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Nuclear vibrational theories based upon the Watson Hamiltonian are ubiquitous in quantum chemistry,
but are generally unable to model systems in which the wavefunction can delocalise over multiple
energy minima, i.e. molecules that have low-energy torsion and inversion barriers. In a 2019 Chemical
Reviews article, Puzzarini et al. note that a common workaround is to simply decouple these
problematic modes from all other vibrations in the system during anharmonic frequency calculations.
They also point out that this approximation can be "ill-suited”, but do not quantify the errors introduced.
In this work, we present the first systematic investigation into how separating out or constraining torsion
and inversion vibrations within potential energy surface (PES) expansions affects the accuracy of
computed fundamental wavenumbers for the remaining vibrational modes, using a test set of
19 tetratomic molecules for which high quality analytic potential energy surfaces and fully-coupled
anharmonic reference fundamental frequencies are available. We find that the most effective and
efficient strategy is to remove the mode in question from the PES expansion entirely. This introduces
errors of up to +10 cm™1 in stretching fundamentals that would otherwise couple to the dropped mode,
and +£5 cm™! in all other fundamentals. These errors are approximately commensurate with, but not
necessarily additional to, errors due to the choice of electronic structure model used in constructing
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1 Introduction

Harmonic normal mode analysis and scaled harmonic frequen-
cies continue to enjoy great popularity in assisting the assign-
ment of vibrational infrared and Raman spectra,’ but can fail to
accurately model anharmonically coupled systems, e.g. the OH
stretching spectrum of carboxylic acid dimers.” Moving beyond
the harmonic approximation, the complexity and computational
cost associated with constructing anharmonic potential energy
surfaces (PES) and solving the nuclear vibrational Schrodinger
equation usually demand compromise, and the accuracy of
anharmonic models is sensitive both to model ansatz and
implementation details.

Arguably one of the most important ansatz choices is that of
the coordinate system, because this impacts upon both the
efficiency of PES construction schemes and the complexity of the
nuclear vibrational Hamiltonian. As stressed by Sibert III et al.,
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computed wavenumbers for all investigated molecules, R matrix definitions, and
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“exact implementations of the curvilinear and rectilinear descrip-
tions are strictly equivalent. However, a key practical point is
that they are not equivalent in low orders of approximation.””
Usually, this is a choice between Scylla and Charybdis, because the
kinetic energy operator is more concisely formulated in rectilinear
coordinates, whereas molecular potential energy surface expan-
sions converge faster in curvilinear coordinates.

Anharmonic Watson Hamiltonian models*® are widely used
but share common limitations when it comes to describing
large-amplitude vibrational motions. These limitations arise
from the aperiodic nature and shape of rectilinear normal
mode coordinates. Watson Hamiltonian models are strictly
only suitable for semi-rigid molecules that undergo relatively
low-amplitude vibrations from their equilibrium structures,
and can yield strongly divergent results when applied to mole-
cules that undergo large-amplitude motions such as torsion or
inversion vibrations.

The simplest and most rigorous approximation to circum-
vent this involves enforcing the required condition of semi-
rigidity by ignoring any coupling between the large-amplitude
vibrations and all other vibrations. In a recent review,
Puzzarini et al. pointed out that this “represents a crude
approximation, which can be ill-suited in many situations.”®
However, to the best of our knowledge, the resultant errors have
not been systematically investigated or quantified before.
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If the large-amplitude vibration itself is of interest, one
needs to account for its curvilinear nature using more sophis-
ticated models.” In some special cases, the Watson Hamiltonian is
still suitable if the potential energy surface (PES) and wavefunction
can be expanded about a saddle point connecting two symmetric
minima. This approach has been used to compute tunnelling
splittings for the inversion modes of H;0" and NH3,*° but cannot
be extended to other types of motions, such as torsions.’

A more general solution is to numerically map out the PES
along one or two large-amplitude coordinates, constrained to
remain orthogonal to the remainder of the PES. This idea forms
the basis for a series of closely-related methods, including the
Hougen-Bunker-Jones Hamiltonian,'® reaction path Hamiltonian,"*
reaction surface Hamiltonian'* and internal coordinate path
Hamiltonian™*'* models. However, the process of mapping out
the PES along these special coordinates is far from routine, and
a specialised set of basis functions are required in which to
expand the wavefunction. This complicates the evaluation of
kinetic and potential energy integrals, decreasing computa-
tional efficiency relative to methods based purely on the
Watson Hamiltonian.

To investigate the limits of applicability of “pure” Watson
Hamiltonian models, we will quantify how omitting or approxi-
mating PES-mediated coupling between torsion and inversion
vibrations affects fundamental transition wavenumbers of
other vibrational modes. In principle, the best way to assess
the accuracy of any computational model is to directly bench-
mark against experimental data. However, in the context of
vibrational spectroscopy, problems with this approach arise
from both theoretical and experimental perspectives.

From the experimental side, it is not always possible to
obtain high-resolution gas phase vibrational spectra and, even
if the data is available, unique and unambiguous assignments
are not always possible, particularly where there are strong
resonances between fundamentals and overtones or combi-
nation bands. From the theoretical side, the main problem is
that there are multiple sources of error that all contribute to the
overall accuracy of the final predictions, including choice of
electronic structure model used in constructing the potential
energy surface, form and/or completeness of potential energy
surface representation, and choice of nuclear vibrational model
or form of nuclear vibrational Hamiltonian. It is important to
carefully disentangle contributions from each potential source
of error to ensure results are robust; i.e. when predictions align
with experiment, they are right for the right reasons, not simply
due to fortuituous error cancellation.'

Therefore, we will perform a thorough and systematic
benchmarking study on a series of 19 tetratomic molecules
for which high quality semi-global analytical potential energy
surfaces and reference fundamental wavenumbers obtained
using alternative nuclear vibrational models are available."®

However, the acid test of any computational model is
ultimately its ability to predict and/or interpret experimental
data. Informed by the tetratomic benchmarking results,
we will construct Watson Hamiltonian models in which the
computational sources of error are carefully controlled, and
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assess their accuracy against high-resolution experimental data
for a series of pentatomic and hexatomic molecules, including
the textbook example methanol.

