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Solvation energies of ions with ensemble
cluster-continuum approach†

Lukáš Tomanı́k, Eva Muchová‡ and Petr Slavı́ček *

Solvation free energies can be advantageously estimated by cluster-continuum approaches. They

proved useful especially for systems with high charge density. However, the clusters are assumed to be

single minimum rigid species. It is an invalid condition for larger clusters and it complicates the

assessment of convergence with the system size. We present a new variant of the cluster-continuum

approach, ‘‘Ensemble Cluster-Continuum’’ scheme, where the single minima problem is circumvented

by a thermodynamic cycle based on vertical quantities (ionization energies, electron affinities). Solvation

free energies are calculated for a charged-neutralized system and solvation correction for the vertical

quantities is estimated for an ensemble of structures from molecular dynamics simulation. We test

the scheme on a set of various types of anions and cations, we study the convergence of the

cluster-continuum model and assess various types of errors. The quantitative data depend on the

applied continuum solvation model yet the convergence is analogous. We argue that the assessment of

convergence provides a measure of the reliability of the calculated solvation energies.

1 Introduction

Solvation free energy of ions is a fundamental quantity in
electrochemistry related to redox potentials, solubility, acidity
constants and all the other equilibrium quantities involving
ions. At the same time, it is a quantity notoriously difficult to
access both in experiment and theory. The problematic part
in the experiment stems from the simultaneous presence of
counterions.1 The dissolution of ionic compounds is a two-step
process – an ionic lattice is broken down and ions are dis-
solved. Energetics of dissolution is inevitably measured as a
sum of solvation free energies of the oppositely charged ions.
Moreover, the value is further plagued by a large uncertainty of
lattice energies.2 On top of that, the total solvation free energy
of the ionic compound can only be separated into the ionic
parts by employing an extrathermodynamic assumption3 which
as Reif and Hundberger claim4 does not allow verification of
the ionic solvation free energies.

It is common to report solvation free energies on a conven-
tional scale, in which the proton is assigned zero solvation free
energy.1 These values can be recalculated at the absolute scale
based on the actual value of the proton solvation free energy.

The two most common approaches to obtain this value are
based on different assumptions and lead to different absolute
solvation free energy scales. The first approach was formulated
by Y. Marcus5 and uses a simple model in which an ion is
described by its charge and radius. The model does not
distinguish between cations and anions with the same radius
and absolute values of the charge. Marcus divided the environ-
ment of an ion into a first solvation shell and bulk solvent. The
formula determining the thickness of the first solvation shell
contains a parameter that is fitted to the experimental data. The
corresponding proton solvation free energy is �1064 kJ mol�1.
The second approach, often called cluster pair approximation
(CPA), was first presented by Tissandier et al.6 The approxi-
mation was based on data amassed not only for ions but also
for small clusters of ions with a few molecules of solvent. The
model presumes that the solvation free energy of clusters
containing a cation or an anion becomes the same for the
infinite number of solvent molecules in the cluster. It leads to
the solvation free energy of the proton of �1113 kJ mol�1. It is
assumed that the difference of 49 kJ mol�1 between the two
scales arises from the interfacial potential between gas and
liquid, yet a direct proof is missing.4,7,8 While the value derived
by Tissandier contains the work needed to pass the interface
and sets the scale often called ‘‘real’’, the Marcus value does not
contain this contribution and sets the scale called ‘‘bulk’’.9

Adding to the complexity of the experimental solvation free
energies, the situation is further complicated for unstable ions,
e.g. those found in radiation chemistry or photoelectron
spectroscopy. An extreme example is a hydrated electron.
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The theory does not suffer from the principal problems of
the experiment and it is quite natural to evaluate a single-ion
solvation free energy with ab initio methods. However, the
inclusion of solvent effects is accompanied by large uncertain-
ties. The direct approach – calculation of larger and larger
clusters – is impractical. First, most of the electronic structure
methods scale as the cube or worse with system size which
prevents calculations of clusters large enough to account for
the solvation of the ions. Second, the conformational variability
of a large system is huge and extended sampling is required. While
the first problem can be mitigated with various approaches, e.g.
using fragmentation schemes such as QM/MM10 or QM:QM11 or
linear scaling methods,12–14 the second problem remains. Yet
various attempts have been made to access single-ion solvation
free energies via MD simulations,15–21 including studies using
polarizable models. Particularly interesting are simulations by
Duignan et al.22 based on MD with DFT interaction potentials
combined with quasi-chemical theory. This class of approaches
provides also a division of the solvation free energies into
physically intuitive contributions.

A simple and popular approach uses implicit solvent models
in which the solvent is represented as a dielectric continuum.
The continuum can be polarizable, with parameters taken from
macroscopic liquids. This approach has been successfully
applied especially for neutral solutes. There are different flavors
of the implicit models, e.g. the polarizable continuum model
(PCM),23,24 solvation model based on solute electron density
(SMD)25 or Conductor-like Screening Model for Real Solvents
(COSMO-RS).26–28 SMD has been parametrized to the ‘‘real’’
scale using a large set of uncharged and charged solutes.
The mean unsigned error in the solvation free energies was
2.5–4.2 kJ mol�1 for the training set of neutrals and 16.7 kJ mol�1

for the ions.25 It has been shown that COSMO-RS provides the
‘‘real’’ solvation free energies with the same accuracy as SMD,
PCM models exhibited slightly larger deviations because the
models have never been quantitatively parametrized specifi-
cally for solvation free energies.29 In general, the dielectric
models are constructed as ‘‘universal’’ solvation models; each
particular formulation uses a different parametrization and
relies on a default set of atomic radii which represents a
compromise. As such, the standard parametrization does not
have to equally well describe a neutral system and an ion and
further parametrization is typically needed.30,31 Moreover,
implicit approaches can exhibit difficulties for high charge
density solutes.32–35

