling, vascular inflammation as well as tissue regeneration
processes.”*™'* In addition, at the cellular scale, cell-generated
contractile forces can dictate both the cytoskeleton assembly and
cellular architecture formation.">**®

Conversely, cells translate these mechanical stimuli into
biochemical responses in a process that is typically referred to as
mechanotransduction.””"*® Therefore, the cell ability to sense the
mechanical properties surrounding them is a key decision-making
factor influencing cellular responses to biomaterials.">'** Fig. 5
shows how myosin motors and mechanosensors play a role in
mechanotransduction pathways.'"**' The cellular membrane is the
main location of force transmission from the ECM to cells. When
cells encounter a stiff substrate, several multiprotein complexes
known as focal adhesions are activated and become the central hub
of cell-ECM interactions.

The mechanosensing activity of focal adhesions includes
recognizing and transporting mechanical signals from the ECM
to the cellular cytoskeleton. Many of the focal adhesion complexes
have both transmembrane and intracellular components. The
intracellular layer is an interface between the transmembrane
components and the actin cytoskeleton.'””***'%> The molecular
composition of the focal adhesion core can be very diverse and is
mainly sensitive to the ECM composition and mechanics.'®*'**
Focal adhesions are created after the assembly of transmembrane
proteins for physical interactions with ECM components.

Chen W. et al."® reported that the “inside-outside signaling”
mechanism inside cells or extracellular mechanical stimuli
control integrin affinity for its ECM ligand.'®> The activated
integrins assemble and strengthen the molecular links at the
cell-matrix interface.'®® The ECM structure can elicit the expres-
sion of certain integrin subsets, which in combination with other
biochemical signaling pathways can lead to particular cellular
responses to physical forces.'®” Artola et al.'®® revealed that cells
can adjust their force production to be ideal at tissues with
different physiological conditions by controlling the expression
of various integrin types.'®®
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Fig. 5 An illustration of mechanotransduction pathways. Focal adhesions
(FAs) interpret extracellular physical stimuli at the cell-ECM interface. Then,
the received signals spread through the cytoskeleton and move to the nucleus
where mechanoactuators (MA) activate mechanosensitive genes. ACTN, acti-
nin; CFL, cofilin; FAK, focal adhesion kinase; INM, inner nuclear membrane; IT,
integrin; LIMK, LIM kinase; mDia, diaphanous-related formin-1; Myoll, myosin II;
NPC, nuclear pore complex; ONM, outer nuclear membrane; PAX, paxillin; PS,
perinuclear space; ROCK, Rho-associated protein kinase; TLN, talin; VASP,
vasodilator-stimulated phosphoprotein; ZYX, zyxin.

In addition, cells can control their own mechanical proper-
ties through changing their cytoskeletal architecture, which is a
dynamic network of filamentous and cross-linking proteins."®®
Cytoskeleton networks contain three main components includ-
ing actin fibers, microtubules and intermediate filaments."”°
The F-actin sliding on the motor protein myosin II provides the
cytoskeleton contractility.'”*

In summary, the mechanical properties of the cell micro-
environment display a direct effect on several cellular functions
after their translation to biochemical signals. Therefore, it is
undeniable that the mechanotransduction pathways and their
following biochemical signals play critical roles in directing
host responses to biomaterials.'"'®" We will discuss the effects
of biomaterial surface physicochemistry on the biochemical
signals caused by mechanotransduction pathways in more
detail in the subsequent sections.

9. Biomaterial strategies for directing
biological responses

9.1. Impact of biomaterial surface physical properties on
biological responses

The physical properties of the biomaterial surface can direct
biophysical and biochemical signaling pathways involved in
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cellular responses to the surface. However, the mechanisms
involved in cell responses to these surface properties are not yet
fully understood. In the following sections, we provide a brief
overview of the current progress and challenges in this field.

9.1.1. Biological responses to biomaterial surface topo-
graphy. Since 1945, the contact guidance term has been used
to emphasize that topographical features of the biomaterial
surface can control biochemical and biophysical signaling
pathways.'”? Surface topographical parameters including both
surface patterns and roughness'”® can affect the orientation of
cells and stress fibers, which we discuss in detail here.

9.1.1.1. Biological responses to feature size and geometry of
biomaterial surface. In the natural processes of tissue healing
and/or regeneration, the curvature or topographical features of
other surrounding cells and ECM guide the injured cell
functions.””*'”> Hence, the surface topography of scaffolds
can affect the cell fate determination, adhesion, polarization,
and migration through manipulating physicochemical signaling
pathways.'”® Topographical features including shape, size, and
geometric structures can direct cellular functions through influ-
encing either the cytoskeleton organization and protein orienta-
tion or protein unfolding.

Actin filaments can spread out on the 2D structure of flat
surfaces; however, the curved surfaces offer a 3D network for
cells to grow inside the material."”” Rianna et al.'’® studied
the mechanotransduction pathways and biochemical factors
behind cell responses to topographical patterns through
investigating the mechanical properties of peripheral and
nuclear regions of cultured NIH-3T3 cells on azopolymer
scaffolds with various topographical patterns. They designed
micrometer scale patterns in either parallel ridge or square
lattice geometry and then studied the mechanical cell
responses by atomic force microscopy (AFM). Their results
indicated that surface topographical features stimulate the
cytoskeleton network to generate some forces, which affect
nucleus functions.'”® Scientists and engineers used a wide
range of strategies for improving the topographical features
of biomaterials and therefore controlling cell functions in a
non-invasive manner.’”®®! The topographical patterns can
be represented either anisotropically by grooves and ridges
or isotropically through random spreading of protrusions
and pits."®

Regarding anisotropic patterns, studies investigate the
alignment of cells alongside the anisotropic direction regard-
less of the topography scale. However, in isotropic topo-
graphies, which have more effects on cell signaling pathways,
the topography size plays a key role in controlling cell
responses to patterns.'®**'®* Among the topographic para-
meters, the size of designed patterns, in both micro- and
nano-scales, can play a vital role in controlling cell functions.
The micro-scale patterns can profoundly influence the overall
cell morphology; however, the nano-scale topographies are
more critical in controlling the molecular and subcellular
physicochemical sensing pathways.'8%'>
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Padmanabhan et al'®® investigated the role of surface
topography size and stiffness of metallic glass nanorod arrays
on cell-cell fusion. They revealed that the topographic features
in nano-scale size can dominate biochemical signals in decreasing
fusion through controlling cytoskeletal remodeling-associated
signaling pathways.'®® Researchers focus on manipulating protein
adsorption mechanisms and signaling pathways via designing
substrates with nano-scale surface topography.'®”'*® In addition,
the nano-scale substrates can be used to answer basic questions
concerning protein adsorption/desorption at the nano-scale.
Wang et al."®° developed a patterned poly(2-(dimethylamino)ethyl
methacrylate) (PDMAEMA) brush with sub-100 nm structures over
large areas by combining block copolymer micelle lithography
and surface-initiated atom transfer radical polymerization
(ATRP)."® The PDMAEMA brushes were neutralized and
collapsed at pH 9, while positively charged and swollen at pH
4. The authors studied bovine serum albumin (BSA) adsorption
on PDMAEMA brushes using laser scanning confocal micro-
scopy, AFM, and quartz crystal microbalance with dissipation
(QCM-D). Because of the steady sub-100 nm topography of the
patterned brushes, the authors could observe the protein
adsorption mechanisms inside and outside of brushes using
the AFM technique (Fig. 6)."*°

However, there are still some contradictions between the
research results, which could be owing to the following reasons:

(i) Considering one individual defined scale for topographical
features while biological environments are rich in physicochemical
gradients.

(ii) Mostly, researchers focus on cell responses to one
individual physical or chemical property. However, we recom-
mend considering the synergistic effects of topographical
and chemical properties of the surface on each other.
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Fig. 6 (A) A representative graphic of fabricating patterned poly-
(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes with sub-
100 nm structures over large areas using a combination of block copolymer
micelle lithography and surface-initiated atom transfer radical polymerization
(ATRP). (B) A schematic illustration of protein adsorption mechanisms inside
and outside of brushes with a nanostructured surface. Reproduced from
ref. 189 published by The Royal Society of Chemistry.
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Surface nanofunctionalization has attracted much attention as
a promising strategy for enhancing cell responses to biomaterials,
which we will address later in this paper.

Liu et al.*®® designed some surface nanotopography gradi-
ents through surface immobilization of gold nanoparticles in
a density-dependent manner. They modified the surface
chemistry of scaffolds via coating a thin plasma polymerized
film with allylamine (AA) or acrylic acid (AC) chemical compo-
sition on the surface (Fig. 7A). They revealed that surface
nanotopography plays the main role in stimulating the initial
cell adhesion and spreading. However, both topographical and
chemical properties of the surface govern cell differentiation."*
After culturing osteoblast-like SaOS-2 cells on surfaces, surface
nanotopography could enhance the stimulating effects of allyl-
amine chemical treatment on osteogenic differentiation (Fig. 7B).
Furthermore, in the natural in vivo conditions, the biological
interactions with surface topographical features occur in an
inhomogeneous and dynamic environment. These inhomogeneous
dynamic interactions between micro/nano topographical patterns
and molecules are complicated because local changes in other
surface features, mainly chemistry, control attractive and repulsive
forces on the surface.””' Some strategies are available to design
dynamic topographical features without disturbing environmental
conditions or affecting the surface chemistry of scaffolds.

Hernandez et al.'®' suggested an in vitro approach for
stimulating cells with dynamic topographical features of
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Fig. 7 (A) An illustration of the process to design the biomaterial with
different surface topography gradient designed from three different sized
gold nanoparticles (16, 38, 68 nm) coated with acrylic acid (AC) and
allylamine as uppermost surface chemistry modification (AA) (i.e. AC 16,
AC 38, and AC 68). (B) They cultured osteoblast-like SaOS-2 cells for seven
days. The surface nanotopography could improve the influence of AA
chemical treatment on osteogenic differentiation, especially on AA 68
surfaces. The ALP expression of cells was highest at position 8 mm of AA.
Scale bar = 100 pm. Reprinted from ref. 190. Copyright © 2018, Elsevier.
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Fig. 8 In situ imprinting of topographical properties on protein-based
hydrogel scaffolds. (A) Multiphoton excitation of the photosensitizer in
the scaffold through a pulsed near-IR laser beam enhanced hydrogel
contraction. Through limiting the excitation to 3D defined volumes,
the authors could achieve imprinting without exposing cell or material
surfaces to optical destruction. (B-D) In situ imprinting under cultured
cells. The authors imprinted different topographies in the presence of cells
such as micropost arrays (B), grooves (C), and annular depressions (D).
All numbers are in units of um. Reprinted with permission from ref. 181.
Copyright © 2018, American Chemical Society.

protein-based hydrogel surfaces. They modified scaffolds
in situ in real time by positioning a pulsed near-infrared laser
focus inside a hydrogel, which leads to enhancement of the
chemical cross-linking and consequently local contraction of
the protein matrix. Fig. 8 shows that exposing hydrogels to
a series of scan patterns can generate, remove, or retreat
topographical patterns without having destructive effects on
other surface properties or cell functions."®" By using a laser-
based confocal microscope technique, researchers can also
design a synthetic scaffold capable of controlling cell orienta-
tion and migration in time and space without affecting surface
chemistry.'”> However, stimulating spatiotemporal dynamic
topographic parameters without affecting surface chemistry is
still in its infancy and needs more research.