2 Theory

The first choice that must be made in any nuclear vibrational
calculation is how to represent the potential energy surface. For
harmonic frequency calculations this is straightforward; all
required information is encoded within the molecular Hessian.
However, for anharmonic frequency calculations, there are a
number of options for constructing semi-global potential
energy surfaces, including force field parameterisation,"”>°
numerical mapping on multi-modal grids,**" and symmetry-
invariant fitting or interpolation.”>*?

In this work, we choose to use the PyPES and PyVCI program
packages'®>* that utilise the Watson Hamiltonian® in conjunc-
tion with sextic force field expansions of the potential energy.
Although analytic force field expansions have gone out of
fashion in variational calculations, in favour of m-mode grid-
based representations of the PES,*>' we choose to use PyPES
because it conveniently offers all necessary tools: PyPES easily
facilitates the utilisation of spectroscopically accurate PES
compiled from the literature and newly ab initio-generated
force fields, allowing theory-theory and theory-experiment
benchmarking to be carried out within the same methodo-
logical framework. The required PES and wavefunction mani-
pulations to separate out large-amplitude vibrations are trivial
to implement in the context of force field-expanded PES and
wavefunctions constructed from a basis of harmonic oscillator
product functions. Sextic force field expansions in rectilinear
normal mode (RNM) coordinates are obtained via coordinate
transformation from quartic force fields in curvilinear normal
mode (CNM) coordinates, following the formalism established
by Allen and Csaszar.'® This takes advantage of the rapid
convergence of force field expansions in CNM coordinates,
and provides an efficient and numerically stable procedure
for approximating 5th and 6th order RNM force constants.'®
Constraints that restrict how force fields describe large-
amplitude modes - or indeed, omit them entirely - may be
applied in either CNM or RNM space. Because the truncation
schemes trialled in this work depend on how the force fields
are constructed, we will briefly summarise our approach here.'®

2.1 Force field construction

Curvilinear normal mode (CNM) coordinates, Q, are defined as
linear combinations of (possibly redundant) internal coordi-
nates, S, that reproduce rectilinear normal mode (RNM) coor-
dinates, Q, to first order, i.e. whose first derivatives with respect
to Cartesian displacements are the same:

90;  00;
ox, 0%, )

In this work, our choice of primitive internal coordinates for
bond lengths, bond angles, dihedral angles, and out-of-plane
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angles are
r—r .
S = {fser(r) = =, 0,7.sin(0) | @)

where r, 0 and 7 are the usual bond length, bond angle and dihedral
coordinates,” sin(w) is an out-of-plane umbrella coordinate,> and
fspr(r) is the Simons-Parr-Finlan radial coordinate* that is defined
relative to equilibrium and has appropriate asymptotic behaviour at
both short- and long-range by design.

Rectilinear normal mode coordinates (Q) are defined as
linear combinations (L") of Cartesian displacements (X) that
diagonalise the mass-weighted Hessian matrix:*’

Q=L'X. (3)
Curvilinear normal mode coordinates (Q) are defined analogously:
Q= (BL) 's = RS, (4)

where B is the Wilson B matrix that contains derivatives of
internal coordinates with respect to Cartesian displacements.
Contracting the B and L matrices and inverting yields the R
matrix that defines curvilinear normal mode coordinates as
linear combinations of internals.

With curvilinear normal mode coordinates thus defined, the
PES can be expanded as a Taylor series in Q about equilibrium
(unrestricted summation):

~ 1 ~ 1 L.~ 1 L o o
VIOQ) =5 FiQP + > Fin0i0;0k + 57 ) Fi0i0;04 0,
i ijk ijkl
(5)

where the force constants, F, represent derivatives of the energy
with respect to displacements along curvilinear normal modes.
In general, these force constants may be stably computed to 4th
order by numerical differentiation involving analytic ab initio
Hessians. However, for molecules contained within the PyPES
library, they may instead be obtained by analytical differentia-
tion of implemented reference potentials.?® Our procedures for
computing the required force constants, either analytically or
numerically, are summarised in Fig. 1.

Transforming the 4th order curvilinear normal mode force
constants F to 6th order rectilinear normal mode force constants F
requires derivatives of Q with respect to Q, to 5th order. These are
computed via a two-step linear transformation from higher order
analogues of the B matrix, using the L and R matrices defined
above. Following a non-linear coordinate transformation
procedure,'®?° the desired sextic force field in rectilinear normal
mode coordinates is obtained (unrestricted summation):

1 1 1
VOWQ) =3D FiQl + ¢ 3 FirQi0i0k + 55> FiniQi00kQ:

ik ikl

1
+ 130 Z Fijanm Qi Q0 Q10m

ijkim

1
750 > Fiimn0i0; 04010 Q-

ijklmn
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{ Original PES H Reference PES ]\

|
|

{ o) (z<4>) H o) (S<4)) L
| v (Q<4>) H y(©) (Q«s)) J
[ V(Z)(Xm) ]_*{ V(4>(Q<4)) 1/

Fig.1 Two equivalent schematic representations of our process for
deriving Taylor series expansions of potential energy surfaces, V, in curvi-
linear (CNM) and rectilinear normal mode (RNM) coordinates; QFF =
quartic force field = 4th order Taylor series expansion; SFF = sextic force
field = 6th order Taylor series expansion. In the bottom diagram, the
bracketed superscripts indicate overall order of expansion, and order of
expansion with respect to any given coordinate (mode representation),
respectively. The symbol denotes a numerical differentiation process.
Although curvilinear normal mode force constants may be computed
directly via numerical differentiation, it is easier and more numerically
robust to first construct full quartic force fields in rectilinear normal mode
coordinates and then analytically transform into curvilinear normal mode
coordinates.

CNM QFF H RNM SFF ]

Ab initio
Hessians

The 5th and 6th order force constants Fyy, and Fjj,, are not the
true higher order derivatives of the potential energy, since they are
missing contributions from nglm and Fy’klmn- This approximation
can result in errors of up to 10 cm™ ' in computed fundamental
wavenumbers, but usually they are 1-2 cm™ "'

2.2 Proposed force field truncation schemes

A natural consequence of the semi-local nature of the Watson
Hamiltonian is that resultant nuclear vibrational models
cannot generally capture tunnelling splittings. Nonetheless,
full dimensional Watson Hamiltonian models can - in theory -
provide reasonable approximations for higher-frequency
modes, provided that tunnelling splittings are small. However,
in practice, force field expansions often become unstable when
applied to molecules with torsional or inversion modes of
vibration."®*%3°

Possible sources of instability include:

(1) Unphysical divergences or “holes” in the potential arise
along the torsion/inversion coordinate, reflecting the inability
of the truncated Taylor series to correctly model the shape of
the PES along the vibrationally-accessible region.