The hybrid or cluster-continuum approach takes advantage
of both explicit and implicit methods. A (preferably small)
number of solvating molecules is added explicitly to interact
with the areas of a large change density and the supermolecule
is embedded in the dielectric continuum.36 The optimal num-
ber of explicit solvent molecules for the calculation is not
known a priori. It has been argued36 that the optimal number
of solvating molecules can be estimated ‘‘variationally’’, i.e.
by finding the number of solvating molecules n for which
the solvation free energy is minimal. There is, however, no
rigorous foundation for such a procedure. Intuitively, the hybrid

approach should connect the implicit dielectric model and full
quantum calculations. Such hybrid approaches have been
shown to largely improve the calculations of acidity constants
or redox potentials37–44 as well as the calculations of ionization
energies45–47 in solution.

The method is, however, not free of problems. First, there is
no unique approach on how to correctly perform the hybrid
calculations (vide infra monomer cycle with n distinct water
molecules as reagents and cluster cycle with an n water cluster
as a reagent). It is unclear if the approaches truly converge with
an increasing number of solvent molecules when using the
originally proposed algorithm.36 And while it is easy to use the
method for a small number of solvent molecules with only a
single dominating minimum for the ion-solvent pair, the
applications for larger clusters are problematic.

In the present work, we suggest a novel scheme for the
hybrid approach which circumvents the problem of finding the
optimal structures of increasing-size clusters. We investigate
the convergence of the hybrid approach and comment on the
possible sources of errors of the method.

The paper is organized as follows. We first briefly summar-
ize the cluster-continuum schemes for calculations of solvation
free energies. We then introduce our approach. The methods
are then tested on a set of ions for which reliable experimental
data exist. We also investigate the performance of the method
for individual components of the thermodynamic cycles.

1.1 Cluster-continuum method

The solvation free energies within the cluster-continuum model
are calculated using an appropriate thermodynamic cycle.
The individual components of the thermodynamic cycle are
evaluated separately. Bryantsev, Diallo and Goddard have discussed
two distinct cycles that can be used within the cluster-continuum
approach.48 The monomer cycle (Fig. 1a) is identical to the
approach introduced by Pliego and Riveros.36

Here, we use n individual solvent molecules to form a cluster
with the ion in the gas phase and the formed cluster is then
solvated using the implicit model. The cluster cycle (Fig. 1b)
starts from the cluster of n solvent molecules reacting with the
ion. The next step is identical to the monomer cycle, the cluster
of the ion and solvent molecules is solvated implicitly.

We should pay special attention to the correct choice of
the standard states in the calculations – all calculations must
be performed with respect to the same standard state.

Experimental results are typically reported for a standard
state of an infinitely diluted system extrapolated to the concen-
tration of 1 mol dm�3. Electronic structure codes, on the other
hand, provide data for a standard state of an ideal gas at 1 atm.
The free-energy change of the transition of an ideal gas from
1 atm (24.46 dm3 mol�1) to 1 mol dm�3 at T = 298.15 K is

DG1-* = �TDS1-* = RT ln(V0/V*) = RT ln(24.46) = 7.9 kJ mol�1

This correction is used in the calculation of the free energy of
cluster formation in both thermodynamic cycles. The correc-
tion is negative because the number of reactants is bigger than
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of the products. A detailed explanation of the corrections can be
found in ref. 48.

A second correction is needed for the solvation of the solvent
in the thermodynamic cycle. Let us assume water as an exam-
ple. The concentrations of H2O and (H2O)n in liquid water are
55.34 mol dm�3 and 55.34/n mol dm�3, respectively. The total
change in the free energy for the reaction in the lower leg of the
monomer cycle is zero in the case of 55.34 mol dm�3 water
concentration. But 1 mol dm�3 standard state is required for all
the entities. The correction is

nRT ln[H2O]

if n water molecules are used within the monomer cycle.
Similarly, the correction is

RT ln([H2O]/n)

if the cluster of n water molecules is used within the cluster cycle.
Adopting the monomer cycle and considering the correc-

tions, the formula for the solvation free energy DG�solv(Am�) is
given for water solvent as

DG�solvðAm�Þ ¼ DG�g;bindðIÞ þ DG�solvð½AðH2OÞn�m�Þ

� nDG�solvðH2OÞ � nRT ln½H2O� � nDG�!�

where DG�g;bindðIÞ is the free energy of cluster formation from an

ion and n separate molecules of solvent in the gas phase at 1 atm,

DG�solv([A(H2O)n]m�) is the solvation free energy of an ion–water
cluster and DG�solv(H2O) is the solvation free energy of a single
water molecule obtained using a desired implicit solvation model.