9.1.1.2. Biological responses to biomaterial surface roughness.
Surface roughness relates to the texture of the biomaterial
surface and is commonly represented with the roughness value
(R./S.), which quantitatively represents the roughness grade.'”**
The broadly used techniques for producing and controlling surface
protrusions and/or depressions are blasting, electropolishing,
nanoparticle/fiber formation, and nanofabrication technologies
such as photolithography.'”®'**1%5 Using chemical surface
treatments such as acid etching can further increase the surface
roughness when compared with traditional machining
techniques.’®® The biomaterial surface roughness can directly
dictate specific cellular responses. For example, Barr et al.'®”
studied the biocompatibility of 13 commercially available breast
implants by focusing on macrophage responses to their roughness
feature. They showed that macrophage responses to surface
roughness determine the biocompatibility of implants.*®”
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By considering the current assumptions about the effects of
surface roughness on biological functions, one may identify
several challenges:

(i) The first challenge relates to the other suggested para-
meters, which besides R, can play key roles in determining
surface roughness. Anselme and co-workers'*®*2°° showed that
the fractal dimension (4) and the developed surface can also be
key parameters in determining surface roughness. The fractal
dimension parameter can be useful in measuring surface
disorder; however, the developed surface factor is related to
the surface detachment index."”® The mean distance between
peaks (RS;,), the sum of the average height of the five highest
profile peaks and the average depth of the 5 deepest profile
valleys calculated from the parallel line to the mean line (S,),
kurtosis (Siy), skewness (Sg) and fluid core index (S.) are
important roughness parameters.”® 2%

(ii) We cannot decide about host responses to biomaterials
based on improving only one physicochemical property or
(iii) testing with one or two cell types in vitro. However, several
research groups reported designing biocompatible materials by
only improving their roughness through mainly focusing on R,
measurement and in vitro testing with one or two cell types.
Table 1 shows that increasing the surface roughness of one
biomaterial can have positive effects on one cell type or protein
(a phenomenon called rugophilia); however, it can have nega-
tive influences on other types. Increasing the surface roughness
can decrease or not affect the proliferation and/or differentia-
tion of leukocytes, keratinocytes, and monocytes; however,
it can improve osteoblast proliferation on the surface.?°¢72%%

(iv) Even in one cell type, the surface roughness can affect
different cell functions including cell adhesion, migration,
proliferation, and differentiation in various ways. Increasing
the surface roughness reduces the proliferation and increases
the differentiation of osteoblasts.”’*>'" When we evaluate host
responses to biomaterials in tissues containing different cell
types, the differences between responses of various cells to
surface roughness can pose many challenges.>'**"3

(v) On the other hand, there is a considerable contradiction
between the literature outcomes when it comes to one particular
cell type response to surface roughness. These contradictions
could arise from the current misuse of biocompatibility definition
by ignoring critical biochemical signal transduction pathways,
which indeed might play vital roles in determining cell
responses.''? For example, Saldana et al.>** studied the role
of mechanotransduction pathways in controlling human-MSC
(hMSCs) responses to stainless steel surface roughness. In this
study, the surface R, was manipulated with 2 nm or 0.9 um for
smooth and rough samples, respectively. Fig. 9A provides an
overall perspective of the multitude of receptors and proteins
that were involved in this study. It shows that under static
conditions, improving stainless steel roughness increases the
expression of biochemical markers including PGE2, vascular
endothelial growth factor (VEGF), and receptor activator of
nuclear factor kappa-B ligand (RANKL) as well as the phosphoryla-
tion of focal adhesion kinase (FAK) to its active form (Tyr-397).**
Moreover, Fig. 9B indicates that applying tensile forces to the
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plasma membrane of hMSCs improves VEGF secretion on
smooth surfaces as well as PGE2 amounts and osteoprote-
gerin/RANKL proportion on both smooth and rough surfaces.
Although mechanical stretch does not affect smooth surfaces, it
stimulates FAK phosphorylation at Tyr397 on rough surfaces.
Overall, showing the influence of stretch in enhancing FAK
phosphorylation at Tyr397 on rough surfaces (R, = 0.9 pum) is
evidence for the current hypothesis that mechanotransduction
pathways can be substantial factors in directing cell responses
to surface roughness.”™*

(vi) Although surface roughness can have positive or negative
effects on cell responses in short-term periods (less than 48 h),
its influence can change over time. Therefore, it is recommended
to consider both short-and long-term cell responses to surface
roughness. For example, Lee et al.>*® suggested a new strategy
for controlling the sensitivity of different cell functions to surface
roughness through using shape memory materials. They
designed a shape memory (meth) acrylate copolymer with
thermomechanical properties, which had a time-dependent
dynamic surface change from smooth to rough under cell
culture conditions. They used soft lithography techniques for
making rough surfaces and then by applying compression
decreased the surface roughness to generate smooth areas.
Their results showed that under static conditions, surface
roughness does not affect osteoblast amount, alkaline phos-
phatase specific activity (ALP), as well as osteoprotegerin and
VEGF expression; however, it enhances osteocalcin expression.
After three days of culture of cells on rough surfaces under
dynamic conditions, surface roughness caused a decrease in
DNA content and an increase in osteocalcin and osteoprotegerin
expression.”%®

(vii) Another challenge involves the determination of the
critical roughness value for each specific biomaterial type. The
reported roughness value is different from study to study.
Although a few statistical studies have revealed the critical
roughness value on different surfaces,'*®*' it is still difficult
to define one critical roughness value, which can properly guide
cell functions. Therefore, researchers suggest decreasing dis-
similarities between cell responses by considering an average
roughness gradient, rather than individual numbers.?***'® For
instance, Zhou et al.>'® designed some polydimethylsiloxane
(PDMS) substrates with surface roughness gradients by using a
combination of microfluidics and photopolymerization techni-
ques. They grafted N-isopropylacrylamide (NIPAM) with
concentration gradients onto PDMS substrates, which pro-
duced a gradient of roughness ranging from 2.6 £ 0.7 nm to
163.6 & 11.7 nm on the surface (Fig. 10A). The applied gradient
improves cell attachment on the surface in both MSCs and
hepatocellular carcinoma cell lines (HepG-2) (Fig. 10B).>*°

(viii) Designing biomaterials with multiscale surface rough-
ness in both micro- and nano-scale can also improve cell
responses. A roughness gradient in both micro- and nano-
scale can improve interactions between various cell or protein
types on the surface.””’

(ix) The synergistic effects of roughness with other physical
and chemical properties, which are different depending on the

Chem. Soc. Rev., 2020, 49, 5178-5224 | 5189


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00103a

View Article Online

Review Article

Chem Soc Rev

‘(vH) ainedesxo1pAy ‘(deD)

sareyydsoyd wnrores ‘(14) auaidosifod-7*T {(Odd) op1xo sud[AypaAiod ‘(S[[22 F-99TINM) PUE (S[[99 STTIAM dDA) SIUI] [[90 BWoue[ow om) {(gHd) 23e1fingixorpAyLjod (SO z-n) [[99 BWOIIBS0]SO
auoq uewny ‘(¢Lg HIN) sISe[qoiqly oruoAIquua asnow {(v11d) (opnoel-1)ijod (S20) arearfis winiofedlp {(dnL) wniofesn ‘(godoH) aulf [[20 190Ued I9AI] UBWINY B ‘(SINAd) duexo[isjAyawipAjod
‘(INVdIN) oprweliioe[fdoidost-N ‘(TH-ELEDIN) Ul [[90 I[-Ise[qoaiso asnow & ‘(Py) ssauySnox sderaae axenbs ueaw joo1 {(4D/VH-U/MAAd) saysoduwiod Areuay syyededxoipAyoueu—Naadddd
{(Wsy) saead usamiaq douBISIP UBIW ‘(S[[39 £9-DIA) UI] [[99 BWODILS0SO uewINy B (VN) d[qe[reae jou ‘(10d) (euoloejordes-3)Ajod ‘(sy) 9oeyins ygdno1 ‘(SS) 9oeJINS YIOOWS :SUONIRIAIQQY

'S9A0013 IOPIM UO UOIIBIUILIO ISB[q0ISO J03jje A[UO Ued I]
‘JUNOWE [EONLID B UBY) J9MO[ ST YIPIM 940013 pue d1donost ST ssauy3nol uaym

[993S ssa[ureIs

(914 SWISIUBYDIUW UOISAYPE ISB[OISO UO J03JJd OU Sey IJURI SIY) UI SSaUYINoI adeying VN wir 1°0-10°0 T9T€ B FAI[VLL
‘ssauydno1 aoeyIns
¥1¢T 03 sasuodsa1 DS JUTUTWINAP UT S9[01 Ay Ae[d sAemyred uononpsueInIOUBYIIN VN wr 6'0 = SY B WU ¢ = SS [993s sso[urels
*A)Iqe UonedIv[ed pue ‘uoneIdyoid yuaurydene [[20 SuIseaIddp
T€T y3no1y) suonouny [[90 TA-ELEDIN SHIQIYUI SSaUYINOI 9eJINns 3} JuIsearoug VN wu 00T wniuejy,
*sadeydoIoew JO UOTIBIIUSIOHIP J1U3091SO
(454 pue sisauad 3Se[00931SO UO JIUIN[JUI [BUONBUIQUIOD B dABY UBD SSauy3noI adejing VN wr €9°¢-20°0 WNIuejL],
*L171qe o1ruadoanso pue ‘sadeydoroew 1 adA) 03 azirejod 03 Aouspua)
1€T a3eydoIorwl ‘UOIIBIIUSIIYIP ISB[(OISO SISBIIDUI SSAUYINOI 90eJINS Y3 SUISeaIou] VN wu 00F-00T WnIuelLy,
‘uone1djioid 1Se[q0aISO SISLAIIUT JIBJINS Y3 03 UTUOIE[OW SUIPPY Uuruoje[dW pue
96T *2INI[ND [[39 Y ¢ 193 UOISIYPE ISB[(OISO SISLIIIUT SSOUYINOI 90BJINS ) FUISBIIOUT JUSWIBAI) d0BJINS wr 9T€"0 ‘££2°0 ‘VTIT°0 AVIVILL
0€T ‘uonerdjioid [[90 TH-SLEDIN asea1our aduel wirl 00 T-0S"0 Y3 UI %Y Ym S90eJINg VN wr 08°T-0£°0~ FA9IVIL
‘wirl 2T = By uaym SDSIAL JO UONRNUSISHIP d1ua3091S0 9} SaseaIdur dDI-g
‘wirl 6°T = By 38 SDSIA JO A1anoe Suizijeraurwr Ioydy sasned vH dDI-g pue VH 3m
62¢ *A1STWIdYD 90eJINS U0 spuadop SSaUYSNOI 3JBJINS JO 2OUINIUT YL JUSWIIBaT) [BITWAYD ‘wirl £°7-6°0 33 Wil ¢6gT deD
89V = % ‘wirl 8£°7-£9°0 = °¥ dDILr pue syeydsoyd
70T 'ssouy3no1 a0eyIns 3urseaoul Aq uoneiayijoid pue uoisaype DS SUISLIIOU] S%D JO 9%IM ('€ 10 %IM G'T ‘il 62°2-9%°0 = %Y WNIO[EJIL -0
‘oaa U1 UONEISIIUIOISSO pue AJIAIIOBOI] SISLAIIUT SSaUYINOI oINS J[qeIINs wrl $9°¢—21°0 ~ Py
87T ‘uoneIdjjo1d/;uswyoeIe [[90 £9-DN SISBIIOIUT SSIUYSINOI IIBJINS IBIIPON JUSUIBAI) d0BJINS ‘wirl 66°2-60°0 ~ AD/VH-UNAA
By w ¢
1T¢ 0} paredwod oaza w1 pue o314 Ul Y3oq Sasuodsal ISB[qOIISO 19339q Smoys %y wrl 2T VN wi €% /2T BIUODIIZ
*S[[99 #-99TIAM 3m uostredwiod ur ssauy3nor pue wu 6-T = Py
92T £ro1qoydoIpAy snorrea Yiim S90eJINS UO I9YSIY oIe S9010J UOISAYPE [[29 STTINM dDA AiqoydorpAH VN = %y 1d ® Odd
wu 0/7 = gHd PoIed1L
44 'sasuodsar gL.¢ HIN SUururuIalap ut ajox 3uipes] e Aefd ued ssauydnor s0ejing JUSUIIEAT) dJBJINS IISET WU 6°¢€ = gHd 2Unsld qaHd
‘uoneIdyIoid ISe[q0aISO SISLIINP
$2¢ 1 “19A9moy ‘uoneradjijoid Ise[qoIqIy SaseaIdur ssauydnol adeyins oy} Suiseaiouy VN wi 07 X 02-1 X T vT11d
Juawiyoene g-odoH
91¢ pue DSIA JO SUOIZaI PUE JUNOWIR IOq UI 9SBIIIIP B SISNED SSaUYSNnol ay3 Surseaioug VN wu £'TT F 9°€9T-2°0 F 9°C NVJINd B8 SINAd
*ssauy3no1 3uiseardap
£q ‘osereydsoyd proe Jue)IsISaI-9)eIIIe] ‘ISIBW ISB[003ISO 93 JO AJIATIOR oY) SUISBAIOU]
€1¢ "UONRNUSIHIP PUE JUIUIYILIIE JSB[(OIISO SISLAIIUT SSaUYIN01 a0eJIns ay3 urseaiduy duneod VH wil g ‘e ‘T 1Dd
'S90BJINS Yjoows YIm uostredwod
Ul S90BJINS Y3N0I U0 PIAIISO 3 Ued SDSIA JO UOIssaidxs auad pue jusunuuiod wil €e-¥17 ~ ey
10T 2123093150 IR[IWIS 10 ‘Tamo[s ‘Iayse} “Quarperd ssauydnol aoeyins oy uo Surpuadag VN R wi £'p-60~ Dd
*S[[99
€T £9-DJA JO UONIENIUAIPIP pue ‘uoneIajijoid quawyoeie [[90 [enur ay3 Suisearouy aoejans o1iydoipAH wu 16 F ¥59 Dd
*Apoayraduut 10 Arenpe1d moid 03 saikoournrerdy eardurd
80T uewiny pue suondun( ULIYPed-F 9XBW SUOISUSWIP I9}oW-0UBU 3IM Sadeyins ydnoyg VN wu £98 ‘S0S ‘TCT ~ auaifisAjod
*S1030BJ AT0JEUIWE[JUI UO SIOUINJUI S[qRLIBA SBY %
“unowre a3 uo Jurpuadaq -asuodsal A1orewrwuepjur-oid a3 asearour oy fenuajod
L6T ayeuur ue pue uonezirejod adeydoioew 100d saonput 93uel SIY) UT SSOUYSINOI 30BJINS VN wn €0°08-£0°'T UodI[IS
REX| sasuodsar [[2D sontadoid TesrwayooorsAyd o’ S[eLINBIN