(2) The inability of 6th order expansions in RNM coordinates
to correctly reproduce the shape of 4th order expansions in
CNM coordinates, resulting in unphysical couplings between
torsion/inversion coordinates and others within the RNM
force field.

(3) Both of the above.

We therefore investigate three possible truncation schemes:

(1) Vharm: constraining the problematic coordinate to remain
harmonic in the CNM PES expansion, and then transforming to
RNM coordinates.

This journal is © the Owner Societies 2020
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Table 1 Shorthand notation for potential energy surface expansions
constructed in this work. The tilde superscript denotes that mode-
dropping or harmonic constraints have been applied in curvilinear normal
mode coordinates preceding transformation to obtain the final force field
expansion in rectilinear normal mode coordinates. Values in superscripted
parentheses are used to indicate both the overall expansion order and
order with respect to specific coordinates. Computational scaling laws
reflect the number of Hessian calculations that would be required to
directly compute curvilinear normal mode force constants ab initio

Name Definition Scaling
Viet V(i]@@)) N ~‘,4(6)((?(6) o O(Nyin?) 2
Vharm V( ) Qtor/mvagje)nd/str - V( )(Q{ ]) (Nbend/str )
Ydrop VM]( (4)) V(G)(Qgg)r/invvog)end/str) (L( vib )
Vdrop VMJ(QEg)r/inVngleJnd/str) - V( Egjr/mvyogend/str Cp(Nbend/strz)

(2) Varop: dropping all terms involving the problematic
coordinate in the RNM PES expansion, but retaining indirect
coupling mediated through the curvilinear-to-rectilinear coor-
dinate transformation process (see ref. 16).

(3) Varop: dropping all terms involving the problematic
coordinate during CNM PES construction prior to transforma-
tion into rectilinear normal mode coordinates. This ensures
that the dropped mode remains frozen (harmonic and geome-
trically uncoupled) in the RNM PES expansion. It may become
necessary to modify the redundant coordinate set S, which
underpins the curvilinear normal mode coordinates Q (see
eqn (4)).

Transformation procedures used to obtain these truncated PES
expansions are summarised in Table 1.

2.3 Vibrational Hamiltonian and wavefunction

Anharmonic fundamental transition wavenumbers are com-
puted with our freely available PyVCI program package, using
vibrational configuration interaction (VCI) theory, as detailed
in ref. 24. PyVCI utilises the J = 0 Watson Hamiltonian” for non-
linear molecules in rectilinear normal mode coordinates,
including first-order Coriolis coupling between rotations and
vibrations (in atomic units):

007
;Bx;;g,,CA,<Qz Q/6Q> (Q/\ 90, Qlan)

)

where B; is the equilibrium rotational constant about axis « and
{; are zeta matrix elements as defined by Meal and Polo.*"*?

The VCI wavefunction is formed as a linear combination of
harmonic oscillator product functions:

lP"(le"'vQM) = ch‘n’q)n’(Ql"'WQM) (8)
where each basis function is given by:

M
d)"(le"'?QM) :Hd)ni(Qf) (9)
i=1
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in which ¢, are single-mode harmonic oscillator functions,
and n is a string of quantum numbers ny,...,n,...,n that
specify the vibrational state across all M modes. The maximum
value that the sum of these quantum numbers can take is referred
to as the excitation level, denoted VCI(n), where > n; < n.

1

VCI fundamentals are identified as those singly-excited
states with the largest overlap to the corresponding harmonic
oscillator fundamentals, and fundamental transition wave-
numbers are computed from the energy difference between
these and the VCI ground state.

3 Methods

3.1 Benchmarking - tetratomics

Our benchmarking test set contains 19 tetratomic molecules
(plus 5 deuterated isotopologues) that have either a torsion or
inversion mode, for which spectroscopically accurate semi-
global potential energy surfaces are available in the literature
and implemented within the PyPES program package.?® The
electronic structure methods, basis sets and nuclear vibrational
methods used to obtain the original PES and reference funda-
mentals are listed in Table 2, and molecular topology classes
illustrated in Fig. 2. Trigonal pyramidal molecules (type A)
possess symmetry-equivalent minima potentially accessible
through inversion. Extended molecules (types C and D), on
the other hand, each possess a torsional mode. Trigonal planar
molecules (type B) are included as a control group, since they
only have a single minimum energy structure accessible
through vibrational motion.

Full dimensional sextic force fields in rectilinear normal
mode coordinates (Vi.f) and their truncated analogues (Viarm,
Varop and Vdmp) are obtained via analytical coordinate transfor-
mation from curvilinear normal mode quartic force fields,
following the procedures outlined in Section 2.2. The force
constants that define these CNM QFFs are themselves obtained
by analytical differentiation of the reference PES implemented
within PyPES.*®

Anharmonic fundamental wavenumbers are computed
using VCI at excitation levels (= maximum sum of vibrational
quanta distributed amongst harmonic oscillator basis states)
up to and including VCI(10). A complete set of computed
fundamentals is reported in Table S1 of the ESI,{ along with
benchmark computational and experimental data compiled
from the literature.

