Chem Soc Rev

View Article Online

CORRECTION

Check for updates

Cite this: Chem. Soc. Rev., 2020, 49 642

Correction: The challenges of glycan recognition with natural and artificial receptors

Stefano Tommasone,^a Francia Allabush,^a Yazmin K. Tagger,^a Joshua Norman,^a Monika Köpf,^a James H. R. Tucker^b and Paula M. Mendes*^a

DOI: 10.1039/c9cs90104c

Correction for 'The challenges of glycan recognition with natural and artificial receptors' by Stefano Tommasone et al., Chem. Soc. Rev., 2019, 48, 5488-5505.

rsc.li/chem-soc-rev

The authors regret that incorrect structures for heparosan, chondroitin sulfate and peptidoglycans were included in Fig. 1 of the original article. The correct structures are included in the corrected version of Fig. 1 below.

Fig. 1 Examples of glycans that can be found in nature, ranging from glycosaminoglycan polysaccharides to glycoconjugates such as peptidoglycans, glycolipids and glycoproteins, which can bear tumour-associated antigens.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. E-mail: p.m.mendes@bham.ac.uk

^b School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK