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We present a diffusion-based simulation and theoretical models for explanation of the photoluminescence
(PL) emission intensity in semiconductor nanoplatelets. It is shown that the shape of the PL intensity curves
can be reproduced by the interplay of recombination, diffusion and trapping of excitons. The emission
intensity at short times is purely exponential and is defined by recombination. At long times, it is governed by
the release of excitons from surface traps and is characterized by a power-law tail. We show that the
crossover from one limit to another is controlled by diffusion properties. This intermediate region exhibits a
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rich behaviour depending on the value of diffusivity. The proposed approach reproduces all the features of
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1 Introduction

The hunt for materials and systems with better optical properties
has always been one of the focal points of semiconductor research.
The first classical optoelectronic applications were based mostly on
the bulk properties of semiconductors. Recent progress in material
synthesis®™* led to wider research efforts concentrated on low-
dimensional structures. In particular, significant attention has been
drawn toward the semiconductor nanocrystals, such as quantum
dots (QDs) and nanoplatelets (NPLs).>® QDs and NPLs show large
exciton binding energies”® and possess such remarkable properties
as narrow emission lines even at room temperature, tunable
emission wavelengths, short radiative lifetimes, giant oscillator
strengths, high quantum yields and vanishing inhomogeneous
broadening.'®™ These properties make them excellent prospective
building blocks for future optoelectronic devices such as bright
and flexible light emitters,"> or colloidal lasers,®'® or for bio-
medical labeling applications."”

Modern techniques of precise colloidal synthesis allow control
of the shape,"® size'® and crystal structure of the nanocrystals.*
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experimental curves measured for different nanoplatelet systems.

Among these, there is a growing popularity of colloidal QDs and
NPLs of CdSe with atomically defined thickness>**** and various
shapes such as pure QDs and NPLs (core) as well as composite
core-shell QDs and NPLs or core-crown NPLs. The composites
are made of two different semiconductor materials, for instance,
CdSe and CdS.

The low-dimensionality of all these structures effects in a
decisive way the crystal surface that controls the optical and
electronic properties.”® Specifically, the nanocrystal surfaces
contain numerous dangling bonds. The dangling bonds that
correspond to the undercoordinated surface atoms rearrange
themselves by surface reconstruction or adsorb surfactant
ligands.** The latter are utilised during colloidal synthesis as they
increase the stability of nanocrystals, prevent crystal stacking and
screen them from the environment as well as, most importantly,
stabilising the surface by saturating dangling bonds.>® As a result,
ligands influence surface trap states and, consequently, control
photoluminescence (PL) properties.>**’ Since the PL signal occurs
due to electron-hole recombination, the optical properties of
colloidal nanocrystals are directly controlled by different kinds of
surface traps (reversible and irreversible).

An example of a direct experimental manifestation of
the surface trap role in PL signals is the phenomenon of QD
blinking.>**° Most probable mechanisms of this phenomenon
were discussed in detail in ref. 30 and 31 with time scale-free
properties of the blinking process shown to be a signature of
the complex surface-dependent behaviour of the system.

The NPLs represent a quasi-2D-system with a large surface to
volume ratio and thicknesses down to a few atomic layers.>”*>3
In ref. 32, the authors experimentally demonstrate a major effect
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of temporary charge carrier trapping on the decay dynamics
of pure, core-shell and core-crown CdSe NPLs with results
matching the previous measurements for NPLs.***> The power-
law decay of PL intensity is observed at long times and the
authors even discerned transitional power laws in some of the
cases (for the description of this observation in ref. 32, the term
multiexponential was used). This type of decay was associated
with reversible trapping without non-radiative losses. The power
laws changed with temperature rather weakly (the authors drew
parallel lines on a log-log plot, i.e. they stated that the effect is
temperature independent, however, looking carefully, one is able
to identify some variation with temperature). For blinking from
single CdSe QDs, the power-law statistics has been found to be
independent of temperature,*** which points out that blinking
and delayed emission may share the same physical origin. More-
over, the model of irreversible charge trapping that leads to the
nonradiative recombination was proposed in ref. 36 to explain
the discrepancy between PL and transient absorption measure-
ments on NPLs. Among other structures with the nontrivial
power-law behavior of PL, two-dimensional films of GaTe or
GaSe are worth mentioning.*”

Currently, for the description of PL intensity curves, most
of the theoretical/simulation approaches use kinetic rate
equations.?”*>*537 The difficulty of this paradigm applied for
spatially distributed systems lies in a challenge of interpreting
the meaning of the rates from a physical point of view. This
makes the experimental estimation and verification of the
parameters often impossible. Also, simple kinetic rate equations
cannot produce an explanation for power-law statistics observed
in experiments.** In the latter reference, an ad hoc term in their
kinetic explanation is used to obtain the power-law. However,
the origin or meaning of this term is not elucidated. A few
attempts were made to include diffusion of excitons explicitly.
For instance, in ref. 38 and 39, CdSe/CdS core/crown nanoplate-
lets were analysed and it was experimentally demonstrated that
exciton localisation efficiency is independent of crown size and
increases with photon energy above the band edge, while the
localisation time increases with the crown size. To analyse their
experimental results, the authors of ref. 38 and 39 also proposed
a theoretical 2D model that considers the competition of
in-plane exciton diffusion and selective hole trapping at the
core/crown interface. In practice, that theoretical approach
aimed to reduce the description to a system of kinetic equations
and was not capable of predicting any non-trivial power-law
kinetics. The complexity of exciton dynamics was also found for
colloidal halide perovskite nanoplateletes,*® where the presence
of both dark and bright exciton populations was responsible for
the complex excitons dynamics.

The experimental observation of exciton diffusion was found
in both freestanding and SiO, supported WS, monolayer semi-
conductors.**** The supporting theoretical work considered
non-equilibrium exciton transport in monolayer transition
metal dichalcogenides where the interactions between excitons
and non-equilibrium phonons were taken into account.”* In
ref. 34, the influence of defects on the spontaneous and stimulated
emission performances of solution-processed atomically flat
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quasi-2D nanoplatelets (NPLs) as a function of their lateral size
using colloidal CdSe core NPLs was systematically investigated.
It was revealed that the photoluminescence quantum efficiency
of these NPLs decreases with increasing lateral size of the
colloidal particles while their photoluminescence decay rate
accelerates. This strongly suggests that nonradiative channels
prevail in the NPL ensembles with platelets of extended lateral
size. The effect clearly arises due to the bigger defected NPL
subpopulations in NPLs with larger surfaces. Exciton diffusion
in 2D metal-halide perovskites was studied in ref. 44. In this
experiment, the transition from a diffusive to a subdiffusive
regime is clear, which points to the existence of traps with a
power-law distribution of trapping times.*

In this paper, we draw attention to the important role of the
diffusive nature of excitons in their free state and a power-law
statistics of escape from the traps. Our diffusion-based simulations
and theoretical analytically solvable model with rates connected
to diffusion/trapping properties explain the non-trivial kinetics of
carriers in the semiconductor nanoplatelets observed in experi-
ments®* and allow a clear physical interpretation of the rates.

In the following sections, we present our simulation and
theoretical models and compare the results with experimental data.

2 Simulation model and comparison to
experiments

Our simulation model assumes that after the laser beam
produces excitons, the latter start diffusing on the crystal lattice
of a nanoplatelet. During this diffusion process, a recombination
with spontaneous photoluminescence or trapping on a surface
defect (trap) can happen. We assume that the recombination of
excitons happens only in the free state. Once the particle hits a
trap, it is considered to be bound (trapped). Eventually, excitons
leave the traps and again could undergo diffusion, trapping or
recombination.

In the model, we neglect the possibility of recombination for
the trapped excitons. Usually, the trapped PL is well pronounced
only for thin nanoplatelets with the width of 1 or 2 monolayers.
Its intensity decreases with the growing number of monolayers.
We simulated 5 layers that typically corresponds to experiments.
Hence, this effect should not be critical for the predictions.
Moreover, it is rather weak for the core-shell and core-crown
nanoplatelets.***® We also neglect such effects as nonradiative
recombination or exciton dissociation. The role of these effects
can be controlled experimentally by measuring the quantum
yield of the nanoplatelet. The state-of-the-art nanoplatelet synthesis
allows samples to be obtained with quantum yield varying in a wide
range from 10 percent to nearly 100 percent.*” The role of
nonradiative recombination processes and exciton dissociation
processes decreases with the growth of the quantum yield.
Samples with a quantum yield around 95 percent were synthe-
sised and studied, for example, in ref. 48-50.

One can estimate the concentration of empty dangling
bonds on the nanocrystal surface, which are considered to
be effective traps, by using the parameters obtained in ref. 27.
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For CdSe nanoplatelets without shells with a typical largest area
size of about 100 nm?, there exists one paramagnetic center
associated with the dangling bond state per 50 Cd surface
atoms. In our simulations, we choose values close to that
estimate.

In order to simulate the exciton diffusion, we used a discrete
random walk on the 2D square lattice. The finite N x N lattice
with periodic boundary conditions was used. At every step, the
simulated particle performs jumps to the nearest neighbours
(see Fig. 1) with equal probability 1/4. The surface defects
(traps) were fixed at the left-down corner of the lattice while
the initial exciton position was sampled from a discrete uni-
form random distribution. The time At of the jump along the
lattice was modelled by a constant value much smaller than the
time scale of photoluminescence and trapping processes. The
exciton in a free state can recombine with a probability p
at each jump, ie. we neglect any interactions between the
excitons, which is perfectly justified for low-to-moderate intensities
of an initial laser pulse.’® The trapping occurs with the unit
probability when the exciton reaches the trap position. Impor-
tantly, in our model, the probability distribution of trapping times
is non-exponential, having a power-law tail such that the mean
trapping time is infinite. Such trapping or waiting time dis-
tributions appear in the theory of transport in disordered media
called the Continuous Time Random Walk model,*>**> other
literature®*>® and references therein. This distribution of trap-
ping times occurs, for instance, in systems with an exponential
distribution of depths of potential wells.”” We sample the
trapping times from the one-sided o-stable distribution with
the Lévy index u, 0 < p < 1.°® Such a distribution possesses
long time asymptotics y(f) ~ ¢ *~*. The Laplace transform of
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Fig. 1 In our simulations, we used a model of a random walk on a 2D

square lattice modelled as an N x N set of vertices (atoms) with periodic

boundary conditions. The jump probabilities are equal in four directions.

Some of the vertices are capable of trapping an exciton with a heavy-tail
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distribution of trapping times, y(t — oo) ~ 0<u<1. If an exciton

jumps on the trap position, it gets bound to the site until it escapes. The
recombination is modelled by decay probability p per step.
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the distribution reads A(s) = e~™*". In simulations, we use 7. = 1
ns, and to gain more information about o-stable distributions,
see Appendix A. After a particle escapes from the trap, it can be
trapped again, i.e. the multiple trapping of excitons is taken into
account by the model.

As a result, the motion of an exciton in our model is
characterised by a normal diffusive (Brownian) motion at short
times and a subdiffusion with a characteristic power-law exponent
u at long times. Fig. 2 shows the dependence of an exciton
mean-squared displacement as a function of time in the
absence of decay. Indeed, at first, the particles diffuse freely,
but then the trapping and a subsequent release become impor-
tant and the effective motion becomes subdiffusive.

The photoluminescence intensity is defined by the number
of exciton recombinations per second, i.e. by the distribution of
recombination times. In simulations, we obtained this distri-
bution from the set of N, independent runs, i.e. we again used
a low exciton density assumption. The normalised emission
intensity was calculated by aggregation of the single recombi-
nation (photoluminescence) events in the bins of size t,
(corresponding to the time resolution in the experiment®?)
and further normalisation by the number of events in the first
bin in the spirit of experimental work.>* The middle of the
corresponding bin was used as a time coordinate for the
normalised emission intensity. Thus, our ¢;, corresponds to
the exposition time in the experiment.32 An increase of tpin
leads to noise reduction on the one hand and to smoothing of the
curve and possible loss of fine effects on the other hand. Another
important fact is that the highest intensity of PL occurs at short
times. Hence, by enlarging the bin, one gets disproportionately
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Fig. 2 Mean-squared displacement for exciton diffusion as a function of
time on a double logarithmic scale in the absence of decay. The transition
from a normal diffusive regime to subdiffusion is observed. The red curve
corresponds to the parameters we use for core structures, ie. the
simulations were performed on a 15 x 15 periodic lattice (i.e. 1 defect
per 225 sites), the exponent for trapping times was p = 0.8 and the step
duration At = 1 ps. The green curve stands for core-shell NPLs and we
used the 10 x 10 periodic lattice (i.e. 1 defect per 100 sites), the exponent
for trapping times was p = 0.8 and the step duration At = 1 ps. The curves
were obtained by ensemble averaging over 1000 trajectories. The numbers
1.0 and 0.8 show the corresponding slopes.
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high counts for the first bin. In the latter case, we effectively
decrease the rest of the values.

In Fig. 3 and 4, we show the comparison of our simulation
model with fitted parameters (bottom plots) with experimental
data for the photoluminescence intensity reported in ref. 32
(upper plots). Fig. 3 shows the PL intensity for core CdSe NPLs
and Fig. 4 shows the PL intensity for core-shell CdSe-CdS
nanoplatelets with CdS forming the outer layers. In order to
plot and analyse the experimental data, we have used the plots
from the ESI of ref. 32 and digitised the data with the help of the
GetData Graph Digitizer program.>® Black dots in the upper
plots of Fig. 3 and 4 are the averages of the digitised data with the
red region representing the statistical error of measurements.
One can see that the power laws including the intermediate ones
nicely match between the simulations and experiments. For both
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Fig. 3 Comparison of digitised experimental data taken from the ESI of
ref. 32 (corresponding to Fig. 1c in the main text of the reference) (above)
with the simulation curves (below) for the case of core CdSe NPLs. The
simulations were performed on the 15 x 15 periodic lattice (i.e. 1 defect per
225 sites), the exponent for trapping times was u = 0.8, the step duration
At = 1 ps and the probability of recombination per step p = 107>
Ngm = 10”. Two different binnings are shown in the plot with simulation
data. The green curve corresponds to ty;, = 2500 ps while the red curve is
for tpin = 500 ps. We have recalculated the slopes from Fig. 1c in ref. 32. For
both experiments and simulations, we show the range of slopes obtained
with the least mean squares method applied to different subintervals of a
seemingly straight part of the dependence.
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Fig. 4 Comparison of digitised experimental data taken from the ESI of
ref. 32 (corresponding to Fig. 2g in the main text) (above) with the
simulation curves (below) for the case of core—shell CdSe—CdS NPLs with
CdS forming the outer layers. The simulations were performed on a
10 x 10 periodic lattice (i.e. 1 defect per 100 sites), the exponent for
trapping times was u = 0.8, the step duration At = 1 ps and the probability
of recombination per step p = 107>, Ngm = 107. The green curve in the
bottom plot corresponds to t,, = 2500 ps while the red curve is for
toin = 500 ps. We assume that defects are concentrated on the outer
surface of CdS. This explains a different selection of trap density in our
simulation model for this case (cf. Fig. 3). We have recalculated the slopes
from Fig. 2g in ref. 32 and for both experiments and simulations, we show
the range of slopes obtained with the least mean squares method applied
to different subintervals of a seemingly straight part of the dependence.

the simulation results and the experimental results of ref. 32, we
show the range in exponents in order to show how sensitive they
are to the size of the interval that visually looks “straight”. By
showing the results for two different bin sizes in the simulations,
we illustrate that while the long time power-law asymptotics stays
the same, the intermediate one is affected by renormalisation.
This pushes us to the conclusion that the intermediate power
laws are transitive phenomena rather than true power laws.
Moreover, the adjustment of the bin in simulations could
produce a very good quantitative match with experimental data
(see Appendix B). However, we discovered that the experimental
data consist of two differently normalised parts (see the ESI
of ref. 32) and also reveal a range of values for power law
asymptotics depending on the time interval chosen for averaging.
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Hence, we focus here on the explanation of the power laws rather
than on an attempt to match the data quantitatively.

Note that we were not able to get a good match of the overall
curve shapes with experiments for the core-crown case from
ref. 32 (still, the long time power-law tail can be easily reproduced).
We believe that the reason for this is that this case is markedly
different. In comparison to the pure core or core-shell cases, it
stands out as a system with a surface divided into two chemically
distinctive areas with different properties. This obviously strongly
affects the intermediate time scales. Hence, this case would
require a more complex modelling approach.

The NPLs studied in experiments normally have a thickness
of a few atomic layers. Hence, diffusion into inner layers is also
possible. If one takes into account these bulk layers, the results
stay qualitatively the same, as shown in Appendix C.

3 Theoretical model. Non-Markovian
kinetic rate equations

Our theoretical model corresponds to the simulation setup with
one simplification. We additionally assume that at every step,
the trapping happens at a constant rate § and is proportional to
the number of particles in the free state fn(t), with n(f) being the
number of excitons in the free state as a function of time ¢. This
coefficient f effectively describes the diffusion of excitons and
can be connected to properties of the simulation model (see
below). The decay (recombination) is assumed to be proportional
to the concentration ng(t) as ang(f), where o is the rate of the
recombination process. Eventually, an exciton escapes the
trapped state and switches back to the diffusion-decay mode.
For the population of excitons in the diffusive state, the trapping
process presents a temporary loss with a delayed return. This
return can be described by a term with the kernel y(t — 1),
ﬂ)y(t — 1) Bne(t)dr, where t is a release time moment as compared
to 7, the time of the trapping event. The kernel has an explicit
meaning of trapping probability density as a function of time, i.e.
it abides a normalisation property, [,°7(#)dz = 1. Hence, our
theoretical model describes the recombination-caused photo-
luminiscence process as a two-state system model with only one
of the states allowing the recombination.

Summarising the above model in terms of kinetic rate
equations for concentrations of free excitons n¢(t) and the
trapped excitons n(t), one gets

dn(;t(t) = —ong(t) — Bre(t) + Jty(l — 1) png(t)dr, )

0

dnégr) = (1) — J"y(, — 1) Bne(r)dr. 2)

0

The initial conditions are 1¢0) = Ny, 7(0) = 0, .e. the laser excitation
produces N, particles in the free state, but no trapped ones.

Applying the Laplace transform Z{f(r)} = [ f()e™"dr = f(s)
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turns the equations into algebraic ones. The solution for
7ig(s) reads

No

e Y ()}

(3)
Since y(¢) is normalised, 1 — j(s) never becomes negative and
any possible divergencies are avoided. Also, it can be proven
that the solution 74(t) is non-negative at all times (Appendix D).
Clearly, in a general case, the system of eqn (1) and (2)
describes a non-Markovian process due to the memory kernel.
The Markovian case can be obtained for the particular case of
an exponential distribution of trapping times (for more details
and the exact solution of that case, see Appendices E and F). We
assume that the power law tails observed in experiments appear
due to the power law asymptotics of trapping times, i.e. one can
use an a-stable law for the kernel, 7(s) = e ™, 0 < u < 1. In
the limit of long times ¢ — oo (which corresponds to s — 0), the
function j(s) = 1 — t#s*. Thus, in this limit, the concentration
of freely diffusing excitons is

i) ~ 501 2 ). (@

o o

This expression produces a long-time power-law asymptotics,
ctt N,

~ > with C = __MBNo
tl+n azr(l — ﬂ)
Appendix G). Then, the limit expression for the emission
intensity is

ne(t>>1,) >~ (see the derivation in

UpNo T
ol (1 — p) i+u (5)

I(t>1,) ~

In order to compare the theoretical model with the simula-
tions, we need to find the correspondence between the simula-
tion parameters and the constants used in the theory. As a test
example, we use the simulation results from Fig. 3 with the
following parameters: the simulation step At is 1 ps, the bin
size is 500 ps, the time limit of the simulation is 10 000 ns, a 2D
square lattice with 1 defect per 15 x 15 = 225 points, u = 0.8,
and the probability of recombination per step is 10>, Hence,
the parameters to be put in eqn (3) can be estimated as follows.

For 7(s) = e~™", the coefficients are ;= 0.8 and 7. = 1 ns. The rate
of recombination « can be determined as a probability of recom-
bination per step divided by the step’s duration, i.e. « =1 ns ™.
The rate of exciton capture by defects (traps) 8 is roughly the
probability of finding a defect per step. This probability equals
1/225 if one neglects the effect of secondary trapping in
which case the probability of being caught by the defect is
higher after escape from a defect. For the case of the first
trapping event, the value of the probability is based on the fact
that original excitations occur homogeneously in the sample.
For the first trapping case, ffirstirap can be then estimated as

1
Bristtrap = 75 / At = 4.44 ns~! (the trapping rate is almost con-

stant at short times). In order to account for the undercounting
of trapping events at long times in our theoretical model,

we slightly increase the trapping rate and set f = 7.5 ns "
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Fig. 5 The outcome of the theoretical model vs. the simulation results in

the double log scale for all relevant time scales. The parameters of the

theoryare f=7.5ns"% o =1ns~%, and u = 0.8. In simulations, f§ = 4.44. Red

dots correspond to the simulation data. Blue points are the numerical

inverse Laplace transform of egn (3). tpin = 500 ps.

At long times, secondary trapping is quite likely since right after
escape from a trap, a particle is more likely to come back than
at earlier times.

Fig. 5 shows the excellent correspondence between the
theoretical and simulation results obtained for these para-
meters. Since the simulation results are normalised on the first
bin, the theoretical curve was scaled such that the first points
roughly coincide.

The study of parameter space both in simulation and
theoretical models shows that at intermediate times, a rich
behaviour can be observed. In Fig. 6, for the chosen parameters,
the curve weekly oscillates, which is a result of an interplay of
trapping, release and recombination terms both in simulations
(the main plot) and in theory (the inset).

The shapes of the emission intensity curves are defined by the
interplay between free diffusion, trapping and recombination of
excitons. One can see from Fig. 7 that the overall shape is
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Fig. 6 The simulation results (the main plot) with fine binning showing the
same intermediate fluctuating behaviour as in the theoretical model
(shown in the inset). Here, the bin size was chosen to be t,, = 25 ps,
u=0.8,p=10"% and Ny, = 107, and one trap was put per 100 lattice sites.
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Fig. 7 Dependence of logarithm of emission intensity as a function of
logarithm of time for different . The parameter f§ is defined by the free
diffusion coefficient of excitons. The variation of f§ leads to a change in the
characteristic shape of the emission intensity curves.

controlled by diffusion properties. For any set of parameters at
short times, emission is defined by recombination only and the
intensity decays exponentially. The latter observation was made
experimentally, e.g. see ref. 27. Exponential decay at short times
also follows from eqn (3). At large s, which corresponds to the
short time domain, 7ig(s) ~ No/(s + o + f3), that is, ngt) ~
Noexp(—(« + p)f). At short times, most of the excitons are free.
In the course of time, they get trapped, and they escape the traps
later. Since the trapping times are described by a power-law with
exponent u + 1 at long times, the emission is defined by the
release of excitons and characterised by the same power-law. The
parameter f§ defines both the duration of the short time limit and
the properties of the transition region. At small f (slow diffusion),
the transition from exponential to power-law decay happens
without a noticeable transition region (see the black solid curve
in Fig. 7). Then, with a growth of f, the intermediate region
appears, which is well illustrated by the pink dash-dotted curve in
Fig. 7. This is a regime where intermediate power laws were
suggested in ref. 32. Finally, for fast diffusion (green dash dot-
dotted curve in Fig. 7), one can observe a wide transition region
with oscillations of emission intensity. These oscillations could
be associated with multiple trapping and release events.

4 Summary

We proposed a diffusion-based simulation model and non-
Markovian kinetic rate equations with a delay function, which
describe the interplay between free diffusion, trapping and
recombination of excitons in 2D semiconductor nanostructures.
The parameters of both models have a clear physical interpretation.
The models were applied for the interpretation of experimental data
on photoluminescence kinetics in CdSe/CdS core and core-shell
nanoplatelets. The characteristic power-law tails are the result of
exciton escape properties from surface defect traps. We show that
the intermediate power laws found in ref. 32 are transitional
effects rather than true power-law dependencies. Moreover, we
see that diffusion properties control the emission intensity in the
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intermediate region between the simple exponential decay at short
times and a power-law at long times. The duration and the features
of this intermediate region vary substantially with the value of
diffusivity. In particular, in the case of a fast diffusion complex,
oscillating dependencies are demonstrated. The proposed
model can be applied for the analysis of exciton kinetics in
semiconductor nanoplatelets (core, core-shell, core-crown)
and for the estimation of microscopic exciton parameters.
In Appendix C, we show a possible pathway for the model
generalisation for the 3D case. Further generalisations of the
proposed model and additional assumptions may be necessary
to use the model for other low-dimensional semiconductor
structures.
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Appendix A: a-stable Lévy laws

In our model, we choose a one-sided (completely asymmetric)
a-stable Lévy distribution as a model distribution for the statistics
of trapping times. The reasons for that are both mathematical and
practical.

Mathematically, according to the generalised central limit
theorem, the distribution of the properly normalised sum of
independent identically distributed variables converges to an
a-stable Lévy law if the variables are drawn from a distribution
with a divergent second moment.®® The o-stable distributions
can only be written analytically in terms of often hard-to-grasp
Fox H-functions with three exceptions (Gaussian, Cauchy and
Lévy-Smirnov distributions). However, their Fourier/Laplace
transforms adopt a simpler stretched Gaussian/exponential form,
as reported in ref. 61. In the case of trapping time distributions,
the quantities adopt positive values only, i.e. one needs to consider
a particular case of one-sided alpha-stable distributions. For the
latter, the Laplace transform reads

G(s) = exp(—ts"), 6)

where 0 < ¢ < 1, s € [0,00). At long times, this distribution
exhibits a power-law asymptotics that decays (up to a numerical
4
fl4u

The practical reason for our choice is a convenience of
working with exponential dependencies both in terms of
expansions and numerical calculations. In simulations, the

distribution was sampled according to ref. 58.

prefactor) as

Appendix B: match between theory
and experiment for the binning value
toin = 2.5 ns

If one plots the simulation and experimental results from Fig. 4

for the binning 2.5 ns = 2500 ps, one finds a very good
quantitative match (Fig. 8). However, one has to keep in mind
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Fig. 8 Quantitative match for photoluminescence intensities between
the simulations and experiments as reported in ref. 32 for the binning
toin = 2.5 ns for the case of core—shell CdSe—CdS NPLs with CdS forming
the outer layers.

that the values depend on the normalisation that was not
always known from experimental data in ref. 32.