payIpow 19YI0

S|el21ewolq UBJaLIP JO SSBUYBNOJ 8BNS BU) 0} SESUOJSa 1192 UO SDIPNIS JUSD3J 3SOW 3U) JO MBIAIBAO UY T a)qel

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()
"INV 6T'6T:€ G202/.2/0T Uo pepeojumoq ‘020z AINC 60 U0 paus!and (01 ss800y usdO

This journal is © The Royal Society of Chemistry 2020

5190 | Chem. Soc. Rev., 2020, 49, 5178-5224


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00103a

Open Access Article. Published on 09 July 2020. Downloaded on 10/27/2025 3:19:19 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

[{ec

Review Article

View Article Online

Chem Soc Rev

Static

Mechanical stretch

VEGF

VEGF

Cell viability
i Matrix production

Cell mineralization

VEGF

Cell viability
— Matrix production
Cell mineralization

Fig. 9 A summary of hMSC changes cultured on stainless steel substrates with different roughness, with 2 nm or 0.9 pm for smooth and rough samples,
respectively, after mechanical stimulation. The authors treated cultured cells with FesO,4 beads (black circles) and then subjected them to mechanical
stretching (+Force). (A) Under static conditions, improving the roughness of stainless steel causes greater prostaglandin E2 (PGE2) and vascular
endothelial growth factor (VEGF) expression. Focal adhesion kinase (FAK) phosphorylation to the active form (Tyr-397) is also improved. (B) The
mechanical stimulation improves VEGF expression on smooth samples and PGE2 amounts as well as osteoprotegerin/receptor activator of nuclear factor
kappa-B ligand (OPG/RANKL) proportion on both surfaces. The mechanical stimulation of cells enhances FAK phosphorylation degrees on rough

surfaces; however, it does not affect smooth surfaces.

situation, can also cause contradictions. Rough surfaces with
different topographies or stiffness have various influences on
cell functions.>'® The same roughness value in two different
types of materials can affect cell responses differently, which
can be owing to the differences in their chemistry.**>??
Fukuda et al.>*® investigated the osseointegration ability of a
poly(ether ether ketone) implant by enhancing its surface
roughness and/or surface chemistry (Fig. 11A). Fig. 11B shows
that phosphorylation of the surface enhances cell responses on
both smooth and rough surfaces, with more improvement on
rough surfaces. However, only modifying the surface roughness
cannot improve MSC responses. Fig. 11C shows the substantial
effects of the combined surface modification strategies on bone
regeneration in the rabbit tibia.**° Both chemistry and roughness
properties of the surface play roles in neo-tissue formation.

This journal is © The Royal Society of Chemistry 2020

9.1.2. Biological responses to biomaterial surface stiffness.
The biomaterial stiffness defines the quantity of vital force,
which is required for making some changes in the biomaterial
surface and the surrounding environment. Because in the
tissue engineering field stiffness and elasticity are often used
interchangeably, here we use the stiffness term for discussing
the mechanical properties of biomaterial surface. The surface
stiffness can play key roles in regulating biochemical signaling
pathways and cell behaviors including cell adhesion, spreading,
migration, differentiation, and proliferation (Table 2).>'***

Navarrete et al.>** studied the substantial effects of bio-
material surface stiffness in determining the MSC fate by
investigating the MSC differentiation to osteoblasts and chon-
drocytes as two narrowly interconnected cell phenotypes. They
designed four methyl acrylate/methyl methacrylate scaffolds
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(A) The optical images of the polydimethylsiloxane (PDMS) surface grafted with N-isopropylacrylamide (NIPAM) with concentration gradients.

A total of five samples were represented with flexible Q1 and fixed Q2 (microchannels were injected with red (Q1) and green (Q2) dye solutions to
improve the contrast). Branch one contained the highest NIPAM concentration and branch six had the lowest. (B) Fluorescence images of MSC and
HepG-2 cell attachment on the surface with various roughness grades. The authors stained HepG-2 cells with cell tracker dye (green) and MSCs were
transfected with GFP (green). Ace Was applied to determine the total cell adhesion region; however, A, was the total area of the vision (Aceu/Aay is the
proportion between the total area of cell adhesion and the captured vision). The scale bar is 50 pm. Reprinted with permission from ref. 216. Copyright ©

2015, American Chemical Society.

with elastic moduli ranging from 0.1 MPa to 310 MPa and then
cultured cells on them. They reported that on softer surfaces,
MSCs tend to increase the expression of chondrogenesis factors
such as aggrecan, SOX9 (a chondrogenic transcription factor),
type II collagen, and proteoglycan amount. However, the
expression of osteogenesis factors including Runt-related
transcription factor 2, ALP specific activity, osteocalcin, and
osteoprotegerin decreases on softer surfaces. The expression
of integrin subunits a1, o2, a5, av, f1, and B3 is important
in starting signaling pathways in response to the surface
stiffness.”**

5192 | Chem. Soc. Rev., 2020, 49, 5178-5224

Although it is clear that modifying the surface stiffness
can affect cell responses, there are still some challenges, as
described in the following paragraphs.

(i) The mismatch between surface stiffness and cells is a
reason for foreign body responses. Moshayedi and co-workers®**
investigated the reason for glial cell activation and encapsulation
of implanted electrodes. They reported that nervous glial cells
are highly sensitive to the surface mechanical properties and
adjusting the stiffness leads to decreased adverse reactions.”*®
This is because of differences in the mechanical properties of
various tissues (soft, like brain or ECM, to stiff, like bundled

This journal is © The Royal Society of Chemistry 2020
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(A) A schematic of poly(ether ether ketone) (PEEK) surface phosphorylation. (B) Scanning electron microscopy (SEM) images of the biomaterial

surface. S-NT: unmodified PEEK, S-PT: phosphorylated PEEK with a smooth surface, R-NT: sandblasted PEEK, R-PT: phosphorylated PEEK with a
sandblasted surface. (C) Biomaterial implantation in the rabbit tibia. Illustrative histological images of neo-tissue formation and osseointegration of
samples four weeks after surgery. The white arrows show neo-tissue formation at the interface with substrates. Scale bars, 500 pm. Reprinted from
ref. 220. Copyright © 2018, Springer Nature in accordance to Creative Commons Attribution License.

collagen or bone).>** At molecular levels, the stiffness of ECM
components is also different from each other so that single
collagen fibers are more rigid than fibrillary collagen
structures.>*”

(ii) There are synergistic effects between stiffness, topo-
graphy and/or chemistry of biomaterials so that surface
stiffness also depends on the surface composition and topo-
graphy."®® The surface stiffness of biomaterials can be adjusted
through directly altering the polymer ratio and cross-linker
solution or treatment temperature and/or period.">> More
recently, researchers designed several covalently cross-linked
hydrogels to investigate the synergistic effects of surface
chemistry and stiffness in controlling cell adhesion and
migration.”*® They made some scaffolds by synthetic coupling
of ECM proteins to the surface of hydrogels. The results
revealed that the surface biochemistry of substrates could
influence cell responses to surface stiffness.>®

(iii) The surface chemistry of biomaterials could explain the
contradictions between research results as different types of
biomaterials have different chemistries and consequently
different stiffness. Li et al.>*° compared the roles of both bulk
and interfacial stiffness of PDMS and polyacrylamide (PAAm)

This journal is © The Royal Society of Chemistry 2020

scaffolds in guiding A549 cell behaviors.>*® They cultured cells
on the surfaces of scaffolds with bulk stiffness ranging from
0.1 kPa to 40 kPa. On PAAm scaffolds, bulk stiffness directly
affects the cell spreading speed. However, on PDMS scaffolds,
the coated silica layer on the surface directs cell functions.>*°
Because of the synergistic effects of biochemical and mechan-
ical cues on cell responses, there are some challenges in
clarifying the individual effects of each surface feature on cell
responses.

Nii et al**® designed a 3D combinatorial hydrogel with
individually adjustable biochemical and mechanical features
to investigate the influence of interactive niche cues on the
osteogenesis ability of adipose tissue-derived stem cells.**°
Their results indicated that stiffness and biochemical cues
interact in a non-linear manner, emphasizing their complex
synergistic influence on cell behaviors.>*°

(iv) Most of the suggested approaches for stiffness genera-
tion and/or regulation are restricted to designing materials with
static stiffness for dynamic cells. Wang et al.**' synthesized
some polyelectrolyte multilayer films, whose mechanical
properties are controlled dynamically through slight stimuli.**'
They designed the films via different deposition of poly-1-lysine

Chem. Soc. Rev., 2020, 49, 5178-5224 | 5193
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Surface stiffness and topographical cues influence MSC morphology and aggregation at the earlier phase of MSC chondrogenic
Integrin subunit expression alters depending on the stiffness value of the surface and cell types. Surface stiffness values can

Softer pillar surfaces stimulate the formation of hyaline-like cartilage with middle/deep zone cartilage features.

Stiffer nanopillar areas increase the formation of hyaline/fibro/hypertrophic cartilage.
MQMs: collagen type I expression is 2-3 times higher on stiff nanopillar surfaces compared to soft surfaces.

MQMs: NA or difficult to summarize.

Cell responses
mer concentration determine and change the fate of MSCs.

ent materials with  differentiation.

different stiffness

properties
Changing mono-

modification
approach
By testing differ-

Stiffness
hyaluronan (HA-SH), poly(glycerol sebacate) (PGS), alkaline phosphates (ALP), n-octyl methacrylate-diethylene glycol dimethacrylate (DEGDMA/nOM), valvular interstitial cell (VIC), alpha

smooth muscle actin (aSMA), polycaprolactone (PCL), polylactide (PLA), polyglycolide (PGA), umbilical cord mesenchymal stem cells (UC-MSCs), methyl acrylate/methyl methacrylate (MA/

MMA), methacrylated hyaluronic acid (MeHA), human adipose derived stem cell (hASC), major quantitative measurements (MQMs), sulfated glycosaminoglycans (SGAG).

Abbreviations: mouse fibroblasts (NIH3T3), thiolated heparin (Hep-SH), diacrylated poly(ethylene glycol) (PEG-DA), polyacrylamide (PAAm), adipose-derived stem cells (ADSCs), poly(ethylene
glycol)-diacrylate (PEGDA), molecular weight (MW), human dermal fibroblasts (HDFs), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), polyelectrolyte multilayer (PEM), hepatic stellate

cells (HSCs), methacrylated hyaluronic acid (MeHA), gelatin-hydroxyphenylpropionic acid (Gtn-HPA), storage modulus (G’), glycosaminoglycans (GAGs), poly-L-lysine (PLL), thiol group modified
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and thiol group treated hyaluronan (Fig. 12). This method
increases the surface stiffness resulting in enhanced fibroblasts
cell adhesion. However, using glutathione dynamically decreases
surface stiffness leading to reduced cell adhesion.**!

(v) The native ECM contains complex mechanical pathways,
such as time-dependent dynamic manners and nonlinear stiff-
ness. Deciding about the mechanotransduction pathways
based on the hydrogels, as commonly used materials for
investigating mechanical cues, which have simple linear elastic
mechanics can lead to biomaterial failure after implantation.*?
While cell spreading depends on the absolute stiffness of the
surface, their alignment and migration depend on the stiffness
gradient.>*?

Researchers typically pattern stiffness gradients by using
different cross-linking densities, through either introducing
chemical gradients in cross-linkers or different exposure of
> Evans et al®** studied the
migration and morphodynamics of Schwann cells on polyacry-
lamide scaffolds containing stiffness gradients on their
surfaces.>** The cells could track the slope of stiffness gradients
on the surfaces through the durotaxis mechanism, which

photosensitive cross-linkers.

supports the hypothesis that Schwann cells are extremely
sensitive indicators of mechanical gradients.>** Additionally,
scientists designed polyacrylamide hydrogels with stiffness
gradients at their surface through controlling the differential
diffusion distance of free cross-linkers and monomers into a
prepolymerized hydrogel environment.”*® They showed that
lower gradients allow detecting more unknown stem cell
responses, such as the concentration-dependent rather than
switch-like reactions of mechanosensitive proteins (such as yes-
associated protein) to some gradient amounts.”*

(vi) We should also address the synergistic influence of other
physicochemical properties with stiffness on cell responses. For
example, Wu et al.>*® studied the synergistic influence of sur-
face nano-topography, chemistry and stiffness in controlling
MSC chondrogenesis.>*® They designed three polyesters (poly-
epsilon-caprolactone, polylactic acid, polyglycolide) with differ-
ent stiffness values and then generated nano-grating or pillar
patterns of the same scale on surfaces. They also coated
chondroitin sulphate on the surfaces to increase the chance
of cell adhesion. They revealed that both surface stiffness and
topographical features affect MSC morphology and aggrega-
tion. Softer pillar surfaces induce hyaline-like cartilage for-
mation with middle/deep zone cartilage features; however,
stiffer nanopillar surfaces stimulate hyaline/fibro/hypertrophic
cartilage formation. Nano-grating of lower stiffness values
causes fibro/superficial zone-like cartilage formation; neverthe-
less, greater stiffness with the same topography cannot stimu-
246 Hence, different cell functions are
affected by the simultaneous influence of various physicochem-
ical properties, which can also up- or down-regulate each
other’s influence.**®

(vii) As the mechanobiology field is still in its early stages,
before making firm decisions about the role of stiffness and
applying it, further biochemistry research on how cells trans-
late mechanical signals to biochemical ones is essential. To

late chondrogenesis.
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Fig. 12 A schematic representation of NIH/3T3 cell responses to cross-linking and decross-linking of poly-L-lysine (PLL) and thiol group treated

hyaluronan (PLL/HA-SH) multilayer substrates.

investigate the mechanotransduction pathways involved in cell
responses to materials, some studies tracked phenotypic
changes of cells cultured on PDMS or acrylamide substrates
with stiffness gradients by patterning ECM proteins.”**?>*”
Tseng et al.>*® developed an approach for having precise,
decoupled control of the ECM pattern and local surface stiff-
ness to cells by chemical modification of PDMS surfaces.>*?
After culturing MC-3T3 cells on PDMS surfaces with different
stiffness gradients and ECM patterns (including X, square, and
I), the actin cytoskeleton polarizes to make interactions with
the PDMS surface.**?

(viii) The accurate evaluation of cell responses to mechanical
properties of the surface can provide useful information about
mechanotransduction pathways involved in cell responses to
the surface.

(ix) Not only cell type but also cell volume or size is a key
player in determining cell responses to surface stiffness. Bao
et al.®*® cultured hMSCs in separate 3D micro niches with
various volumes (2800, 3600, and 6000 um®) on methacrylated
hyaluronic acid hydrogels with different stiffness (5, 12, and
23 kPa).>*® They revealed that cell volume has a strong influence
on the hMSC responses to surface stiffness. Cells with ideal
volume can form obvious stress fibers and focal adhesions on
all surfaces with different stiffness. However, in small volumes,
stiffness does not have any effects on stress fiber formation and
yes-associated protein/PDZ-binding motif localization.>*?

9.2. Impact of biomaterial surface chemical properties on
biological responses

In the following sections, we provide an overview of the current
progress and challenges related to chemical surface modifica-
tion of biomaterials for improving their interactions with
cells and proteins. We also provide a concise overview of the
most common chemical techniques used for applying these
strategies.

9.2.1. Biological responses to biomaterial surface func-
tional groups and charges. The surface wettability of a bio-
material (known as hydrophobicity and hydrophilicity) plays
key roles in directing cell responses through affecting protein

This journal is © The Royal Society of Chemistry 2020

adsorption mechanisms such as protein conformation and
adsorption force.>* ¢’ The surface topography and/or func-
tional groups can adjust this surface feature.”®® Researchers
use many functional groups with different charges as promis-
ing candidates for adjusting biomaterial surface wettability
[such as phosphorylcholine (zwitterionic/hydrophilic), trimethyl-
ammonium (cationic/hydrophilic), sulfonate (anionic/hydro-
philic), hydroxyl (nonionic/hydrophilic), and n-butyl groups
(nonionic/hydrophobic)] (Fig. 13).>®° Enriching a surface with
favorable functional groups and charges, based on the targeted
molecule and cell type, is a broadly used chemical approach for
improving cell-biomaterial interactions (Table 3).>7%>7>

The surface functional groups can direct cell functions
through covalent conjugation with functional groups of cell
surface lipids, proteins and glycans.””® Bygd et al.>”* system-
atically studied how using various types of functional groups
could affect macrophage reprogramming and polarization
in vivo by working on poly(N-isopropylacrylamide-co-acrylic
acid) nanoparticle surfaces.””* They also used a quantitative

Fig. 13 A schematic representation of different hydrophilic and hydro-
philic functional groups used for adjusting the surface wettability.
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After 2 h incubation at physiological temperature, active BEAS-2B cellular uptake can occur only on citrate-stabilized 307

The functional groups increase HeLa cell responses to surfaces.
and COOH-treated surfaces.

MQMs: NA or difficult to summarize.
MQMs: NA or difficult to summarize.
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AuNPs
marrow-derived mesenchymal stem cells (hBMSCs), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenic protein 1 (BMP1), collagen type I (COL-1), gold nanoparticles (AuNPs), ultra-

high molecular weight polyethylene (UHMWEPE), sulfonate (SO;H), phosphorylcholine [(CH;3);N'CH,CH,PO, ] benzophenone [(C¢H;),CO], 3-methacryloyloxy-2-hydroxypropyl-4-

oxybenzophenone (MHPBP), poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-MHPBP) (PMH), human cervical cancer cells (HeLa), macrophage inflammatory protein-1o. (MIP-1ar),
colony-stimulating factor (CSF), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-2,3-dihydroxybutyrate) [PHBVDB], Arg-Gly-Asp (RGD), poly(ethylene glycol) (PEG), human dental pulp stem cells

(hDPSCs), human lung cancer cell (HCC-15), alveolar type II epithelial cell (RLE-6TN), polystyrene (TCP), poly(i-lactide) (PLLA), octyl (CgH;;), fetal bovine serum (FBS), sulfonate (SO;7),
osteopontin (OPN), oligo[(polyethylene glycol)fumarate] (OPF), human breast cancer cell line (MDA-MB-231), B-cell lymphoma 2 (Bcl-2), single-walled carbon nanotubes (SWCNTs), human

(SAMs), S-nitrosothiols (RSNOs), poly(etheretherketone) (PEEK), pre-osteoblast cell (MC3T3-E1), organic nanoparticles (ONPs), thiol (SH), mesoporous bioactive glass (MBG), human bone
bronchial epithelial cell line (BEAS-2B), 3-aminopropyltriethoxysilane (APTES), major quantitative measurements (MQMs).

Abbreviations: dopamine and hexamethylendiamine (PDAM/HD), amine (NH,), carboxylic groups (COOH), human umbilical vein endothelial cells (HUVECs), self-assembled monolayers
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structured activity relationship (QSAR) method as an analytical
predictive tool for measuring the macrophage responses to
various surface chemistries. Based on the surface functional
groups, they observed a spectrum of macrophage phenotypes.>”*

However, we should keep in mind that not only the surface
properties of biomaterials but also the local cell microenviron-
ment affects the proliferation of macrophages.””> Shen and
colleagues studied the effects of different functional groups
(CH3, NH,, COOH, OH) prepared by self-assembled monolayers
on endothelial cell responses through studying the expression
of key proteins in integrin-induced signaling pathways.>”®
By observing the differences in the expression of focal adhesion
components and Rho GTPases, they showed that endothelial
cell migration is highly dependent on the type of surface
functional groups in the order CH; > NH, > OH >
COOH.?>"*

Rashad et al.>”” designed wood-derived cellulose nanofibril
hydrogels containing two different surface functional groups to
address the influence of surface chemistry on fibroblast cell
functions.””” They used 2,2,6,6-tetramethylpiperidine-1-oxy
radial (TEMPO)-mediated oxidation or carboxymethylation
pretreatments on the surface. The TEMPO-oxidized surface
induces favorable cell morphology and spreading, whereas
the carboxymethylated surface inhibits these processes.>””

Here we summarize some of the recent challenges in
this area:

(i) Using different functional groups on the surface of
biomaterials can stimulate different biochemical signaling
pathways.”’® Zhang et al.®’® investigated the potential pro-
inflammatory influences of surface functional groups on
human pulmonary epithelial cells and macrophages by using
PEGylated CdSe/ZnS quantum dots (QDs) containing an amphi-
philic polymer coating (PEG-pQDs) (Fig. 14A).””® The pro-
inflammatory effects of this surface depend on the functional
groups (-COOH, -NH,, -OH, and -OCHj) at the end of the PEG
chain. COOH-PEG-pQDs cause the highest pro-inflammatory
effects followed by NH,-PEG-pQDs, HO-PEG-pQDs and
CH;0-PEG-pQDs. Fig. 14B shows that COOH containing areas
internalize via lipid raft- and class A scavenger receptor-
mediated endocytosis and subsequently stimulate the NF-xB
signaling pathway. However, lipid raft-mediated endocytosis
and stimulation of p38 MAPK/AP-1 signaling pathways are
affected by surfaces containing NH, and HO.””®

Hence, researchers suggest using surfaces containing multi-
ple functional groups to affect different biological pathways
simultaneously. For instance, Wang et al.>’® designed a poly-
(ether sulfone) (PES) surface containing multiple bio-functional
groups such as sodium carboxylic, sodium sulfonic and amino
groups to act as an antithrombotic bio-interface. They intro-
duced functional groups onto the surface in three steps:
(1) making PES with carboxylic groups (CPES) and water-
soluble PES with sodium sulfonic and amino groups (SNPES);
(2) presenting carboxylic groups onto the PES membrane by
mixing CPES with PES; (3) and grafting SNPES onto CPES/PES
membranes by coupling amino and carboxyl groups on the
surface (Fig. 15A).>”° Their results indicated that the treated

This journal is © The Royal Society of Chemistry 2020
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Fig. 14 (A) A schematic representation of the structure of water-soluble
CdSe/ZnS QDs bearing carboxyl groups (COOH-pQDs) and the derivative
PEGylated pQDs. (B) The association between the terminal functional
group-dependent endocytic pathways and the pro-inflammatory
responses induced by PEGylated quantum dots. Reprinted from ref. 278.
Copyright © 2013, Royal Society of Chemistry.

surfaces could cause an excellent hindrance to platelet adhesion
and activation, extend clotting times, and block blood-related
complement and leukocyte-related complement receptor activa-
tion. Fig. 15B shows that owing to the synergistic enhancement of
the functional groups, endothelial cell proliferation improves on
treated surfaces.”””