3.2 Applications - pentatomics and hexatomics

For pentatomic and hexatomic molecules, CNM QFFs are
obtained via exact, analytic coordinate transformation from

Ao oho ba, by

Fig. 2 Topologies of molecules contained within our benchmark set.?®
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Table 2 Key details of methods used to obtain computational reference
data for all tetratomic molecules in our benchmarking data set together
with (high-resolution) experimental references; ¢ and t denote cis and
trans isomers, respectively

Electronic structure Nuclear vib. Comp.
Expt.” ref. method model ref.
)
NH; Csy 33-36 CCSD(T)/CBS ICH (TROVE) 37
PH, Cs, 38,39 CCSD(T)/CBS ICH (TROVE) 40
SbH; Csy 41 CCSD(T)/aVQZ ICH (TROVE) 42
BiH, Csy 43 CCSD(T)/avQz® ICH (TROVE) 42
SiH, Csy CCSD(T)-R12/BS1°  CVPT6 44
(B)
BF, Dy, 45-47 CCSD(T)/VT VPT2 48
CF;" Dsp, CCSD(T)/VT VPT2 48
AIF; Dsp, CCSD(T)/VT. CVPT4 49
SiF;* Dsp CCSD(T)/VT. CVPT4 49
SO, Dsp, 50, 51 CCSD(T)/aV(Q+d)Z VPT2 52
H,CO  C,, 53,54 CCSD(T)/avQZ ICH (TROVE) 55
H,Si0  Cyy CCSD(T)/av5Z ICH (RVIB4) 56
(©)
HOOH C, 57-61 CCSD(T)-F12/av7Z  ICH (RVIB4) 62
DOOD C, 63 CCSD(T)-F12/av7Z  ICH (RVIB4) 62
HSOH C, 64-66 CCSD(T)/av(Q+d)Z ICH (TROVE) 67
(D)
+HNNH C,, 68 CCSD(T)/VT. VPT2 69
¢-HSiOH C CCSijmVSZ VPT2 70
tHSiOH C CCSD(T)/av5Z VPT2 70
¢-DSIOD  C; CCSD(T)/aV5Z VPT2 70
tDSiOD  C CCSD(T)/aV5Z VPT2 70
¢-HOCO C; CCSD(T)/CBS VCI 71
tHOCO C, 72,73 CCSD(T)/CBS VCI 74,75
¢-DOCO  C CCSD(T)/CBS VCI 71
t-DOCO Cs 73,76 CCSD(T)/CBS VCI 74,75

ICH: internal coordinate Hamiltonian, as implemented in TROVE’” and
RVIB4.”® CVPTx: nth order Canonical Van Vleck perturbation theory, as
implemented in VANVLK.”>*® VPTn: nth order vibrational perturbation
theory, as implemented in SPECTRO.®' VCI: vibrational configuration
interaction, as implemented in MULTIMODE 82 2 High- and low-
resolution gas phase experimental data. ? With effective core potentlal
(ECP) on metal atom, refer to original reference for details. ¢ Near-
complete atomic orbital basis, refer to original reference for details.

RNM QFFs, whose force constants are computed by numerical
differentiation, with second derivative data supplied ab initio.
In principle, differentiation could be carried out in curvilinear
normal mode coordinates directly but in practice it is easier to
make the required atomic displacements in rectilinear space,
provided that the computational cost of generating the full QFF
is not prohibitive. Full dimensional sextic force fields (Vi)
and mode-dropped analogues (Vgrop and Varop) are generated
following exactly the same procedures as used in the bench-
marking section.

Because the computed fundamentals will be compared
directly to experiment, it is important to ensure that the
computed RNM QFF is as accurate as possible, to avoid the
choice of electronic structure model being the dominant source
of error. For this reason, we employ a ‘“hybrid” force field
approach, in which the entire PES is computed at a high level of
theory for which analytic Hessians are available (fc-CCSD(T)/aVTZ)
and the harmonic force constants replaced with values obtained at
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an even higher level of theory (fc-CCSD(T)-F12a/VIZ-F12). This
strategy has been widely used and extensively validated in the
vibrational spectroscopy literature.”®* It provides an optimal
balance between accuracy and computational cost, and typically
reduces electronic structure model errors to <5 cm™ %875

Frozen-core (fc) CCSD(T) (coupled cluster singles doubles
perturbative triples) analytic Hessian calculations®® are carried
out in an augmented triple-zeta basis®"> (fc-CCSD(T)/aVTZ)
using the Cfour program package,”°* version 1. Higher-level
fc-CCSD(T)-F12a°*/VTZ-F12°° harmonic force constants are
computed using Molpro®”*® version 2018.1.

Anharmonic fundamental wavenumbers are computed at
excitation levels up to and including VCI(9). A complete set of
computed fundamentals is reported in Tables S4-S6 of the
ESI,} along with benchmark computational and experimental
data compiled from the literature.

4 Benchmarking — tetratomics

The overall aim of this section is to establish how excluding or
constraining potentially problematic torsion and inversion
modes within the Watson Hamiltonian affects computed
fundamental transition frequencies of the remaining modes.

4.1 Force field stability

First, it is necessary to establish whether force field expansions
can be stabilised by selective truncation along large-amplitude
modes, either in curvilinear or rectilinear normal mode coor-
dinates. As stressed by Csaszar and coworkers in previous
works,**?° truncated force field expansions do not generally
have the correct long-range behaviour for large-amplitude
vibrational modes and thus should not be employed ‘for
studies on highly excited (ro)vibrational states.”*° However,
by using carefully selected sets of internal coordinates and
systematic PES construction procedures, it may be possible to
ensure correct asymptotic behaviour in all regions of interest.
Force field stability is relatively straightforward to assess, by
monitoring convergence of computed anharmonic fundamental
transition wavenumbers as a function of VCI excitation level.

Uncertainties in computed VCI(10) fundamental transition
wavenumbers are computed as the difference between values
obtained at VCI(9) and VCI(10):

Ocvge(V) = 10 ) (10)

where v = Vref, Vharm, Varop OF Vdrop, and the superscript refers to
the VCI excitation level at which each set of fundamentals was
computed. VCI convergence uncertainties for all bending and
stretching fundamentals are illustrated in Fig. 3. Torsion and
inversion modes are excluded in all cases to ensure a fair
comparison can be made between models.

In agreement with previous work,>* v,.¢ values converge to
within 1 em™" for most molecules, except those with large-
amplitude torsion or inversion modes: NH;, DOOD and all non-
deuterated molecules with large-amplitude torsions, i.e. HSiOH
and HOCO, HSOH, and HOOH. The low-barrier, large-amplitude
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Vref ﬁharm Vdrop 17 ‘drop

Fig. 3 Signed convergence uncertainties dc.qe in computed stretching
and bending VCI fundamentals for all molecules in our benchmarking data
set, excluding torsion and inversion fundamentals in all cases. Each box
extends from the lower quartile to the upper quartile of the data, and
whiskers extend out to twice the interquartile range. Outliers are marked
with crosses (+) and each box is bisected by a line indicating the median.

nature of these motions is evident spectroscopically, where
tunnelling splittings arise due to wavefunction delocalisation over
multiple minima. The largest errors occur in modes that can
couple to these problematic modes by symmetry, where errors can
propagate from poorly-described torsion/inversion modes into
stretching and bending modes through mode coupling within
the wavefunction.