This approach was first systematically studied in 2001 on the
set of 14 univalent ions using isodensity polarizable continuum
model (IPCM)49 as an implicit solvation model and the average
error in the calculated solvation free energies was 36 kJ mol�1.36

However, the authors highlighted the lower standard deviations
for the average error compared to the unaided dielectric models
(in this work, we refer to the unaided calculations when no explicit
solvent molecules were involved). Since then, various results have
been published for the cluster-continuum model, some of them
showed a very good agreement with experimental data.48,50–52

Unfortunately, the general problem of the approach has not been
solved; the approach relies on the global minimum of clusters
which is difficult to find, especially for larger clusters.

Moreover, the method does not converge with the increasing
number n of solvent molecules used within the monomer cycle.
The convergence problem arises because separate water
molecules are used in the cycle.48 The systematic errors in
the calculated solvation free energies are to some extent
mitigated in the cluster cycle because hydrogen-bonded water
clusters of the same size appear on both sides of the reaction.
The solvation free energy of the ion according to the cluster
cycle is given as

DG�solvðAm�Þ ¼ DG�g;bindðIIÞ þ DG�solvð½AðH2OÞn�m�Þ

� nDG�solvððH2OÞnÞ � RT lnð½H2O�=nÞ � DG�!�

where DG�g;bindðIIÞ is the free energy of the cluster formation

from an ion and a water cluster consisting of n molecules in the
gas phase at 1 atm, DG�solv([A(H2O)n]m�) is the solvation free energy
of an ion–water cluster and DG�solv((H2O)n) is the solvation free
energy of a water cluster.

The cluster cycle provides results that converge with the
number of solvent molecules in the cluster but for a high price.
Again, the global minima for the clusters must be found. In
addition, the authors48 emphasized the importance of the
correct choice of the number of water molecules used in the
cluster cycle. They concluded that the best results could be
obtained by using n = 6, 10, 14, 18. . ., for other numbers, their
results deviated from the experiment.

1.2 Ensemble cluster-continuum approach for solvation free
energies of ions

As we mentioned before, a large number of local minima,
especially for larger clusters, complicates cluster-continuum
calculations. The problem can be especially severe for large
ions where even the first solvation shell contains many solvent
molecules. The convergence of the cluster-continuum model is
then difficult to assess.

We suggest an alternative thermodynamic cycle that does
not require the optimization of clusters. Moreover, it contains
charge neutralization steps in order to directly calculate only
solvation free energies of neutral solutes because we assume
that implicit models provide an accurate description of neutral

Fig. 1 (a) Monomer cycle used within the cluster-continuum model for
the calculation of solvation free energies of ions. Solvent molecules are
transferred from the liquid solvent into the gas phase. A cluster of the ion
and n solvent molecules is formed in the gas phase. Then, the cluster is
solvated within the dielectric-continuum model. Corrections arising from
the 1 mol dm�3 standard state used for all components are added.
(b) Cluster cycle used within the cluster-continuum model for the calculation
of solvation free energies of ions. A cluster of n solvent molecules is taken
from the liquid solvent to the gas phase. A cluster of the ion and n solvent
molecules is formed in the gas phase. Subsequently, the cluster is solvated
within the dielectric-continuum model. Corrections arising from the
1 mol dm�3 standard state used for all components are added.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 7

/3
/2

02
4 

1:
15

:0
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp02768e


22360 | Phys. Chem. Chem. Phys., 2020, 22, 22357--22368 This journal is©the Owner Societies 2020

systems. The model is called ‘‘Ensemble Cluster-Continuum’’
(EnCC) here and the respective thermodynamic cycle is pre-
sented in Fig. 2.

The solvation free energy DG�solv is calculated in several
steps. For clarity, we demonstrate the scheme on an example
of a molecular anion. The geometry of the anion is kept fixed in
its equilibrium geometry during all calculations. First, we
calculate the ionization energy of the anion in the gas phase.
This is a single calculation because the anion geometry is
frozen. Second, we calculate the solvation free energy of the
formed radical. This is again only a single calculation and we
assume that the implicit model performs reasonably. Third, we
calculate the adiabatic ionization energy of the anion in the
liquid phase (or the electron affinity for the radical).

The latter quantity deserves a more detailed explanation. We
calculate the ionization energy for an ensemble of clusters
taken from the MD simulation. In our case, we prepared the
ensemble via classical molecular dynamics simulation at finite
temperature, using QM/MM model described in the Computa-
tional Details. The sampling method was selected pragmatically to
avoid time-consuming ab initio MD or force field parametrization
for solutes. The geometry of the anion is again kept fixed in its
equilibrium geometry during the whole MD simulation.

The goal of the third step is to calculate adiabatic ionization
energy (AIE). Here, we benefit from previous successful calcula-
tions of vertical quantities in the extended cluster-continuum
model, such as vertical excitation energy or vertical ionization
energy (VIE).45–47,53,54 In our approach, we let the outer sphere
described by a dielectric continuum to fully relax. For the inner
sphere, we calculate vertical quantities (hVIEiDR, where the
subscript DR denotes ‘‘full dielectric relaxation’’) for the
ensemble of structures sampling (classical) thermal equili-
brium. We can extract the inner sphere reorganization energy
l using the well-known Marcus relation55

l ¼ s2

2kBT

where s is the variance of the ionization energy distribution.
The adiabatic ionization energy is then calculated

AIE = hVIEiDR � l

Note that the transition from a species solvated in a dielectric
continuum into the cluster embedded in the polarizable

continuum is accompanied by a correction of nRT ln[S] (the
solvent is water in our case) but these corrections cancel out so
that the final formula reads

DG�solv (A�) = IE(g) + DG�solv(A�) � IE(aq)

= IE(g) + DG�solv(A�) � hVIEiDR + l

The implementation of the above scheme has its limits. It will
not be useful for situations where the solute structure changes
significantly upon solvation. We also rely on the accurate
estimation of the free energy of solvation for the neutral solute.
Finally, the application of the Marcus formula assumes a linear
response regime. Despite it, the scheme is a reasonable frame-
work to study the convergence of the cluster-continuum approach.