(if) Similar to physical properties, research groups suggest
using gradients of functional groups on the biomaterial surface
to more precisely control biological mechanisms.**° Liu et al.>*°
designed a surface chemical gradient of amine functional
groups through tuning the gas composition of 1,7-octadiene
(OD) and allylamine of plasma phase.”®® Under standard
culture conditions (with serum), hASC adhesion and spreading
area improve toward the allylamine side of the gradient surface.
However, there is no difference in cell behaviors in the absence
of serum, which supports the idea that surface functional
groups affect hASC response through cell-adhesive serum pro-
teins, rather than directly influencing cell functions. In addition,
osteogenic differentiation is enhanced on the allylamine side of
the gradient, while the adipogenic differentiation is reduced.
Differences between the cell differentiation in different chemical

This journal is © The Royal Society of Chemistry 2020

View Article Online

Chem Soc Rev

gradients of surfaces disappear via blocking the extracellular
signal-regulated kinase 1/2 signaling pathway activation via
PD98059 (a specific inhibitor of the mentioned signaling
pathway).>®°

(iii) The presence or absence of protein serum in the
experimental media can affect cell responses and research
outcomes. Shahabi et al.*®' studied the cellular uptake of five
various single or multifunctionalized fluorescent silica nano-
particles (FFSNPs) to address the role of surface charge in
directing cell responses by using different concentrations of
sulfonate and amino groups (Fig. 16).>®" They set the zeta
potential values of the surfaces from extremely positive to
extremely negative, whereas other surface properties remained
nearly constant. Depending on the surface charge and on the
presence or absence of protein serum, two reverse trends for
FFSNP cellular uptake exist. In the absence of serum, human
osteoblasts can better accumulate positively charged nano-
particles than negatively charged surfaces. However, in the
serum-containing medium, osteoblasts can better internalize
anionic particles. Under physiological conditions, sulfonate-
functionalized silica nanoparticles are the preferred choice to
have a high rate of nanoparticle internalization.***

(iv) Hasan et al.>®” studied the effects of media conditions on
protein and L929 mouse fibroblast cell responses to five
dissimilar nano-scaled surfaces treated with functional groups
including amine, octyl, mixed, hybrid, and carboxylic.*®* They
studied the protein and cell responses under three dissimilar
conditions consisting of (1) foetal bovine serum (FBS) in media,
(2) pre-adsorbed FBS on surfaces, and (3) partial media without
FBS. Regardless of the functional groups used on the surfaces,
surfaces with pre-adsorbed FBS show the highest L929 fibro-
blast adhesion rate and cell spread area. However, surfaces
placed in partial media show minimum adhesion rate, poor cell
spreading and inappropriate morphology.***

(v) The functional group density can also influence protein
adsorption mechanisms.”®* Meder et al.>®® studied the adsorp-
tion of three model proteins, bovine serum albumin, lysozyme
and trypsin, on colloidal alumina surfaces. They functionalized
the surfaces with SO;H in densities ranging from 0 to 4.7 SO;H
nm 2.2% Their results indicated that the functional group
surface density affects the adsorption of all three proteins.
Simply changing the density of functional groups on the
surface can cause a continuous tuning of protein adsorption
from nearly no adsorption to a theoretical monolayer.>**?

(vi) Although there are different strategies for using
functional groups to direct cell responses, the biochemical
signaling pathways which respond to each functional group
are not yet fully detected.

(vii) Other factors such as cell lines, topography, stiffness as
well as the complex ECM and physiological metabolism of cells
may also be involved in directing cell responses to surface
functional groups.*®® Researchers designed a series of model
surfaces with controlled surface nanotopography ranging from
16, 38, to 68 nm.”®* They functionalized surfaces with amine,
carboxyl, or methyl groups to investigate the primary neutro-
phil and macrophage responses. In these chemically modified

Chem. Soc. Rev., 2020, 49, 5178-5224 | 5201


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00103a

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 09 July 2020. Downloaded on 10/27/2025 3:19:19 AM.

(cc)

Chem Soc Rev

@%Qwa oo~
? _i _i_m l\ CO DMAC

180°C | Toluene
NH

Maleic .-\ni\ydrid:
T

CPES PES

Blending

NS\

L\c.\“““‘ NaCl

View Article Online

Review Article

\m,\

l\ CO3
180°C | Toluene

DMAC

NaO,S,

Ok - KOO+ : ok

-COOH

SOum

|
i)
’
Sopen |
==

20pum l)um

e (G CM - |

Fig. 15
and amino (-NH»

GCM-2

NHS/EDC

S
-COONa

(11 m | mum '

‘(\‘l 3
o
{

S0pm

CM-4

=

s GCM=3

&(iCMJ

S0um SOum

e (GC M4

(A) Fabricating poly(ether sulfone) (PES) with carboxylic (~COOH) groups (CPES) and water-soluble PES with sodium sulfonic (-SOzNa) groups
) groups (SNPES) and grafting of SNPES. (B) Fluorescence staining (FITC) images of cultured vein endothelial cells on PES, CM-1, CM-2,

CM-3, CM-4, GCM-1, GCM-2, GCM-3 and GCM-4 after 6 days (CM: carboxylated surface with the PES/CPES ratios of 10/0, 9/1, 8/2, 7/3 and 6/4 is
termed PES, CM-1, CM-2 and CM-3, and CM-4, respectively; GCM: functionalized surfaces with sodium carboxylic (-~-COONa) groups, sodium sulfonic

(-SOsNa) groups and amino (—NH,

) groups, the grafted CMs with PES/CPES ratios of 10/0, 9/1, 8/2, 7/3 and 6/4 are named as PES, GCM-1, GCM-2,

GCM-3, and GCM-4, respectively). Reprinted from ref. 279. Copyright © 2017, Royal Society of Chemistry.

surfaces, the surface nanotopography can decrease matrix
metallopeptidase 9 expression in neutrophils as well as the
concentration of IL-6 and IL-1B in macrophages.”®* Surface
chemistry and nanotopography can, in a synergistic manner,
control the osteo-immune environment functions such as the
production of inflammatory cytokines, osteoclastic activities, as
well as osteogenic, angiogenic, and fibrogenic factors.**>

(viii) Table 3 shows that CH;, NH,, COOH, and OH are the
commonly used functional groups used for modifying the

5202 | Chem. Soc. Rev., 2020, 49, 5178-5224

surface chemistry. Here we suggest also considering the other
existing functional groups present in nature.

9.2.2. Biological responses to ion enrichment of biomaterial
surface. After the immersion of a biomaterial in a medium in vitro
or in vivo, the surface charge, stability, and ions are key players
affecting cell responses.’*® McCarthy et al** investigated how
cobalt ions direct collagen matrix formation and cell responses to
the surface by using 200 ppm cobalt ions, as the highest reported
cobalt dose at the injured site.****'° They found that the presence

This journal is © The Royal Society of Chemistry 2020
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(A) An illustration of the synthesis and concurrent functionalization of various single or multifunctionalized fluorescent silica nanoparticles

(FFSNPs) by 3-aminopropyl-triethoxysilane (APTES) and 3-(trihydroxysilyl)-1-propanesulfonic acid (HSPSA). (B) An illustration of the designed particles by
modulating the primary molar ratio of amino and sulfonate functional groups. Reprinted from ref. 281, copyright © 2013, Royal Society of Chemistry.
(DOI: 10.1021/acsami.5b01900). Further permissions related to the material excerpted should be directed to ACS.

of cobalt ions could cause local variations in collagen density,
which leads to an improvement in localized mechanical proper-
ties but a decrease in the bulk stiffness of the material. Fig. 17
shows that cobalt ions can make interactions with the hydroxyl
group in the carboxy terminus of the collagen fibril and inhibit
the formation of essential stabilizing bonds within the collagen
network. Hence, the presence of these ions in collagen matrices
confers substantial changes in how cells interact with the collagen
matrix.*® Several research groups suggest using different ions
on the surface of biomaterials for improving cell-biomaterial
interactions through enhancing physicochemical properties of
the surface and/or directing the physiological pathways involved
in host responses (Table 4).>!*

Engineers use ion implantation, a standard technique in
semiconductor processing, for improving the surface cell adhe-
sion or wettability through modulating surface mechanical
properties, wear resistance, and corrosion resistance.’'*'?
Ion implantation can improve the surface properties of metallic
implants, polymers and ceramics.**>'® This technique
includes the bombardment of ionized species and their implan-
tation into the topmost layers of a solid material.*'® It needs an
ion generation source, an electrostatic acceleration system, and
a vacuum chamber. Physical sources in a discharge chamber
make ions and then precursors convert them into vapor.

The charge/mass selective mode and linear acceleration
mode are the key operative modes of ion implantation. In the
charge/mass selective mode, the ionized species are pre-
accelerated prior to entering a quadrupole magnet. The filtered
beam is then postaccelerated and concentrated onto the bio-
material surface. However, in the linear acceleration type, all
ionized species in the discharge chamber speed toward the
biomaterial surface.*"?

This journal is © The Royal Society of Chemistry 2020

Ion implantation has several advantages including making a
treated surface without delamination problems or changing
the bulk properties of the biomaterial.>** Any kind of dopant
can be introduced into any solid biomaterial in the defined areas
of the surface, and the process temperature is low. Engineers use
this approach for transferring energy into the surface layer of
biomaterials, which results in changing the surface properties
without any variations in the chemical state of biomaterials.>*°

However, at the time of ion bombardment all targeted areas
need to be orthogonally exposed to the ion beam, which is a big
limitation when it comes to surfaces with complex surface
geometries. Hence, plasma-immersion ion implantation (PIII)
is an effective approach in ion bombardment of inhomogeneous
surfaces.>" Park et al>*" investigated the effects of tantalum ion
immersion on the poly(lactic acid) (PLA) surface for improving its
osteoblast affinity by using PIII in combination with conventional
direct current magnetron sputtering. They revealed that tantalum
ion-doped surfaces have twice the surface roughness and improve
adhesion stability in comparison with tantalum-coated PLA
surfaces. Tantalum doped ions improve the osseointegration
and osteogenesis of implanted PLA surfaces in vivo through
improving surface hydrophilic properties.**'

Researchers also studied macrophage polarization responses
to titanium implants doped with magnesium (0.1-0.35%).>**
Doping magnesium ions on the surface causes a greater
expression of type 2 macrophages, anti-inflammatory cyto-
kines (such as IL-4 and IL-10) as well as genes encoding bone
morphogenetic protein 2 (BMP2) and VEGF.*?* There are
still challenges about using ions on biomaterial surface for
improving cell responses:

(i) As different ions can affect cell functions differently,
simultaneously doping different types of ions on the surface
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Fig. 17 A schematic representation of the binding sites of a cobalt
complex with a collagen fibril. (A) The direct interaction of the cobalt
complex with the collagen fibril. (B) The interaction of the cobalt complex
with the non-freezing water layer surrounding the collagen fibril.
Suggested binding sites of a cobalt complex with a collagen fibril, where
interactions occur with the carboxylic group (C), hydroxyl group (D),
forming a water bridge (E), or with the hydroxyl group in the carboxy
terminus (F). Reprinted from ref. 309, copyright © 2018, Royal Society of
Chemistry. Further permissions related to the material excerpted should
be directed to the ACS.

of biomaterials is effective for providing multifunctional mate-
rials. Yu et al.*** doped both zinc and magnesium ions on the
titanium surfaces by using PIII. They detected that the dual
implantation of ions enhances rat bMSCs’ initial adhesion and
spreading through the upregulation of the gene expression of
integrin o1 and integrin f1.>** Zn/Mg-PIII can also increase zinc
and magnesium ion concentrations in the cells via enhancing the
influx of both ions and hindering the outflow of zinc ions.
Upregulating the expression of magnesium transporter 1 in
human umbilical vein endothelial cells improves the magnesium
ion influx, which leads to promotion of angiogenesis.***

(ii) The concentration of doped ions plays a key role in
determining their influences on surface properties and bio-
logical pathways.* This indicates the crucial demand for precise
systematic studies to find the optimal concentration of ions
depending on the purpose.