The outliers in Fig. 3 (|devge(¥)] > 5 ecm™ ') arise due to
resonance mixing with excited inversion/torsion states that
cause state assignments to alternate as a function of VCI
excitation level. Two examples of this behaviour are shown in
Table 3, and the remainder reported in Table S2 of the ESL}
The most extreme example is the OSH bending fundamental of

Table 3 From V. computed transition wavenumbers (cm™) that
become near-degenerate with excited torsional states nivg as a function
of VCI excitation level and percentage wavefunction contributions P
(squared VCI coefficients) from respective VCI basis functions. States are
automatically grouped according to their leading wavefunction coeffi-
cients. All other cases are reported in the ESI, Tables S2 and S3

Vier VCI(8) VCI(9) VCI(10)

HSOH Fundamental 1002.3 994.8 1016.3
P(I/4) 87% 48% 52%
P(2vs) 8% 39% 37%
Resonant 1040.4 1016.1 992.9
P(vy) 9% 40% 44%
P(2ve) 72% 24% 44%

t-HSiOH Fundamental 3666.3 3651.0 3665.9
P(vy) 89 42% 57%
P(3v; + 1y) <1 <1% 2%
P(8vs) <1 21% <1%
Resonant 3675.7 3661.2
P(Vl) 25% 28%
P(3v3 +1y) 20% 13%
P(8ve) 11% <1%
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HSOH, which couples strongly to the first torsional overtone via
Fermi resonance. Similarly, a large convergence error occurs
in the OH stretching fundamental of ¢-HSiOH, where state
assignments vary due to resonance mixing to the seventh
torsional overtone.

Constraining torsion or inversion modes to remain harmonic
in curvilinear normal mode coordinates (Vref = Pharm in Fig. 3)
decreases the frequency of outliers, but does not otherwise
substantially alter the error distribution. The single outlier
corresponds to the OH stretching fundamental of hydrogen
peroxide, where a resonance mixing that does not directly
involve the torsional mode causes state assighments to alternate
as a function of VCI excitation level (see ESL,} Table S3).

From the trialled truncation schemes, the most robust and
reliable way to ensure rapid and monotonic VCI convergence is to
drop problematic modes entirely. This not only eliminates outliers
that arise due to resonance mixing with excited torsion/inversion
states, but also reduces all convergence uncertainties to <0.3 cm™".

Taken together, the results presented in Fig. 3 indicate that
force field instabilities are primarily due to using rectilinear
coordinates to describe intrinsically curvilinear motions, rather
than the accuracy of the force field expansion per se.

If anharmonicity along torsion or inversion modes were the
dominant cause of force field instability, then uncertainty
profiles for dcyge(Pharm) would be similar to those of dcyge(Varop)
or Jevge(Varop), because in both cases the energy is effectively
constrained to change harmonically along the problematic
mode. However, Fig. 3 shows that these uncertainty profiles are
quite different, indicating significant off-diagonal coordinate-
mediated coupling in Vjamy, that is rigorously absent from Vdrop
and Vyyop. Fundamentally, this arises from the fact that potential
energy surface expansions converge slowly in rectilinear normal
mode coordinates, particularly when applied to intrinsically curvi-
linear motions such as torsions and inversions. This limitation in
principle affects all PES models based upon rectilinear normal
mode coordinates, including numerical m-mode representations.

Conversely, the fact that the dcyge(Vrer) and Oevge(Pharm)
error distributions are similar (excluding resonance-induced
outliers) indicates that both models have equally well-behaved
PES expansions along the large-amplitude coordinate. This
suggests that our force field expansions have inherited appro-
priate long-range behaviour from the primitive set of internal
coordinates from which our curvilinear normal mode quartic
force fields are constructed.

Overall, dropping problematic modes is the most efficient
and robust strategy for stabilising force field expansions, but
also represents the most extreme approximation considered
here. Thus, it is important to characterise how PES truncation
schemes affect the accuracy of computed fundamentals.

4.2 Effect of PES truncation schemes

Errors in computed anharmonic fundamental transition wave-
numbers due to force field truncation are computed relative to
their fully-coupled all-mode counterparts:

5ref(V) = V(lo) - Vgtle(f))

(11)
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Fig. 4 Signed errors d.e (see egn (11)) in bending and stretching funda-
mentals due to applying harmonic constraints on or dropping the torsion/
inversion are illustrated in boxplot format, aggregated according to mole-
cular topology for each approximate force field model. Each box extends
from the lower quartile to the upper quartile of the data, and whiskers
extend out to twice the interquartile range. Outliers are marked with
crosses (+) and each box is bisected by a line indicating the median.

where v = Uparm, Vdrop OF Vdrop, and the superscript refers to the
sum of quanta used in the VCI calculation. v,.r reference results
cannot be converged for HOOH, DOOD, HSOH, HSiOH, HOCO
(see ESL,T Table S1) and so these molecules are excluded from
further analysis in this section. For NHj, although VCI(10)
results diverge, VCI(9) results are monotonically converged to
within 1 em™" so are used instead. Boxplot analysis of errors
aggregated by molecular topology are illustrated in Fig. 4, while
5 illustrates error distributions sorted according to vibrational
mode type.

Fig. 4 reveals that error distributions are largely independent
of molecule type, with all truncated models yielding maximum
absolute errors <10 cm ' in computed fundamentals for all
modes except the labelled outliers. In these cases, strong Fermi
resonances cause state assignments to vary between Vies, Vharm
and Vdrop/Vdmp models, according to the VCI coefficient data
shown in Table 4. However, situations like this can be readily
detected by inspection of VCI coefficients, without recourse to
reference calculations, and appropriate error bars applied.
We suggest applying error bars that stretch between the
predicted wavenumbers of the two near-degenerate VCI
eigenstates. These outliers will not be included in any further
analysis.