2 Computational details
2.1 Cluster-continuum calculations

We performed solvation free energies calculations via the
monomer and the cluster cycle using three different electronic
structure approaches: Hartree–Fock (HF) method, hybrid B3LYP
functional and long-range corrected functional LC-oPBE.56 We
used 6-31+g* basis set in all calculations.

For the calculation of the solvation free energy using the
monomer cycle, three components were evaluated. The free
energy of cluster formation was calculated as

DG�g;bindðIÞ ¼ G�ð½AðH2OÞn�m�Þ � G�ðAm�Þ � nG�ðH2OÞ

where n is the number of water molecules in a cluster and
G1([A(H2O)n]m�), G1(Am�) and G1(H2O) are free energies of an
ion–water cluster, an ion and a water molecule, respectively. All
geometries were optimized at the respective level of theory and
the minimum was confirmed by the frequency calculation. The
solvation free energy of the cluster, [A(H2O)n]m�, was estimated
using PCM and SMD models encompassing the standard
procedure in the Gaussian code, where the gas-phase optimized
structure was used in the calculation without any further
optimization in SMD or PCM.57 Default parameters used in
our calculations are SMD atomic radii25 with van der Waals
surface cavity type with parameter a = 1.0 for SMD and universal
force field (UFF) radii58 with a scaled van der Waals cavity type
with parameter a = 1.1. The same procedures were also used for

Fig. 2 Thermodynamic cycle (‘‘EnCC cycle’’) proposed for the calculation of solvation free energies of anions within EnCC. First, an anion is ionized in
the gas phase. Then the neutral specie is solvated using a dielectric model. Finally, the solvated neutral is transformed into anion again.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 7

/3
/2

02
4 

1:
15

:0
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp02768e


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 22357--22368 | 22361

the calculation of the solvation free energy, DG�solv(H2O), of the
water molecule.

There are three components to evaluate in the cluster cycle.
One of them, [A(H2O)n]m�, is the same as in the monomer cycle.
The solvation free energy DG�solv((H2O)n) was calculated for the
gas-phase optimized water clusters; starting geometries for the
optimization were taken from ref. 59. The energy of the cluster
formation was obtained as

DG�g;bindðIIÞ ¼ G�ð½AðH2OÞn�m�Þ � G�ðAm�Þ � G�ððH2OÞnÞ

where the only alteration from the case of the monomer cycle
is that the free energy of one water cluster consisting of n
molecules was used.

All the calculations were performed in the Gaussian 09
(revision D.01) suite of codes.60

2.2 Ensemble cluster-continuum approach

For all calculations involving ions as well as radicals within
EnCC, the same frozen structure of ions was used. This
structure was obtained by optimizing the ion in the gas phase
at the B3LYP/6-31+g* level.

The molecular dynamics of the ion surrounded by water
molecules was performed by our in-house code ABIN61 interfaced
to GPU based Terachem v 1.93 software.62,63 The optimized ion
structure was fixed during the dynamics simulation. The ions
were always solvated in a droplet of 500 water molecules. The
initial arrangement of the water molecules was created by
Packmol software.64 The simulation was performed at the
QM/MM level using the B3LYP/6-31+g* functional with Grimme’s
dispersion correction D2.65 The QM part involved only the ion,
the MM part was described by the TIP3P model.66,67 The
temperature was kept at 298.15 K during the simulation by
Nosé–Hoover thermostat. The time step of 0.5 fs was used with a
total of 50 000 steps (25 ps). Only geometries from the last 15 ps
were used for the subsequent calculations of the ionization
energy in liquid. It was used 1500 geometries in total with the
equidistant step of 10 fs. The number of configurations could
be in fact reduced, considering the correlation between the
samples. For a case of Ca2+ ion we also performed a classical
simulation of one molecule of CaCl2 in a 99.8 Å box of water, the
force field parameters were taken from ref. 68. The simulation step
was 2 fs, the temperature of 300 K was controlled by the v-rescale
thermostat with coupling time 0.1 ps, the pressure of 1 bar was
controlled by the Parrinello–Rahman barostat with coupling time
of 2 ps. The total length of simulation was 80 ns from which we
selected equally distances 50 frames and from these 50 frames we
started the 5 ps MD as stated above to avoid the correlection of
structures. Only the last frame (after 5 ps) was taken from each of
50 simulations.

The three types of calculations of the EnCC approach were
performed again at HF/6-31+g*, B3LYP/6-31+g* and LC-oPBE/
6-31+g* levels. The solvation free energy of neutral species,
DG�solv(A�), is calculated with the PCM or SMD methods with the
parametrization implemented in the Gaussian 09 code for the
fixed geometry of the ion. The gas-phase ionization energy,

IE(g), was calculated using the difference in the electronic
energies of the ion and the radical, again for the same fixed
geometry of the ion. For the calculation of the ionization energy
in liquid, IE(aq), 1500 structures from molecular dynamics were
used. Those structures contained only the ion and the n closest
water molecules (with n ranging from 1 to 20) and kept
fixed during the ionization calculations. The PCM and SMD
models with default parameters were used for the calculations
as implemented in the Gaussian 09 code.

Aside from the EnCC, we also calculated vertical ionization
energies for the same set of structures from molecular dynamics
(number of explicit water molecules was 0, 1, 5 and 10) to assess
the accuracy of the electronic structure methods. The values were
obtained using non-equilibrium PCM or non-equilibrium SMD
as implemented in the Gaussian 09 code. The average from
1500 sampled geometries was assumed in all the calculations.

The calculations were performed for a set of ions containing
Cl�, CH3O�, SCN�, S2�, Na+, Ca2+ and Li+. The set was selected
in order to include various ion types – monoatomic and
polyatomic systems, anions and cations, singly and multiply
charged systems.

3 Results and discussion
3.1 Chloride anion: detailed study

We started the investigation of the EnCC approach on an
example of an atomic chloride anion. It was selected because
it is a simple atomic ion and a full range of data needed for the
critical evaluation of the method is available. A direct compar-
ison of the calculations with the experiment can be done for the
total solvation free energy as well as for all the partial energies
used in the EnCC thermodynamic cycle.

Fig. 3 shows the calculated solvation free energies within the
EnCC model. We compare three different electronic structure
methods (HF, LC-oPBE, and B3LYP) and two different dielectric
continuum models (PCM and SMD), where the difference is
chiefly due to the different radii of the molecules. We observe
that the values calculated only with the dielectric continuum
models are off the experimental range. The addition of explicit
water molecules improves the agreement with the experimental
values. The solvation free energy obtained with different meth-
ods tends to approach the ‘‘real’’ value with the SMD solvation
model while it is close to the ‘‘bulk’’ value for the PCM model.
It is consistent with the SMD parametrization for the ‘‘real’’
scale.25 It is interesting to notice that the difference between
these two models does not decrease with the increasing num-
ber of solvating molecules. This necessarily stems from the
different descriptions of the QM/continuum interface. The two
dielectric models should provide identical results for the infi-
nite size of the clusters, yet we are far from this limit with
several tens of solvating water molecules. We also examined
how the solvation free energies converge with increasing the
basis set size. As we demonstrate in Table S4 in ESI,† there is
only a minor effect.
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The EnCC approach also provides a natural possibility to
evaluate error bars of calculated values since the calculations
are performed on an ensemble of structures. The results
together with error bars can be found in ESI† (Fig. S3–S5). It
is seen that increasing the cluster size mitigates the systematic
error at a price of an increased statistical error.

We also calculated the solvation free energy of Cl� using the
canonical versions of the cluster-continuum model. The per-
formance of the monomer cycle, as well as the cluster cycle,
was examined and results are summarized in Table 1. The
monomer cycle, as originally derived by Pliego and Riveros,36

provides values of solvation free energies that raise from one to
three explicit water molecules involved in the calculation. The
result closest to the experimental value (�316 kJ mol�1, ‘‘real’’
value) was achieved with the PCM/LC-oPBE/6-31+g* using one
explicit water molecule. The results for the cluster cycle, as
described in ref. 48, were calculated as well. The cluster
approach seems to improve the accuracy of the results from
clusters containing more than one water molecule. It agrees
well with the claim of authors in ref. 48 that the errors are

mitigated to some extent when using the hydrogen-bonded
clusters of the same size on both sides of the reaction. Still,
the best agreement with the experimental value is achieved by
using just one water molecule. However, to reliably explore the
results from the cluster cycle, one would have to add more
explicit water molecules which would also require the minima
search. Finding those minima of large clusters is, however, not
of primary interest in our study. Nevertheless, the cluster cycle
approach for the calculation of the solvation free energy of a
chloride anion was performed in the study of Riccardi et al.51

They used MP2 level with the estimated complete basis set limit
and different dielectric models. When the clusters with 8 water
molecules were used, they reached the values of �305 and
�309 kJ mol�1 for SMD with default SMD radii and PCM with
Bondi radii, respectively. However, the values they obtained for
the lower numbers of water molecules varied the same way as
our results in Table 1.

We also explored partial energetic data in the EnCC thermo-
dynamic cycle, using the following experimental data. The
adiabatic ionization energy of the chloride anion in the aqueous
phase was calculated from the redox potentials

Cl� + e� - Cl� 2.43 V (rel.69)

2H+ + 2e� - H2 4.28 V (abs.70,71)

The resulting value is 6.71 V (647 kJ mol�1) for the adiabatic
ionization energy of the chloride anion in the aqueous phase.
Note that this value depends on the choice of the absolute
electrode potential of the hydrogen electrode and it is therefore
related to the proton solvation free energy associated with some
experimental uncertainty. The selected value of 4.28 V is
thermodynamically consistent with the absolute solvation free
energy of the proton of �1113 kJ mol�1 derived by Tissandirer.6

The solvation free energy of the Cl radical can be calculated via
a simple thermodynamic cycle using the solvation free energy
of Cl� and ionization energies in the gas phase (taken directly
from ref. 72) and aqueous phase

DG�solv(Cl�) = �IE(g) + DG�solv(Cl�) + IE(aq)

= (�349 � 316 + 647) kJ mol�1

= �18 kJ mol�1

The comparison of the experimental data with our calcula-
tions is shown in Table 2. We first focus on the ionization
energy in the gas phase, IE(g). We see that range-separated
functional LC-oPBE provides the gas-phase ionization energy in
an excellent agreement with the experimental value. On the
other hand, the HF method yields a value largely deviating from
the experiment. The situation is analogical for the ionization
energies in the aqueous phase. The HF method predicts much
lower IE compared with the experiment, the error associated
with the electronic structure theory, however, largely cancels
out in the EnCC thermodynamic cycle and the solvation free
energy can be reliable.

We can further look at the changes associated with the
addition of explicit water molecules. The general feature is an

Fig. 3 Calculated solvation free energies (kJ mol�1) of Cl� from EnCC
cycle using different electronic structure methods and different numbers
of explicit water molecules. Experimental value denoted as ‘‘bulk’’ is taken
from ref. 3 and is then recalculated to the ‘‘real’’ scale using Tissandier’s
value of the hydration free energy of the proton.6

Table 1 Calculated solvation free energies (kJ mol�1) of Cl� using cluster-
continuum model with the monomer cycle and the cluster cycle and
different electronic structure methods

Method

Monomer cycle Cluster cycle

Number of explicit waters in cluster

1 2 3 1 2 3

PCM/B3LYP/6-31+g* �295 �286 �268 �295 �286 �279
SMD/B3LYP/6-31+g* �276 �262 �235 �276 �268 �267
PCM/LC-oPBE/6-31+g* �298 �289 �271 �298 �289 �283
SMD/LC-oPBE/6-31+g* �278 �263 �236 �278 �270 �269
PCM/HF/6-31+g* �294 �278 �255 �294 �278 �272
SMD/HF/6-31+g* �273 �253 �222 �273 �260 �258
Experimental value �316a

a Experimental value is taken from ref. 3 and it is then recalculated to
the ‘‘real’’ scale using Tissandier’s hydration free energy of the proton.6
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increase in IE(aq) with the number of explicit water molecules,
clearly visible for a small number of solvating molecules.
Further, an increase in the number of solvating molecules does
not change the calculated adiabatic ionization energy signifi-
cantly (see Fig. S1 in ESI†). The calculated data are somewhat
higher than the experimental ones; note, however, that the
experimental data are derived for a particular value of the
absolute electrode potential of the hydrogen electrode.

The solvation free energy of the neutral species seems to be
described reasonably well with both the SMD and PCM meth-
ods when considering the uncertainties of used experimental
data. The results do not depend on the electronic structure
method used, it is rather controlled by the construction of the
cavity used in the polarizable continuum model.

Further insight into the quality of the calculated data can be
gained from the inspection of the first vertical ionization
energy. This quantity does not enter directly the calculation
of solvation free energy yet can indicate potential problems of
the respective methods. Further, the experimental data are
independent of the assumed proton solvation energy value.
The results are summarized in Table 3. Again, the HF method
does not provide quantitatively accurate results because of
the lack of correlation energy. The best agreement with the
experiment is achieved with the range-separated functional
LC-oPBE. The B3LYP functional provides results different by
almost 85 kJ mol�1 from the experiment. This discrepancy is
mostly associated with the self-interaction error, manifested by
artificial spin delocalization in the neutral system. Note, how-
ever, that the difference between the LC-oPBE and the B3LYP
methods is much smaller for the adiabatic ionization energy
compared to the vertical ionization energy.

To summarize, the LC-oPBE method describes correctly the
energetics of all three components in the EnCC cycle and the
value of solvation free energy is reliable. The HF method does
not describe quantitatively the energetics of the ionization
consistently both in the gas phase and in the liquid phase
due to the lack of electron correlation, yet these contributions
cancel out. The B3LYP functional suffers from the problem of

self-interaction error which does not cancel out in the EnCC
cycle and its use is problematic.

3.2 Solvation free energies for other ions

The EnCC approach was also tested for other ions, namely
CH3O�, SCN�, S2�, Na+, Ca2+ and Li+. For these ions, also the
canonical cluster-continuum values (via the monomer cycle)
were calculated, the results are presented in Table 4. The
calculated values are closer to the experimental values for the
PCM model, compared to SMD, for SCN�, S2�, and Na+. On the
other hand, cluster-continuum models provide results much
closer to the experiment for CH3O� and Ca2+ with the SMD
model. The canonical cluster-continuum approach fails for the
doubly-charged ions as well as for the CH3O� ion irrespective of
the model used. In these cases, the ions have high charge
density and a larger number of solvating molecules is needed.
Next, we applied the EnCC approach. First, the values of
DG�solv(A�) were evaluated. Comparison of the performance of
SMD, PCM and canonical cluster-continuum for neutrals can
be found in ESI† (Tables S1 and S2) and indicates that dielectric
models perform reasonably well for neutral species.