9.2.3. Surface functionalization by using biological moieties.
Chemistry plays a crucial role in developing bioactive materials by
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functionalizing the biomaterial surface with biomolecules to
stimulate and/or mimic biological functions.******> Surface func-
tionalization with proteins through the functional groups, present
on both the biomaterial surface and protein, has some advantages
including its predictable biological effects, its production and
analysis simplicity, as well as low cost.>****’

Surface functionalization with cell-specific molecules
such as antibodies and receptor-targeting peptides improves
the biomaterial surface affinity and specificity to the cell
membrane.’*® Interactions between biomaterial surface and
proteins can be extremely site-specific or non-specific (Fig. 18).

Adsorption/physisorption is the mainly used strategy for
non-site-specific conjugation of proteins to the surface, in
which the protein-surface interactions are mainly directed
through hydrophobic, hydration and electrostatic forces.**°
The incubation of a designed biomaterial with the targeted
protein in buffer solutions is the main principle of this strategy.
It is the most straightforward strategy for tethering proteins on
the biomaterial surface.********' However, non-covalently
attached proteins can detach from the biomaterial surface after
implantation and lose their functionality.*> After implantation,
the attached proteins can be replaced by adsorbed blood serum
proteins through the Vroman effect.>*?

Therefore, there are several strategies for enhancing protein
adsorption to surfaces including plasma treatments or using a
transitional “sticky” layer such as mussel adhesive proteins.>**
Plasma treatment can induce different functional groups on the
surface, which improves the protein conjugation.’>® Because
aldehyde groups can trigger nucleophilic groups in lysine,
arginine, asparagine and glutamine residues to make covalent
imine bonds, plasma polymers, which have aldehyde groups on
their surface, provide a reactive surface for covalent binding of
proteins.>*®

In addition, engineers immobilize several proteins on
the biomaterial surface by using PIII without changing their
conformation. PIII is a one-step immobilization method, which
through vapor-phase precursors produces radical species for
covalently bonding with amino acid residues in proteins.*>”*%
Using PIII, Tan et al.>*® developed a bioactive vascular graft
coating with the macrophage polarizing cytokine IL-4 to control
the macrophage phenotype and subsequent local inflammatory
responses.”>> When subcutaneously implanted in mice, they
observed that bioactive IL-4 surfaces could enhance the polari-
zation of macrophages to their anti-inflammatory M2 pheno-
type. The functionalized surfaces could also positively regulate
the local cytokine environment and reduce the foreign body
responses.>>®

Mussel adhesive proteins are a coating layer for intermediating
the biomolecule-surface interactions through their (S)-2-amino-3-
(3,4-dihydroxyphenyl)propanoic acid containing a benzene ring
with two neighboring hydroxyl groups.*®® However, due to
the instability of non-specific attachment approaches, chemical
conjugation methods have gained more attention for protein
tethering on the biomaterial surface. In site-specific approaches,
protein conjugation occurs through interactions between specific
chemical groups in protein molecules and biomaterial surface,

This journal is © The Royal Society of Chemistry 2020
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Fig. 18 The commonly used chemical strategies for engineering the biomaterial surface to manipulate biological responses.

which leads to proper protein orientation with high stability on
the surface.***

Primary amine, carboxyl, sulthydryl and carbonyl are the
main chemical groups used for improving cell-biomaterial
interactions.>®” Controlling chemo- and regio-selectivity and
also the selection of treatment methods based on the surface
properties of both protein and biomaterial are the main
requirements of using site-specific strategies.>®

Antibody conjugation on the biomaterial surface demands
one of three functionalities in the antibody: (i) lysine amino
acids, (ii) 12 cysteine residues, or (iii) 2-5 carbohydrate moieties
in the Fc stem.**> Amine conjugation occurs through an amine
functionality, which is available on the surface of proteins or
biomaterials.>®® Using covalent cross-linkers is one of the main
strategies for establishing chemical interactions between
proteins and cell surface, due to their ability to control
the immobilization and accessibility of substrate surface
biomolecules.*®*

Among cross-linkers, 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide/N-hydroxysuccinimide (EDC/NHS) can more effi-
ciently make chemical interactions between amine functional
groups of biomolecules and carboxylic groups of the

This journal is © The Royal Society of Chemistry 2020

biomaterial surface.*®> The cross-linkers’ non-cytotoxicity and
water solubility of waste products make EDC/NHS a favorable
candidate for mediating chemical interactions between cells
and biomaterial surface.*®°

Additionally, the interaction between maleimide chemical
compound (H,C,(CO),NH) and thiol (R-SH, where R represents
an alkyl or aryl group) attracts much attention for establishing
cell-biomaterial interactions. As the maleimide chemical
compound can selectively react with cysteine residues in the
protein, researchers use the thiol-maleimide conjugation reac-
tion or immobilization of thiol-containing surfaces.>”**%” Cell
surface thiols are present in oxidized disulfide bridges or
reduced thiol group formations and can be labeled with a
broad number of accessible reagents.>*®?**® Some studies sug-
gest using mono- and di-bromomaleimides as an additional
reversible cysteine modification treatment on maleimide-based
conjugation reaction.?”°

Reversible addition fragmentation chain transfer (RAFT) as
a living radical polymerization reaction can also conjugate
biomolecules to polymeric biomaterials.’”**”> RAFT-mediated
bioconjugation can increase the chance of having a well-defined,
site-directed bioconjugate architecture. The combination of

Chem. Soc. Rev., 2020, 49, 5178-5224 | 5207
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“Click” chemistry reactions with RAFT increases the effectivity
and selectivity of protein conjugation on the substrate surface
without interfering with the protein functionality.****”*

“Click” chemistry is defined as a class of small molecule
chemical reactions, which joins a biomolecule and a reporter
molecule, allowing coupling of substrates of choice with
specific biomolecules. The reactions are fast, spontaneous,
flexible, and very selective.’’* Over the past two decades,
copper-based “click” chemistry reactions have been a common
strategy for synthesizing hydrogels.’”® In addition, bio-
orthogonal “click” chemistry is used to describe the way of
generating products by joining small biomolecules such as
proteins that occur in the presence of macromolecules such
as proteins or cells.””> Bio-orthogonal “click” chemistry is
recognized as a promising molecular labeling approach, which
does not affect normal biochemical processes.>”® Using these
approaches, researchers can synthesize novel polymers and
multifunctional hydrogels for biomedical applications.?””*”®
“Click” chemistry synthesis occurs under stable physiological
conditions, with highly stereo-specific and simple product
separation. It does not produce any toxic end products. It is
also insensitive to oxygen and water.’””

Owing to its copper ion toxicity and ROS generation, copper-
based “click” chemistry has been recently replaced with
copper-free “click” chemistry strategies.’”® Copper-free “click”
chemistry proceeds at a lower activation barrier and is free of
cytotoxic catalysts or end products after gel formation.*”*?”*
There are many copper-free “click” chemistry strategies for
designing hydrogels such as strain-promoted azide-alkyne
cycloaddition “click” hydrogels,**® Diels-Alder “click” chemis-
try hydrogels,*®! thiol-ene,*®* oxime,*® and thiol-yne.*®** The
available “click” chemistry-based functional hydrogels play key
roles in fabricating 3D tissue and organ models by using 3D
bioprinting.*3°%8°

“Click” chemistry reactions improve biomolecule-surface
conjugation in a controlled manner.*®” However, choosing or
introducing suitable functional groups on proteins to mediate
their attachment in a controlled manner without influencing
their activity is still a big challenge in this field.******

9.2.4. Biological responses to biomaterials interfacial free
energy. The interfacial free energy value is a critical factor
affecting cell responses to biomaterial surface.***?%° For example,
Tojo et al.*>*° revealed how the surface energy value of biomaterials
direct MSC mechanosensitivity by culturing the cells on collagen-
coated hydrophobic PDMS and hydrophilic PEO-PDMS.**® They
designed PDMS-based scaffolds and mechanically adjusted them
within the stiffness range from 70 Pa to 2.3 MPa by using a surface
energy gradient, without influencing the bulk properties and
collagen topology of biomaterials. Their results indicated that
the surface energy-driven ligand self-assembly could change the
cell fate on soft surfaces. By adjusting the surface energy value,
cells can spread and differentiate based on PDMS stiffness.>*

Interfacial free energy between a solid and a liquid is a
material’s property that is determined by its surface structure
and chemical composition. It measures the disruption of inter-
molecular bonds, which occurs while creating a surface.*3%%%°
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Transferring an atom from the bulk of materials to the surface
in response to liquids changes the surface energy value. The
migrated atoms at the surface have fewer nearest neighbors
than the same atoms positioned in the bulk. Consequently, the
surface atoms have a greater energy state than atoms in the
bulk, a phenomenon known as coordinative unsaturation of
bonds.?*°

Thus, the type and amount of existing dangling bonds at the
surface represent changes in the surface free energy value,
which can be primary-(ionic, covalent, and metallic) as well
as secondary-(van der Waals) type bonds.*®® If the dangling
bonds are of the secondary type, the surface free energy is low
and has a non-polar nature. However, if the bonds are mainly of
primary type, a substantial Lewis acid and base contribute to
the total surface free energy and its value is high.*®® Most
surfaces have a combination of all these chemical bonds, which
makes the surface interactions with the biological compounds
complex.*®

The surface energy value for high energy surfaces (e.g. metals
and oxides) can be in the range from 500 to 5000 mN m %
however, for low energy surfaces (such as molecular crystals and
polymers) it is from 5 to 50 mN m™~".>*° Researchers commonly
modify the surface free energy through changing the crystallo-
graphic termination of surfaces or adding ions using plasma
treatments.*”"

The common technique for measuring the biomaterial surface
energy and wettability is contact angle measurement.’**>% The
equilibrium state for liquids on a surface is reliant on both the
thermodynamic equilibrium at interfaces and the total length/
area of the phases in contact. Consequently, contact angle mea-
surements can provide information about both surface free
energy and wettability through the calculation of surface free
energy from droplet geometry, or surface geometry from surface
free energy.>*”?° Changes in both surface chemical composition
and wettability can affect the obtained surface energy value.**° 4%
Therefore, researchers should know the surface roughness and
wettability before characterizing the surface energy using contact
angle measurements.