Although Fig. 4 suggests that all three truncated models are
of approximately equal quality, there are subtle differences in
their error distributions that are investigated in more detail by
reanalysing the data according to vibrational mode type. Fig. 5
shows that the Vyam model tends to produce randomly
distributed errors that are similar across all mode types.
Mode-dropped models, on the other hand, systematically over-
estimate stretching wavenumbers, particularly in X-H stretching
modes (X = B, C, N, O), which are generally overestimated by
5-10 cm™'. However, mode-dropped models are particularly
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mentals due to applying harmonic constraints on or dropping the torsion/
inversion are illustrated in boxplot format, aggregated according to type of
vibration (bending, high frequency X—H and other stretches) for each
approximate force field model. Each box extends from the lower quartile
to the upper quartile of the data, and whiskers extend out to twice the
interquartile range. Outliers are marked with crosses (+) and each box is
bisected by a line indicating the median.
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Table 4 Computed VCI(10) wavenumbers (cm™) and percentage wave-
function contributions P (squared VCI coefficients) from respective VCI
basis functions for the near-degenerate v, (COD bend) and 2vg (first
overtone of torsion) states in c-DOCO, and near-degenerate v, (SiD
stretch) and vs + 5 (combination of SiO stretch and bend) states in
c-DSiOD. VCI eigenstates are grouped according to their leading basis
state wavefunction coefficients

VCI(lO) Vref f/harm I~/clrop

¢-DOCO Fundamental 969.9 944.1 960.1
P(vy) 62% 54% 96%
P(2v) 31% 40% —
Resonant 933.7 982.3 —
P(vy) 54% 42% —
P(2v) 40% 53% —

¢-DSiOD Fundamental 1375.0 1362.3 1374.8
P(1,) 50% 55% 55%
P(vs + vs) 41% 36% 36%
Resonant 1359.0 1378.5 1358.9
P(1) 40% 35% 35%
P(vs + vs) 50% 57% 57%

accurate for bending modes, with randomly distributed errors
always within £5 cm™". This suggests that neglect of geometric
coupling between the dropped large-amplitude mode (e.g. XH
torsion) and retained stretching mode (XH stretch) is one of the
main accuracy-determining factors of torsion-dropped models.

4.3 Coordinate definitions & coordinate-mediated coupling

Varop and Vdmp are particularly attractive models because they
are conceptually simple, fully stabilise PES expansions in the
relevant energy regime, and/but avoid Fermi resonances between
excited torsion/inversion modes and other fundamentals.
However, differences and similarities between these truncation
schemes are not immediately clear. Inspection of Fig. 3 and 4
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even creates the impression that they are the same. Indeed,
they often yield very similar results and, in many cases,
completely identical results. Because f/dmp has the potential
to reduce computational cost if curvilinear normal mode force
constants are computed ab initio, it is desirable to exploit this
similarity where possible.

Identical results can only be obtained if the dropped mode is
completely uncoupled to other modes geometrically, because the
chances of complete energetic decoupling are practically zero. For
planar molecules, the large-amplitude mode is the only out-of-
plane mode, so is geometrically orthogonal to all other modes by
symmetry. Therefore, it is trivial to exclude the inversion (group B)
or torsional (group D) internal coordinate and drop the corres-
ponding vibrational mode without affecting any of the remaining
coordinate definitions or vibrational wavenumbers. In these cases,
Varop and Vdmp are rigorously identical. For non-planar molecules,
non-trivial mappings between internal valence coordinates and
curvilinear normal mode coordinates may arise, encoded within
the R matrix that defines curvilinear normal mode coordinates as
linear combinations of internals (see eqn (4)). Example R matrices
for all molecular topologies are provided in the ESI,T Section S2 and
computed fundamentals in Table S1.

For example, in ammonia (Csy), the symmetric stretching
coordinate acquires substantial bending character after the
inversion mode is dropped from CNM space. This is an artefact
of redundancy in the internal coordinate basis when it is used
to span a reduced CNM space, which leads to a deviation of
5.8 cm ' between Vdrop and Pgrep for the symmetric stretching
fundamental. In this case, Vgrop appears to be the more reliable
model, because this redundancy problem is avoided.

For hydrogen peroxide (C,), although the torsion can couple
to three other modes by symmetry, there is a close correspon-
dence between the character of the internal and CNM coordi-
nates, ie. the torsional mode is defined almost exclusively by
displacement along the torsional coordinate. Therefore, excluding
the torsional internal coordinate (to ensure numerical stability)
and dropping the torsional mode in CNM coordinates prior to
coordinate transformation yields almost exactly the same RNM
force field as obtained by dropping the torsional mode post-
transformation. Hence, the fundamentals computed from Vgrop
and Vyyop agree to within 0.1 cm ™.

Overall, it is safe to drop modes in CNM space if they are
either rigorously orthogonal to other modes by symmetry or there
is a (near) one-to-one mapping between the CNM mode to be
dropped and a corresponding internal coordinate to be excluded
from the internal coordinate basis. Mathematically, this is equiva-
lent to stating that the R matrix must be exactly or very near block-
diagonal, with the mode(s) to be dropped contained within its
own block. We note that this approach trivially generalises to
allow multiple mode-dropping in CNM coordinates, provided that
appropriate sets of internal and CNM coordinates to be excluded
can be identified separate as sub-blocks of the R matrix.

4.4 Comparison with computational literature

While the internal validation procedures described above have
enabled us to assess truncation errors for molecules whose Vit
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force fields are otherwise stable enough to compute converged
fundamental wavefunctions and energies, we have not been
able to directly assess accuracy of truncated models for molecules
with large-amplitude torsional or inversion modes. However, it is
exactly these problematic cases that are most interesting.

Fortunately, for many molecules in our data set, alternative
reference values are available in the literature, obtained by
using more complete and/or accurate representations of the
potential energy surface and more appropriate and/or accurate
methods for solving the nuclear vibrational Schrodinger
equation. Cases in which literature values were obtained using
second-order vibrational perturbation theory (VPT2) will be
omitted from any further analysis.

Differences between computed VCI(10) fundamentals and
literature reference values are defined as:

diie(v) = 10— Uity (12)

where v = Ure, Uharm, Vdrop OF Parop- Mean absolute deviations for
each molecular topology are illustrated in Fig. 6.