Appendix C: modelling the process in a
few atomistic layers

For the 3D model, half of the NPL vs. the symmetry plane
parallel to the surface was simulated with N layers (N X N x Ny).
The traps are located only in the surface layer. Periodic boundary
conditions are applied to in-plane coordinates. The initial exciton
positions are generated from discrete uniform distributions
along all three coordinates. The exciton cannot escape to the
solution, so the possible jumps on the surface layer (N, N, 0) are
[(+1, 0, 0), (-1, 0, 0), (0, +1, 0), (0, —1, 0), (0, O, +1)] with equal
probabilities of 1/5. In the internal layer, the possible jumps are
[(+1, 0, 0), (-1, 0, 0), (0, +1, 0), (0, —1, 0), (0, 0, +1),
(0, 0, —1)] with equal probabilities of 1/6. In order to account
for the symmetry of the NPL, the crossing of the symmetry plane
(0, 0, +1) is replaced by (0, 0, 0) for even N; (2N, layers in NPL) or
by (0, 0, —1) for the odd N; (2(™; — 1) + 1 layers in NPL).

In Fig. 9, we see that for core NPLs, the 2D model and the
model of diffusion in a few parallel atomistic layers give the
same results. In this case, we assume the density of surface
defects to be the same as it was in Fig. 3, i.e. 1 defect per 225
surface lattice sites. Fig. 10 shows the comparison of the three
different models. Namely, the 2D model, the 3D model that
assumes the same properties and jump probabilities in all 5
layers and the 3D model where jump probabilities differ when
the jumps occur from the surface layers into the bulk. The latter
case is the easiest generalisation of a 3D model. It assumes that
the jumps into the bulk and back to the surface are 5 times less
likely than the jumps within the same layer. The density of
defects corresponds to Fig. 4, i.e. 1 per 100 surface lattice sites.
All three curves show the same tail behaviour as one would
expect. The transitional region changes its shape and shifts, i.e.
more complex models allow for a finer description. We see that
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Fig. 10 Comparison of curves for photoluminescence intensities for 2D
(red), 3D homogeneous (blue) and 3D distinct domain (cyan) models. The
core-shell case is shown with a density of defects of 1 per 100 surface
lattice sites. u = 0.8, Ngim = 108, and tyin = 500 ps. The kink at short times
occurs due to binning. In the first two cases, the jumps are considered to
be equally likely for all directions. For the last case (cyan data), the layers
are split between two regions. The outer region represents one material
and the inner region represents another one. Thus, it corresponds to the
core—shell structure more realistically. The jumps from the surface layer
into the bulk layers and back are 5 times less likely than the probabilities of
jumps within the same region.

the available experimental data can be fitted well with a
relatively simple 2D approach, which tells us that the 2D model
is sufficient as a minimal model.

Appendix D: proof of the
non-negativity of eqn (1) solutions

The concentration of excitons must be non-negative. Hence,
according to the Bernstein theorem,®” its Laplace transform
7ig(s) should be completely monotonic (c.m.). The function &(s)
is called c.m. if (—1)"")(s) = 1 fors > 0 and n =0, 1, 2,.... If
my(s) and my(s) are completely monotonic, then their product
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my(s)my(s) is also c.m. Also, if fis) is c.m. and A(s) is the
Bernstein function (i.e. # > 0 for positive s and 7'(s) is c.m.),
then f{A(s)) is c.m.®?

In order to show the complete monotonicity of 7if(s), we
present it as 7ig(s) = f{A(s)), where f = 1/s and h(s) = s + o +
B(1 — 7(s)). The function A(s) is positive since j(s) is the Laplace
transform of the probability distribution function and, there-
fore, 7(s) < 1. The function j(s) is c.m. as the Laplace transform
of the PDF, i.e. (—1)""(s), > 0. The derivative /'(s) =1 — f7/(s)
is c.m. since 7(s) is c.m. Thus, due to the property mentioned
above, 7i¢(s) = f{A(s)) is c.m. as well and n¢(f) is non-negative due
to the Bernstein theorem.®?

Appendix E: the derivation of the limit
result for the two state Markovian limit

We show here how one can recover the limit of a two state
Markovian system with constant rates of exchange and a decay
in one of the states (considered, for instance, in Van Kampen’s
book,*® Chapter VII, Section 5, exercise (5.8)). This corresponds
to the Markovian limit of eqn (1) and (2).

The case of two states with exchange can be written as

dl’lf(l
dr

) = —ang(1) — Pne(t) + ny(t) /7., (7)

P — () - mto) ., ©)

where n¢(¢) and n(t) correspond to the free and trapped states in
our model and ¢, ff and 7 are positive constants.