Table 2 Evaluated components (kJ mol�1) of the solvation free energy of
Cl� using the EnCC approach described by the EnCC thermodynamic
cycle. Results from different calculation methods are presented

Method IE(g) DG�solv(Cl�)

IE(aq), number of explicit
waters

0 1 5 10 20

PCM/B3LYP/6-31+g* 358 �2.9 644 662 716 710 722
SMD/B3LYP/6-31+g* 358 0.4 629 650 701 693 697
PCM/LC-oPBE/6-31+g* 350 �2.9 640 661 714 700 700
SMD/LC-oPBE/6-31+g* 350 0.4 623 647 697 685 687
PCM/HF/6-31+g* 239 �3.3 531 548 595 577 577
SMD/HF/6-31+g* 239 0.4 514 535 579 564 566
Experimental value 349a �18b 647c

a Ref. 72. b Calculated from experimental values of the ionization
energy in the gas phase,72 the ionization energy in the aqueous
phase69–71 and the solvation free energy.3,6 c Calculated from redox
potential69 using the absolute electrode potential of the hydrogen
electrode.70,71

Table 3 Calculated vertical ionization energies (kJ mol�1) of Cl� using
different electronic structure methods as a function of the number of
explicit water molecules

Method

Number of explicit waters

0 1 5 10

PCM/B3LYP/6-31+g* 812 820 858 854
SMD/B3LYP/6-31+g* 782 799 849 845
PCM/LC-oPBE/6-31+g* 812 828 900 925
SMD/LC-oPBE/6-31+g* 782 803 879 895
PCM/HF/6-31+g* 703 720 782 808
SMD/HF/6-31+g* 669 695 761 778
Experiment 925a

a Ref. 73.

Table 4 Calculated solvation free energies (kJ mol�1) for different ions
using cluster-continuum model with the monomer cycle and HF method
with PCM or SMD solvation model

Ion/method

Number of explicit waters in cluster

Experiment1 2 3

CH3O�/SMD �351 �338 �320
CH3O�/PCM �328 �332 �331 �398
SCN�/SMD �215 �200 �164
SCN�/PCM �234 �226 �199 �246
S2�/SMD �992 �977 �957
S2�/PCM �1051 �1038 �1021 �1283
Na+/SMD �337 �366 �380
Na+/PCM �422 �425 �420 �432
Ca2+/SMD �1606 �1596 �1577
Ca2+/PCM �1473 �1477 �1474 �1616
Li+/SMD �426 �466 �485
Li+/PCM �511 �512 �508 �538

For SCN�, S2�, Na+, and Ca2+ the experimental values were taken from
the work of Marcus3 which were then recalculated to the ‘‘real’’ scale
using Tissandier’s hydration free energy of proton; for CH3O�, the
‘‘real’’ value was taken from ref. 38. Thus, all the experimental data in
the table refer to the ‘‘real’’ scale.
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The convergence of solvation free energies calculated with
the EnCC approach for CH3O� is demonstrated in Fig. 4. Both
dielectric models fail to reproduce the experimental values of
the solvation free energy, irrespective of the proton solvation
free energy convention. This disagreement is caused by the
high concentration of the negative charge on the oxygen atom.
Our calculations demonstrate a visible shift of the calculated
solvation free energies with the increasing number of solvating
water molecules. The results tend to converge to the values
close to the experimental ones, especially when using the SMD
method.

The calculated solvation free energies for the SCN� anion
are shown in Fig. 5. The solvation free energies are reasonably
well described already within the dielectric models without any
additional water molecules. The charge is more distributed

over the solute in this case. We still observe, however, a shift
upon the addition of the explicit water molecules, converging
to the values in between the ‘‘real’’ and ‘‘bulk’’ ones. As for the
Cl� anion, the PCM model seems to provide results closer to
the ‘‘bulk’’ scale.

Calculating solvation free energies of doubly-charged ions is
a challenging task for the dielectric continuum models. The
convergence can be extremely slow as has been demonstrated
earlier.74 The error of the calculated solvation free energy for
the S2� anion is as large as 200 kJ mol�1 for the dielectric
models and the situation does not improve upon the addition
of a small number of solvating molecules. Fig. 6 shows the
results obtained with the EnCC model. The convergence is slow
but we observe a similar trend with an increasing number of
water molecules as for Cl�. We observe a drop in solvation free
energy at around n = 10, followed by a further rise for n = 15.

We assume that the convergence curve is analogous to the
chloride anion, i.e. we can expect a slight decrease for n larger
than 15. As before, the calculated quantities differ between
SMD and PCM, yet the differences between the two models are
much smaller than the variations within the number of explicit
solvent models included in the simulations.

The results of the EnCC based solvation free energies for Na+ are
shown in Fig. 7. The unaided SMD model provides solvation energy
higher than the experimental value by more than 100 kJ mol�1, the
unaided PCM model provides results within the experimental
range. It is interesting that, unlike in previous cases, the HF
and LC-oPBE methods provide the same results for the bigger
clusters irrespective of the dielectric model. Results from the
B3LYP method differ from the two others. This is probably a
general problem of the density functional theory, related to the
size-dependent delocalization ionization potential error.75,76

The electron artificially delocalizes in the extended systems
and the ionization then takes place from the solvent molecules
as well as from the solute. The situation can be remedied with

Fig. 4 Calculated solvation free energies (kJ mol�1) of CH3O� from the
EnCC cycle using different electronic structure methods and different
numbers of explicit water molecules. Experimental value denoted as ‘‘real’’
is taken from ref. 38 and is then recalculated to the ‘‘bulk’’ scale using
Marcus hydration free energy of the proton.3

Fig. 5 Calculated solvation free energies (kJ mol�1) of SCN� from the
EnCC cycle using different electronic structure methods and different
numbers of explicit water molecules. Experimental value denoted as ‘‘bulk’’
is taken from ref. 3 and is then recalculated to the ‘‘real’’ scale using the
Tissandier hydration free energy of the proton.6

Fig. 6 Calculated solvation free energies (kJ mol�1) of S2� from the EnCC
cycle using different electronic structure methods and different numbers
of explicit water molecules. Experimental value denoted as ‘‘bulk’’ is taken
from ref. 3 and is then recalculated to the ‘‘real’’ scale using the Tissandier
hydration free energy of the proton.6
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the use of the range-separated functional with a higher value of
range separation parameter,75 as is the LC-oPBE functional
used in this work. The results from the HF or range-separated
methods are therefore more reliable. The residual discrepancy
between the performance of the EnCC method (with HF or
LC-oPBE) and the experimental value can be explained as
insufficiency in the description of neutral Na via the unaided
SMD solvation model.