For trigonal pyramidal and trigonal planar molecules
(groups A and B), force field truncation errors generally increase
with the extent of truncation:

[Vref — Vil < |Pharm — Yiie] < |Varop — Yiel ® |Parop — Y]

For trigonal planar molecules (group B), this is primarily a
consequence of neglecting energetic coupling between the
dropped inversion mode and other vibrational modes, because
the inversion coordinate is geometrically decoupled from the
others. For trigonal pyramidal molecules (group A), additional
errors arise due to mixing between inversion and symmetric
stretching coordinates, with the largest errors for molecules
with hydrogen substituents that undergo the largest amplitude
vibrations.

10
< (A)
A (B
B (®)
] TN o (C+D)-h
o o (CD)d
o) 67
cm™? .
( ) A O----mm oo o
44 //' \\\ T <&
o
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A//
0 . — : -
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Fig. 6 Mean absolute deviations (|dul) (see egn (12)) between computed
fundamentals and literature reference data, grouped by molecular
topology for each different force field model used in this work. Molecules
in groups C and D are partitioned into hydrogenated (-h) and deuterated
(-d) isotopologues.
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For hydrogenated molecules with rotatable bonds (groups C
and D), vqrop and Tqrop are universally more accurate approxi-
mations to vy; than either v;ef Or Ppa1m,. This is because dropped-
mode models rigorously eliminate instabilities in the PES both
along the torsional mode and by removing coordinate-mediated
coupling between the torsional mode and the remaining modes
of interest. They have the added advantage of simplifying
computed vibrational spectra by also eliminating artificial or
mis-assigned resonances involving torsional modes, as found
for vper and Uparm.

Hydrogen peroxide represents a pathological case for
Watson Hamiltonian models, with a particularly low-barrier
torsional mode, energetic and geometric coupling between
modes, and a number of (Fermi) resonances between vibra-
tional states.>’"®" As such, all models exhibit large deviations
from literature reference values.®> Nonetheless, even in this
case, the Vyrop and Vdrop models are the “best of the worst”,
which implies that ignoring energetic coupling between modes
is a reasonable trade-off to make to avoid the pitfalls listed
above. On the whole, Fig. 6 shows that v, predictions tend to
be about as accurate as Unarm, Ydrop and Vgrop-

5 Applications — pentatomics &
hexatomics

Having verified that dropped-mode models are accurate to
within 10 em™" for stretching and bending modes of tetra-
tomics, it remains to determine whether these models are
overall accurate and generalisable enough to reliably assign
gas phase vibrational spectra for larger molecules. As a first test
of extensibility, we choose pentatomic and hexatomic mole-
cules that all have a torsion vibration and for which full sets of
fundamental vibration wavenumbers have been obtained from
high-resolution spectroscopy: methyleneimine CH,NH,*™*
hydroxylamine NH,OH,"** formaldoxime CH,NOH,'*>*°® and
methanol CH;0H'*™""? (see insets in Fig. 8). Computed funda-
mental wavenumbers and reference experimental values are
reported in the ESL

Methanol is a useful test case, because it exhibits particu-
larly strong coupling between its low-barrier, large-amplitude
torsional mode and other vibrational degrees of freedom.
This is reflected in substantial tunnelling splittings (up to
20 cm™', and inversion of sign) into states of A and E
symmetry, as illustrated in Fig. 7."'°7"">"177121 Ag a textbook
example of such behaviour, methanol has been the subject
of intensive experimental’®® ' and computational®®*2°712¢
investigations.

At the other extreme, methyleneimine, is relatively rigid and
rotationally restricted by the C=N double bond. This makes
it particularly amenable to computational interrogation, and
several perturbative'” *" and variational’*>™*** anharmonic
frequency calculations are reported in the literature.

Hydroxylamine and formaldoxime are intermediate in
flexibility, capable of rotation about N-O single bonds. For
hydroxylamine, perturbative®**'*® and sub-space’®* anharmonic
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(4 = UE) — YA) + 4g4) for all vibrational modes of methanol except the
torsion. Raw data is listed in Table S5 of the ESL.{

frequency calculations have been performed. To the best of our
knowledge, there are no anharmonic frequency studies on
formaldoxime in the literature. Experimentally, no cis-trans
delocalisation effects or tunneling splittings have been observed
for either molecule.

5.1 Internal validation

As in the benchmarking section above, we first assess force
field stability by monitoring VCI convergence:
Oevgel(V) = SO 8 (13)
Consistent with previous computational results,**® the full-
dimensional SFF (Vief) of methyleneimine is stable at all VCI
levels up to and including VCI(9), and all fundamentals
converge to within 0.1 cm™'. However, for all other molecules,
divergences at higher VCI levels mean that reference full-
dimensional results cannot be obtained. Therefore, we turn
to dropped-mode models Vg, and Vdmp.

In all cases, fundamentals converge to within 0.1 cm ™" with
the exception of the symmetric NH, stretch v, in NH,OH, which
undergoes resonance mixing with the first overtone of the NH,
scissor 2v; and the second overtone of the NH, wag 3vs. Even in
this case, fundamental wavenumbers converge to within 2 cm™*
for both Virop and Ve, models.

More problematic is the fact that this resonance mixing
leads to alternating state assignments between Vg,op and Vdmp
models, as evidenced by the VCI mixing coefficients presented
in Table 5. This is consistent with previous observations that
resonance mixing is highly sensitive to even small changes in
the underlying PES model, but that this can be readily detected
by inspection of VCI coefficients.