As mentioned above, the intermolecular bonds at a bioma-
terial surface determine its surface free energy values. After
biomaterial implantation, these chemical bonds interact with
small molecules such as proteins. The chemical bonds also
determine which molecules firstly adsorb, their orientation,
conformation and bioactivity.*®’

Measuring wettability is a common method to determine
the adsorption potential of proteins to biomaterial surfaces.
However, because the relative wettability of many surfaces can
be equal while their surface chemistries are different, these
terms cannot precisely determine the surface interactions
with proteins and cells.*®® It is commonly accepted that sur-
faces with high surface energy values and wettability enhance
cell responses.’® ™% However, there is no direct correlation
between hydrophilicity and surface free energy. Thus, investi-
gating the effects of surface free energy on protein adsorption
and cell responses, irrespective of surface wettability, is
important.**°
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9.3. Nanofunctionalization of biomaterial surface

The ECM is composed of multifunctional nanostructures.
Binding of cells to the ECM plays a vital role in regulating cell
signaling pathways.**® Therefore, bio-inspired nanofunctiona-
lization, which combines biomimicry and nanotechnology,
has attracted considerable attention as a promising strategy
to modify the biomaterial surface.*’°*'> Using patterning
approaches, biomedical engineers can accurately position
different biomolecules on a nano-scale surface to achieve site-
specific attachment of biomolecules in some areas, while
reducing undesirable surface interactions in other areas.*'?
Techniques for producing nanostructures are commonly
divided into two categories: (1) in situ surface nanofunctiona-
lization, (2) nanocoating and film deposition. Electron beam,
laser etching, acid and alkali treatments, anodic oxidation, and
ion implantation are the most common in situ nanofunctiona-
lization techniques.****** Many nanocoating and film deposi-
tion techniques are also available including plasma spraying,
plasma-immersion ion implantation and deposition, chemical
or physical vapor deposition, cold spraying, lithography and
self-assembly,*'%414

By combing the above-mentioned techniques, more complex
hybrid nanostructures can be designed.*"® For instance, Wang
et al.*"® studied the synergistic effects of micro/nanostructure
and bioactive ions on murine osteoblast responses to titanium
surfaces containing bioactive ions (Zn>* and St**). They created
surfaces by using a combination of sandblasting, acid etching,
alkali-heat treatment, and ion exchange techniques. Compared
to polished titanium surfaces, the micro/nanostructured func-
tionalized surfaces could significantly enhance cell spreading,
proliferation, and differentiation.*> Furthermore, Frey et al.*'®
used micelle nanolithography and soft micro-lithography to
develop PEG-based hydrogels with a micro-grooved surface.
They also incorporated gold nanoparticles on the surface to
improve the binding of adhesive ligands. Compared to conven-
tional micro-grooved surfaces, the nanofunctionalized surface
could improve human fibroblasts’ contact guidance and regulate
cell signaling more accurately.*'®

Christo et al*'” developed a biomaterial surface with con-
trolled nanotopography and chemistry by combining plasma
polymerization and electrostatic self-assembly techniques to eval-
uate the inflammasome responses.*’” They assessed the innate
immune responses by using bone marrow derived macrophages
harvested from genetically engineered mice deficient in apoptosis-
associated speck-like protein containing CARD, NLRP3 and AIM2
inflammasome components. Their results showed that the macro-
phage adhesion changes on all controlled nanotopography sur-
faces irrespective of their surface chemistry or nanotopography
scale. Although other studies reported that different surface
chemistries influence the initial binding of serum proteins and
cell attachment,**®*'° Christo and colleagues could not detect any
difference between groups. However, both chemistry and nanoto-
pography could change the macrophage functionality in the
absence of main inflammasome components suggesting that
these components could be key players in macrophage responses
to surface nanofunctionalization.*'”
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In another study, Marzaioli et al.**° studied the effects of
silica nanoparticle functionalization on inflammasome signaling
pathways using murine bone marrow-derived dendritic cells and a
mouse model of mild allergic inflammation.**° They showed that
non-functionalized surfaces activated the NLRP3 inflammasome
response leading to the expression of inflammatory cytokines and
chemokines. However, surface functionalization with phospho-
nate or amino groups reduced the inflammasome activation.**

Owing to their chemical and structural features, proteins,
peptides, and ligands play key roles in surface nanofunctiona-
lization. Researchers commonly design biomaterials with
integrin-specific ligands on their nanostructured surface for
enhancing cell responses.””! In addition, the ligand clustering
on biomaterial surface can regulate intracellular signaling
events that affect cellular phenotype. Karimi et al.**' developed
RGD-functionalized copolymers using RAFT polymerization to
study the effects of nano-scale clustering of integrin-binding
ligands on endothelial cell functions (Fig. 19).**' They used the
synthesized copolymers to prepare random and nano-clustered
surfaces spanning different global and local RGD densities.
Their results indicated that nano-clustering ligands on the surface
could promote endothelial cell adhesion and migration.***

Proteins can be also patterned onto a surface by micro-
contact printing or dip-pen nanolithography.***~*>* After immo-
bilizing biomolecules, the surface arrays can display a selective
capture of proteins from a mixture like serum.**®> Additionally,
when the captured proteins are patterned on a desirable surface,
the specific bound target proteins can be transferred to another
surface by microcontact printing, which is a simple method for
fabricating surface arrays of different proteins.**®

Despite the substantial progress in this field, there are still
some challenges to be solved. Thoroughly investigating the
thermodynamics and kinetics of protein adsorption on nano-
structures is vital.**” In addition, proteins have unfolding
potential upon adsorption on nanostructures leading to tissue
damage. Researchers should more profoundly study both
unfolding and stabilization potential of proteins on nanostruc-
tures before their implantation in the body.*”’

10. Chemical surface analysis

Owing to the advances in analytical chemistry, biomedical
researchers have achieved in depth information about the
surface composition and structure of both biomaterials and
biological molecules.**®**® The commonly used analytical
techniques for biomaterial surface characterization include
secondary-ion mass spectrometry (SIMS), time of flight-SIMS
(ToF-SIMS), X-ray photoelectron spectroscopy (XPS), auger elec-
tron spectroscopy (AES), (Raman), infrared (IR) spectroscopy,
X-ray scattering and spectroscopy techniques, scanning elec-
tron microscopy-energy dispersive X-ray (SEM-EDX), atomic
force microscopy (AFM) and streaming potential measurements/
electroosmosis.**'***

Among these techniques, XPS, ToF-SIMS, Raman, and IR
spectroscopy have gained substantial attention for characterizing
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Fig. 19 Fabricating random and clustered surfaces using nanofunctionalization strategies. (A) Random surfaces were developed by film casting lightly
functionalized polymer chains. (B) Clustered surfaces were developed by film casting blends of highly functionalized polymer chains (green) with non-
functionalized polymer chains (orange) to fabricate nano-scale islands of high peptide density defined by the random coils of the polymer molecule.

Reprinted from ref. 421. Copyright © 2017, Royal Society of Chemistry.

the surface composition after applying surface treatments.**"***33

XPS and ToF-SIMS have been the main techniques used for
evaluating the biological responses to surface chemistry because
of several advantages. (I) These techniques can provide information
about the interfacial intermolecular forces that control the bioma-
terial-biomolecule interactions through analyzing the surface com-
position and structure over the depth scales of a few nanometers.***
(1) They can be useful for detecting surface contamination, which
can be critical when interpreting cell responses to biomaterials.
(D) They can provide high quality images of the spatial distribution
of surface composition by combining imaging software technologies
with narrowly focused ion guns. (IV) The recent progress in imaging
technologies has led to using these techniques in the nanotechno-
logy field for analyzing the designed patterned surfaces with more
sensitivity and resolution.****%¢

These two techniques are complementary and both are
required to thoroughly analyze the physicochemical composi-
tion of biomaterial surface, because they can overcome each
other’s drawbacks.**® For instance, XPS cannot differentiate
isotopes, while ToF-SIMS can do it. Although quantification
is commonly done by XPS, it is difficult to do it by using
TOF-SIMS.**°

Oteri et al.**® designed a biomaterial based on calcium
triphosphate and hydroxyapatite microgranules for bone
regeneration.””® They used ToF-SIMS and XPS to analyze the
chemical composition and the micromorphological structure of
the surface and confirm its osteoconductivity.**® In another study,
Stevanovic et al.**” coated a layer of chitosan hydroxyapatite and
gentamicin on pure titanium plates.**” They used XPS and FTIR to
confirm that the coating layer was connected to the titanium
surface through intermolecular hydrogen bonds.**” Moreover,
Metoki et al.**® studied the calcium phosphate electrodeposition
on a titanium alloy covered with SAMs regarding the chain length,
end-group charge, and anchoring group.**® They used ToF-SIMS
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to confirm that calcium-rich phases were formed primarily in the
presence of SAMs.

Analytical chemistry can also be useful to provide informa-
tion about the chemical characterization of surface bound
proteins.**%***33 proteins are recognized as key players in
determining biomaterial-cell interactions and many biological
pathways.* The protein structure, which is the 3D arrangement
of atoms in an amino acid-chain, can break down into primary
structural units, secondary structural units, tertiary structural
units, and quaternary structural units.**> However, because
proteins are extremely flexible and can easily restructure when
they meet a surface, analyzing the surface structure after
binding to large proteins is challenging and requires combin-
ing experimental and simulation techniques.*** Furthermore,
analyzing the well-defined, smaller subunits of larger proteins
(such as peptides) could be a promising solution toward
developing better methodologies for this purpose.**® XPS,
surface plasmon resonance, and quartz-crystal microbalance
with dissipation can be used for characterizing peptides and
protein surface coverage in single component protein
solutions.*** However, on surfaces covered with a mixture of
proteins, these techniques can only determine the total protein
surface coverage.

ToF-SIMS can determine the unique signatures from different
proteins adsorbed on these surfaces.**® Nevertheless, when the
protein films become more complex, ToF-SIMS can only provide a
qualitative measurement about the total composition of the
films.***** ToF-SIMS can also provide information about the
overall protein orientation using selected peaks from asymmetri-
cally distributed amino acids in the protein structure.***4
Additionally, ToF-SIMS and sum frequency generation techniques
can give molecular level details about the orientation of surface
bound peptides and proteins.*** The obtained molecular level
data from these techniques can be used to govern the molecular
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dynamics simulations, which provide atomic-level structural
information about surface bound peptides.**®

For instance, Foster et al.**® studied the adsorption of
single-component bovine serum albumin, bovine fibrinogen,
and bovine immunoglobulin G films as well as multicompo-
nent bovine plasma films onto two different gold surfaces.**
They used a multitechnique method based on XPS, ToF-SIMS,
principal component analysis (PCA), and visual molecular
dynamics (VMD) to obtain new information about the structure
of proteins. Using XPS, they could evaluate the adsorption
isotherms and show the effects of protein solution amount
on the surface nitrogen composition. Using a combination of
ToF-SIMS, PCA, and VMD, they could also provide some infor-
mation about the differences in adsorbed protein structure on
different surfaces. They finally analyzed the amino acid dis-
tributions in the adsorbed proteins by using PCA and VMD.**

Even though substantial progress has been made in the
analytical chemistry of biomaterial and biomolecule surfaces,
there are still many challenges that should be addressed. Over
the past few years, researchers have suggested new strategies to
improve ToF-SIMS applicability such as applying multivariate
analysis methods for data mining, as well as using cluster-ion
beams and metal-assisted SIMS.**® Nevertheless, all the current
available techniques have their own drawbacks, which need to
be addressed. For instance, both XPS and ToF-SIMS measure in
dry state, need vacuum, and are contamination sensitive.***
ToF-SIMS has also inadequate optical capabilities and problems
in collecting positive or negative ion data.*** XPS cannot detect
hydrogen and helium."** The current techniques cannot provide
atomic-level structural information about biomolecules.*** Future
research dealing with analytical techniques should emphasize
on the combination of most developed imaging and analytical
chemistry techniques to go beyond the current limitations.

11. Using the 3D bioprinting technique
for improving cell-biomaterial
interactions

Over the past few decades, 3D bioprinting technology has
emerged as a promising approach for designing patient-
specific scaffolds by depositing biomaterials and living cells
layer-by-layer based on a digital model.***™**® 1t draws knowl-
edge from developmental biology, chemistry, computer
science, and materials science to fabricate biological substi-
tutes mimicking their native counterparts.**® 3D bioprinting
techniques can precisely print and control the geometrical
localization of living cells into biomaterials.**® Therefore,
researchers use 3D printed tissues in many biomedical engi-
neering fields including tissue engineering and regenerative
medicine,”° transplantation,”®* drug testing and high-
throughput screening,*® and cancer research.””® The 3D bio-
printed tissue models can be promising substitutes for the
current 2D cell culture and animal models to test drugs and
biomaterials in vitro.**®
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Materials used for constructing 3D bioprinted tissues
include biomaterials, living cells, drugs, growth factors, and
genes.**® Thermoplastic polymers, hydrogels, and decellular-
ized extracellular matrix (dECM) are three main types of bio-
materials used in combining cells and biomaterials field
research.**®***%5> Thermoplastic polymers such as PCL, PU,
and PLA can be used as structural supports owing to their high
mechanical properties.**® However, printing thermoplastic
polymers needs either high temperatures or toxic solvents,
leading to low cytocompatibility. Furthermore, combining
these polymers with cell-supportive hydrogels is a challenge
in the printing process.**®

As reviewed by Gopinathan et al.,*’> owing to the emergence
of “click” chemistry strategies, many natural and synthetic
hydrogels are currently available to 3D bioprint tissue
models.>”® Natural hydrogels such as chitosan, collagen, alginate,
and gelatin can provide a native ECM-like microenvironment for
cells.*>® However, compared to natural hydrogels, the mechanical
properties and cell-adherent characteristics of synthetically
derived hydrogels (such as methacrylated gelatin, PEG, and poly-
oxyethylene-polyoxypropylene triblock copolymers) can be more
easily manipulated.**® Although increasing the chemical concen-
trations and crosslink capacities leads to better printability and
shape fidelity, they can cause smaller pore size and lower cell
viability.*”>8

Because dECM has the ECM constituents, it can overcome
these challenges.*>® However, its low post-printing shape fide-
lity and ethical issues should be solved before translating the
designed models to clinical settings.**® Designing composite
biomaterials can be a solution to overcome the weakness of
each component regarding mechanical strength, printability,
biocompatibility, and gelation properties.**

Although bioprinting has been a powerful tool for creating
3D tissue models, there are still several challenges that we
should address, as follows:

(i) Constructing whole organs. Organs are complex struc-
tures containing different cell types and gradients of physico-
chemical properties.*®® In addition, native organs have adequate
mechanical strength to keep their shape and integrity over
time."®" Therefore, researchers should enhance the printing
resolution to create 3D organ models with internal complex
networks.**

(ii) Vascularization. Vascular networks are essential for
providing passage to nutrients, oxygen, and metabolic
wastes.**® Fabricating scale-up tissues or organs with a func-
tional vascular network that enables effective local innervation
remains a critical challenge for the field.

(iii) Cell culture technique. Cells are one of the key elements
of bio-inks, which should be cultured in large numbers.
By using the current available techniques, cell culture
expansion processes take from weeks to months for each cell
type.*®® It is vital to develop new techniques, which are capable
of speeding up the cell expansion time without distorting
cells.**®

(iv) Fabricating functional tissues. Cell responses, scaffold
stability, and ECM deposition are three main elements of a
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functional tissue construct.
should allow differentiation and proliferation of printed cells.
Designing new biomaterials and modifying the properties of
available ones are essential to facilitate ECM—cell signaling.**®
In addition, controlling the biomaterial degradation rate is crucial
to make sure the synthetic ECM degradation rate is proportional
to the native ECM production.*®

(v) Improving the mechanical strength of hydrogels as
synthetic ECMs. There are two main strategies for enhancing
the mechanical strength of hydrogels. (I) Decreasing the construc-
tion time can enhance the mechanical strength of printed struc-
tures. However, slower printing speed leaves the cells longer
inside the ink, which may not be beneficial for cells. To overcome
this issue, researchers introduced the 4D bioprinting concept.
It allows a 3D printed structure to change its configuration and/or
function over time in response to external stimuli such as
temperature, light, and water, which makes 3D printing
alive.***¢®4%7 (11) Improving the mechanical strength of hydrogels
by co-printing them with tough degradable biomaterials.**>

12. State-of-the-art of evaluation of
biological responses and future
perspective

Based on the International Organization for Standardization
(ISO) and national standards, we must prove the biocompati-
bility of any biomaterial or medical device by doing a series of
tests regarding its genotoxicity, carcinogenicity, toxicity, sensi-
tization, as well as acute and chronic systemic toxicity prior to
doing any clinical trials in humans.*®®*% Since 1992, 1SO has
published and modified a series of international biocompat-
ibility standards for medical devices (ISO 10993), as a living and
regularly evolving document, which provides the general prin-
ciples that we should bear in mind during both in vitro and
in vivo evaluation of material-tissue interfaces.>”*”°™*”? Despite
applying a wide range of chemical analyses for evaluating the
biocompatibility of biomaterials based on ISO standards, there
are still some challenges in the evaluation of biomaterials by
following the standards.

In 2010, Poly Implant Prothése (PIP), a French manufacturer
of silicone gel breast implants, went bankrupt after using
low-grade industrial silicone gel in their products.*”® It is clear
that their implants should not have passed the defined bio-
compatibility tests of ISO standards 10993. Consequently, the
European governments and competent authorities set an addi-
tional approval process named as Medical Device Regulation
(MDR 2017/745) to address the biocompatibility evaluations of
medical devices.*”?

The main purpose of MDR is to improve both the report
quality and clinical trials data availability, rather than changing
ISO standards. In 2021, the results of clinical trials will be
available for the public on the European database for medical
devices (EUDAMED),*”**”> which could be a helpful tool for the
rapid reviewing of available medical devices’ biocompatibility
properties.*’® As it would be more expensive to bring new
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medical devices to the market, one could argue that the new
MDR will reduce the number of novel biomaterials in the
future.””” Thus, it is crucial to ask if there are any alternatives
for improving the translation reliability between ‘““‘pre-market”
clinical trial requirements and the “post-market surveillance”.
The “post market surveillance” is defined as the clinical
follow-up of the Conformité Européenne (CE) approved medical
devices, whereas the “pre-market clinical trials” are the required
testing prior to CE mark. There is still a question that if the new
MDR will not amend the in vitro biocompatibility tests, what
would be the alternatives to determine the cellular and molecular
pathways and responses to new biomaterials more accurately than
ISO standards?"”®

Several studies pointed out the weakness of ISO 10993-5.
The cell lines are commonly tested on extracts. Obviously, using
extracts cannot provide us valid information about the bio-
chemical transduction pathways and signals, which affect the
biocompatibility of materials. Additionally, extracts of bio-
materials may show cytotoxic effects on the cultured cells
caused by changes in the ionic composition of the medium.

Although using cell lines might provide reproducible results,
it is difficult to predict the cells’ biochemical and biophysical
signals in response to implanted biomaterials in the body
based on these results. The biochemical transduction pathways
cannot be examined and detected precisely through using such
immortalized cell lines.*”*%

Even though cytotoxicity is one of the most important
indicators for biomaterial evaluation, all present cytotoxicity
test methods have certain drawbacks.®® Considering the other
potential key biochemical signals which might be involved in
biological responses to a material and can affect the evaluation
criteria of material safety in the body is important.'?

Traditionally biocompatibility was investigated by consider-
ing the wound healing processes that occur after biomaterial
implantation. The in vivo evaluation of biological responses to
biomaterials involves implanting biomaterials in the targeted
tissues at certain time points and then studying the histological
changes in the implanted tissue and its surroundings.
However, in the case of tissue-regenerated biomaterials, one
would keep in mind not only wound healing processes, but also
several other physiological, mechanical and biochemical path-
ways, which might be involved in determining the material’s
success or failure. In addition, there is a lack of enough valid
chemical techniques for evaluating the biochemical features of
surface biocompatibility in vivo. The main biochemical signaling
pathways involved in host responses should be evaluated based
on the properties of biomaterials and targeted cells.'"! As the
biological responses to biomaterials is dependent on the cell type
used, we emphasize using suitable cell lines for in vitro cytotoxicity
testing.””

Regarding animal studies, the choice and design of animal
models for testing biomaterials are complex and there are
few guidelines. To evaluate both intended and unintended
effects, we use several criteria to evaluate implants, including
biological relevance, biofunctionality, biocompatibility/safety,
and clinical relevance/efficacy. Safety studies often use smaller
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species (e.g. rodents and rabbits) to detect local tissue
damage and systemic toxicity from degradable or leachable
products.*®**%* However, tissue reactions to specific biomaterials
are tested typically in larger animals to provide more detailed
biological information.*”®*%* The anatomy, physiology and patho-
genicity of experimental models should relate as much as possible
to those of patients in order to demonstrate the safety and efficacy
of new biomaterials.*®*

Knock-out methods are among the most common systems
used for investigating molecular pathways in animal models.
However, we should consider that these knock-out animal
models are not able to target several natural pathways that
might be alongside responsible for one mechanism.”” There is
an argument in the literature over communal animal implant
models for evaluating host material response and trying to link
common host responses across various species in response
to biomaterials. Because of the complexity of the human
biological pathways (including biochemical, biophysical,
mechanical and physiological pathways), choosing the right
animal model based on the aim of the study is a big issue in
this field. Hence, as Grainger*®® stated in his review “Surprisingly,
little consensus or consistency is found in published literature for
host-implant integration metrics for implant healing versus foreign
body response.” The translation of preclinical animal data into
successful clinic products is typically poor.*”~*%°

Consequently, we should use different types of animal
models for each newly designed biomaterial to mimic all the
potential biological pathways involved in human body
responses to biomaterials, which increases the ethical issues
and complexity in this field. If we assess the preclinical animal
data shortcomings more systematically, we can achieve more
reliable preclinical in vivo data. Typical deficiencies that must
be overcome are poor design of animal models, acute models
opposed to chronic ones, poor blinding and randomization,
and statistically underpowered studies.**°

Over the past few years, researchers have suggested using
organoids as an alternative technology for biocompatibility
assessment.”®" An organoid is a 3D structure, grown from stem
and/or progenitor cells, consisting of organ-specific cell types,
which organizes itself through cell sorting and spatially
restricted lineage commitment. These models can provide
systematic information about chemical and genetic perturba-
tion of 3D tissue. Such models have substantial potential in
bridging the gap between in vitro biocompatibility and animal
models and might be a valid alternative to in vivo animal
studies. The great advantage of using organoids could be
discovering chemical-transduction pathways, which cannot be
achieved by current in vivo techniques. Conventional in vitro
cell cultures are based on 2D systems, which often fail to induce
full proliferation and differentiation potential of cells. There is
a massive discrepancy between 2D and 3D in vitro cell culture
environments, where the latter system allows cell-to-cell and
cell-to-biomaterial interactions, more similar to the body
environment. This disparity between 2D and 3D systems makes
it difficult for 2-D cell-based in vitro models to be reliable for
investigating disease mechanisms and drug screening."*>
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Although it is doubtful that organoids will completely replace
animal studies, we should evaluate the obvious advantages
of using organoids in biocompatibility tests.*>® As Bredeboord
et al.*®* stated: “We suggest that the use of organoids is comple-
mentary to, rather than in competition with, these classical
research methodologies”.**

In silico bioinformatics are computational frameworks,
which are currently playing a key role in the discovery and
validation of new chemical identities. Therefore, using these
computational models for also predicting the biochemical
responses to biomaterials could be a revolution in biological
response evaluation. Such computational models of tissue
engineering processes attracted much attention as new non-
invasive evaluation techniques, which can decrease or replace
in vivo animal studies without having any ethical issues.*>*
Although these computational models might strongly help in
evaluating and predicting biomaterial-host complex interactions
and decrease the number of unnecessary animal studies, without
doing any animal studies we cannot make well-founded decisions
regarding the safety of biomaterials and directly implant them in
the human body with confidence."

Considering more quantitative and statistical analyses can
help us to make conclusions that are more convincing. Due to
the immense development of new biomaterials for tissue
engineering applications, researchers design more and more
tissue-engineered templates with different chemistry. More
reliable analytical techniques should be established alongside
to provide atomic-level structural information about bio-
molecules. Combining imaging and analytical chemistry tech-
niques can be a promising strategy to go beyond the current
limitations of analytical chemistry.

13. Conclusions

It is undeniable that the medicine world owes chemistry
science for the current existence of promising biomaterials as
therapeutic solutions. By using the chemical principles present
in nature, researchers have made substantial progress in bio-
materials and tissue engineering fields. Nevertheless, there are
still critical challenges regarding their biocompatibility that
need to be further studied and are typically neglected when
describing new therapeutic strategies using biomaterials. The
biological responses to biomaterials should not be defined as
only not having any adverse effects. They should have a strong
affinity for targeted cells to stimulate neo-tissue formation,
which depends on the chemical characteristics of both the
biomaterials and biological environments. The host responses
to biomaterials mainly originate from biochemical signaling
pathways and factors. As our knowledge in the biochemistry
field has grown tremendously since the first definition of
biocompatibility, we should update our definitions about bio-
logical responses to biomaterials. In addition, from the materials
engineering point of view, biomaterial surface physicochemistry
can profoundly affect biophysical and biochemical responses.
Providing more reliable analytical techniques and standards for
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biochemical interface characterization of biomaterials is highly
important. Nevertheless, the chemical basis of biological
responses to biomaterials is a domain where much remains
to be studied.

Abbreviations

R./S, Roughness value

PDMS Polydimethylsiloxane
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