Let us treat eqn (8) formally as a non-homogeneous ordinary
differential equation of the first order. Then, its formal
solution reads

n(1) = J;dt e =% Bne(1"). (9)

By substituting the last equation into (7), we get

dnét(t) = —ons (1) — Pns (1) + %Jodt e U Bae(r) - (10)

and, respectively,

di’lt(l)

T Bre(t) — 1

Tx

t
J de'e” = (1. (11)
0

We see that the system of eqn (10) and (11) is a particular
case of our model eqn (1) and (2) with the exponential trapping

1
PDF y(1) = —exp(—1t/1.). Thus, we have established a link of
T

the non-Markovian model (1)-(2) and the classical Markovian
two-state equations.®
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Appendix F: solution of Markovian
kinetic rate equations

We consider eqn (7) and (8) with initial conditions n¢(t = 0) = N,
and ny(t = 0) = 0. In the Laplace space,

Sfig — No = —ofig — fg + Ay/tx, (12)
s = Piig — 7T« (13)
or
(s + o+ B)fig — fit« = N, (14)
—prg + (s + 1/t.)7, = 0. (15)
Determinant
Det = §% + (¢ + B + 1/14)s + o/Tw. (16)
The solution reads
ie(s) = Nog—( 2111/;;», Y. (17)
iuls) = NOSZ +(a+p +ﬁl/r*)s +o/t. (18)
The denominator can be written as
SH(+pr1ds+alte=(s+ |s1])(s + [s2]),  (19)

where s; and s, are the roots of the quadratic equation
S+ (ot B+ 1/t)s +ajt-=0, (20)

that is

1/, 1
s :_W_,_\/Z(a+ﬁ+]/f*)z_a/f*<07

5y = _%JFI/T*_ \/%(0(—0—[{—0— 1/1.)2 —a/t. < 0.

After plugging (19) into (17) and (18), we get

i(s) = s+ 1/7,

! Y+ IsiD (s + [s2)) o1
_ N() 1/T*—|Sl| ‘S2|—l/‘5*
B |Sz\—|51|{ s+ |s1] * s+ |so] }’
s = N DG sl o

N { L }
s2f = Isi] Us +Is1] s+ [s2 )

Taking the inverse Laplace transform

No

N |S2‘ — |S1|

{1/ = IsiDe 81 + (1sa] = 1/z)e7H20 ).

(23)

}’lf(l)
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(1) = —Yob {e—\sm el
Is2| = |51

Remark 1. It is possible to prove that |s;| < 1/« < |s,[, thus
both terms in the brackets of (23) are positive and, auto-
matically, the term in the brackets of (24) are also positive.
For example,

(24)

atprlfe. ﬁ(a + B+ 1) o/t (25)

]/T* > ‘Sl| =

1 1/t
\/Z(oc—l-/)’—o—l/r*)z—cx/r* >W— 1/7.. (26)
If a + f < 1/1+, then the left side >0, and the right side <0.

If o + f > 1/1+, then taking square of both sides,

i(oc +h+1/1) — o/t > %(oc +h+1/1.)

1/t (0 + B+ 1/1.)+1/t.2 = 0> — B/..

In the same way, the inequality 1/t» < |s,| is proved.
Remark 2. If « = 0, then s; = 0, s, = —(f + 1/1), and then n(¢)
and n(t) reduce to

I’lf(l) = ﬂ%lo/‘[*{l/r* + ﬁe_(ﬁ+1/T*)l}7 (27)
n(t) = FERYS J]rvoll;r*{l - e’(ﬂ“/f*)’}. (28)

Remark 3. Normalisation. 7ig(s = 0) = Ny/a = const. This
implies normalisation [ n¢(¢)ds = No/o that follows directly
from eqn (3).

Appendix F: derivation of the
asymptotic power-law for ng(t)

In order to derive eqn (5) for the emission intensity in the long-
time limit, we follow the reasoning from ref. 64 and use an
identity

Mo _its) = r[l — e e (1)dr. (29)

o 0

From the expansion of 7ig(s) at small s, in eqn (4), we infer that
Ct
lH”

n¢(t) decays at long times as n¢ (1 > t,) ~ . We put the latter

expression in the identity and get

No ~ o© _ T
—— ~C| [1—-e¥]dr
Lm0 =c| e

(30)

Now, we take derivatives from both sides with respect to s and
using the Tauberian theorem for Laplace transforms,®* we get

—iif (s) =~ CI(1 — p)es" . (31)
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After differentiating eqn (4), one obtains the expression for C,

B No

= (32)
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