Aside from the v, mode of NH,OH, comparison of the Vgrqp
and Vdmp results in Fig. 8 reveals that these models otherwise
agree to within 2 cm™* for all other fundamentals, and are
rigorously identical for modes that are orthogonal to the
dropped torsional coordinate by symmetry. The largest errors
occur in the CH, wag of CH,NH and the NH, wag of NH,OH,
with deviations of 1.6 cm ' and 1.2 cm™', respectively -
vibrations for which the curvilinear normal coordinate definitions

This journal is © the Owner Societies 2020
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Fig. 8 Error to experiment (deypr) for computed variational anharmonic
fundamentals (this work and selected literature!?1?11%%) of methylene-
imine  (CH,NH),°971%%  hydroxylamine  (NH,OH),1°*  formaldoxime
(CH,NOH)'®*™%8  and methanol (CH3;OH)MOH3~1517-419  rrequcible
representations are encoded in the font, A’ normal and A” in italics. For
methanol, computational and experimental data are averaged (E:A, 2:1).
Raw data is listed in Tables S4-S6 of the ESI.{

change substantially upon dropping the torsional coordinate from
the primitive internal basis.
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Table 5 Computed VCI(9) wavenumbers (cm™) and percentage wave-
function contributions P (squared VCI coefficients) for v, and resonant
state in NH,OH. VCI eigenstates are grouped according to their leading
basis state wavefunction coefficients

VCI(Q) Vdrop I~/drop

NH,OH Fundamental 3291.2 3303.9
P(v,) 45% 50%
P(3vs) 21% 19%
P(2v3) 3% 9%
Resonant 3309.5 3282.9
P(v,) 27% 21%
P(3vs) 37% 41%
P(2v3) 6% <1%

5.2 External validation

Errors to experiment for all four molecules are illustrated in Fig. 8,
and corresponding numerical data provided in Tables S4-S6 of
the ESL.f Where alternative high quality computational predic-
tions are available in the literature,'?>*2%*3* these are also com-
pared to experiment in Fig. 8. In order to compare the single-
reference PyVCI results for methanol with experimental data, the
low-resolution band centre is computed by averaging E and A
fundamental transitions two to one.

For methyleneimine (top panel), all models agree well with
experiment and each other, except for the NH stretch funda-
mental v4, which the dropped-mode models overestimate by
~26 cm . This is well outside the maximum +10 cm™" over-
estimation error expected from the tetratomic benchmark.
In this case, our full-dimensional data and reference computa-
tional results by Rauhut et al.»*® suggest that this disagreement
does not stem entirely from the torsion-dropping procedure,
because these more rigorous models also significantly over-
estimate the predicted NH stretching fundamental, albeit to a
lesser extent. Inspection of the VCI coefficients reported
in Table S5 of the ESI,} reveals a Fermi resonance between v,
(Ve 3280.7 cm™') and the CN stretching overtone 2u,
(Veert 3260.0 cm™ "), despite the fact that only a single band
centre (3262.6 cm ') is observed experimentally, with very weak
rovibrational infrared transitions.'®" This raises the possibility
that the 2, overtone has been misassigned as the v; funda-
mental. We encourage experimental reinvestigation of this
spectral region, perhaps using Raman spectroscopy, because
NH stretches tend to be very Raman-active.

For hydroxylamine and formaldoxime (middle two panels),
dropped-mode models comfortably reproduce experimental
fundamentals to within 10 cm " for all modes except the
O-H stretches. This even includes the NH, stretching vibration
of hydroxylamine that is strongly resonance-coupled to over-
tones of its NH, scissor and NH, wag. Indeed, in most cases,
errors to experiment are within £5 em™'. O-H stretches are
overestimated by ~15 cm ™", consistent with previous observa-
tions from benchmarking tetratomics.

In methanol (bottom panel), the O-H stretching error-to-
experiment is unexpectedly small, at ~2 cm ™. However, this is
almost certainly due to fortuituous error cancellation. Previous
benchmark computational studies using full-dimensional electronic
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structure models for methanol with PES of approximately the
same quality underestimate the O-H stretching fundamental by
5-10 ecm "% If this represents the error due to choice of
electronic structure model used in constructing the PES, it suggests
that mode-dropping incur an error of 7-12 cm ™", cancelling to give
the observed 2 cm ™. The other obvious outlier in this data set is the
COH bending mode v, that dropped-mode models overestimate by
~17.5 cm™ ", The fact that this fundamental is well modelled in
previous full-dimensional studies>*'*" suggests that this error is
due to mode-dropping. This is supported by the spectroscopic
analysis of Lees et al., who report strong resonance mixing between
Vs and torsional combitone states in methanol (v, + 14, and
Vg + 115)." 1t is therefore unsurprising that the missing resonance
with torsional combitone states leads to larger deviations for the v
fundamental.

6 Conclusions

Three different approaches have been trialled to stabilise recti-
linear normal mode force field expansions of the potential
energy surface for molecules with large-amplitude torsion or
inversion modes which can be performed using our freely
available, open-source PyPES and PyVCI program packages.

Constraining the problematic mode to remain harmonic
and uncoupled in curvilinear normal mode coordinates prior
to transformation is not completely effective in stabilising
the resultant sextic force field in rectilinear normal mode
coordinates. This shows that problems with torsion and
inversion modes are not just due to the shape of the potential
energy surface along these coordinates, but are also an
inherent problem that arises when curvilinear coordinates
are expanded in a finite-order rectilinear normal mode basis.
We note that this finding applies to all schemes in which
potential energy surfaces are expanded or mapped out in recti-
linear coordinates.

Removing large-amplitude torsions completely stabilises
PES expansions in all cases, introducing errors of up to
+15 cm ™! in coupled stretching modes and absolute errors in
other fundamentals of ~5 cm ™. Dropping problematic modes
following coordinate transformation (Varop) is always numeri-
cally robust, but comes with no computational gain during PES
construction. Although dropping modes prior to coordinate
transformation (Vgrop) has the potential to reduce the computa-
tional cost of computing the requisite force constants ab initio,
care must be taken to exclude matching coordinates from the
internal coordinate basis or modify the basis to ensure that the
process remains numerically stable. More generally, the R
matrices that define curvilinear normal mode coordinates as
linear combinations of internal coordinates provide a useful
diagnostic of geometric separability of vibrational modes.
We anticipate that this could be further utilised to break the
“curse of dimensionality” associated with simulating IR
spectra more generally by decomposing the full dimensional
nuclear vibrational problem into a series of weakly coupled
lower dimensional sub-problems.
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The rigorous benchmarking procedures carried out in this
work confirm the general applicability of the mode-dropping
approach. Introduced errors in the remaining fundamentals
are approximately commensurate with, but not necessarily
additional to, errors associated with using CCSD(T) theory
with at least a triple-zeta basis to construct ‘“spectroscopically
accurate’” PES. Overall, the combined electronic and nuclear
vibrational model error when comparing predicted funda-
mentals directly to experiment is around 5 cm ™" on average
but can be up to 15 cm ' for X-H stretches that couple
geometrically to the dropped mode or slightly higher for modes
that couple energetically to the dropped mode.
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