The results for Ca2+ are shown in Fig. 8. Even the dielectric
models provide a reasonable description of the solvation.
The results for Ca2+ are shown in Fig. 8. Even the dielectric
models provide a reasonable description of the solvation
energetics – which indicates a suitable choice of the ionic
radius for the cation. There is no strong evolution of the

calculated solvation free energy with the cluster size. The
B3LYP data seem to over-perform the other two methods yet
the differences are relatively small.

We would like to point out, that the employed MD sampling
method is not a particularly good choice for Ca2+ because the
length of ab initio MD is not appropriate for sampling all
relevant hydration sites. We, therefore, calculated the single
ion solvation free energy for a case when the sampling was
performed differently (by a series of short QM/MM simulations
starting from a preliminary classical simulation, see the
Computational details). Surprisingly, the results for both
approaches are similar. This fact indicates that reliable results
could be obtained even by using much smaller ensembles of
clusters, assuming that the individual frames are uncorrelated.

The calculated solvation free energies for Li+ ion are shown
in Fig. 9. Unaided SMD fails to predict the solvation free energy
by more than 130 kJ mol�1, whereas unaided PCM provides
results in the experimental area. With the increasing number of
explicit water molecules, SMD-based calculations provide
results that rapidly drop to the experimental area. Similarly to
Na+, HF and LC-oPBE results are close irrespective of the
dielectric model used. In this case, the results can be directly
compared with the approach by Duignan et al.22 discussed in
the Introduction. Our result obtained with the LC-oPBE func-
tional together with the SMD dielectric model shows very good
agreement with Duignan’s data.

4 Conclusions

In the present work, we proposed an alternative scheme for
the cluster-continuum calculation of solvation free energies. The
scheme is based on a thermodynamic cycle, involving ionization
in the gas phase and the liquid state. The latter quantity can be
evaluated for an ensemble of structures sampled by classical
molecular dynamics. We, therefore, refer to this approach as to
Ensemble Cluster-Continuum (EnCC) model.

Fig. 7 Calculated solvation free energies (kJ mol�1) of Na+ from the EnCC
cycle using different electronic structure methods and different numbers
of explicit water molecules. Experimental value denoted as ‘‘bulk’’ is taken
from ref. 3 and is then recalculated to the ‘‘real’’ scale using the Tissandier
hydration free energy of the proton.6

Fig. 8 Calculated solvation free energies (kJ mol�1) of Ca2+ from the
EnCC cycle using different electronic structure methods and different
numbers of explicit water molecules. Data denoted as ‘‘different sampling’’
are obtained using a different ensemble of frames as described in Com-
putational details. Experimental value denoted as ‘‘bulk’’ is taken from ref. 3
and is then recalculated to the ‘‘real’’ scale using the Tissandier hydration
free energy of the proton.6

Fig. 9 Calculated solvation free energies (kJ mol�1) of Li+ from the EnCC cycle
using different electronic structure methods and different numbers of explicit
water molecules. Experimental value denoted as ‘‘bulk’’ is taken from ref. 3 and is
then recalculated to the ‘‘real’’ scale using the Tissandier hydration free energy of
the proton.6 ‘‘Duignan’’ refers to the result obtained by Duignan et al.22
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We have shown that the present approach asymptotically
provides values of the hydration free energies that fit within the
experimental error bounds. The approach works well especially
for anions, including multiply charged anions with a high
charge density. The approach seems to outperform the usual
cluster-continuum techniques in some respect and can repre-
sent a practical way for the theoretical evaluation of solvation
free energies. Note, however, that the utility is limited by the
computational cost of the approach – some quantities have to
be evaluated for an ensemble of structures. We should also
point out that the sampling procedure should be carried out
carefully. Systems with the water exchange rate on the scale of
hundreds of picoseconds or longer require much longer MD
simulations or a combination of classical MD simulations and
ab initio ones.77,78

The EnCC approach is from our perspective important
because it can provide a measure of systematic error of the
dielectric continuum model. Performing the systematic inves-
tigation of the solvation free energy convergence, we can set the
degree of reliability for the quantity calculated with the dielec-
tric continuum model itself. Quantum chemical calculations
typically provide values with an accuracy based solely on the
experience. The systematic cluster-continuum approach is one
of the ways to circumvent the limitation.

The present approach has certain limitations. First, typically
only small clusters are treated. The numerical value of the
calculated quantities will still critically depend on the dielectric
continuum model used. Second, the typically used electronic
structure approaches can be accurate for isolated molecules, yet
they can have a poor performance for solvated molecules in
clusters. This is especially the case of the DFT methods, with
well-know (yet often underestimated) problems connected to
the self-interaction error. In the present case, some problems
can be magnified because open-shell systems are modelled in
certain steps of the calculations. Range-separated functional
represent, however, a robust choice. Third, the method is based
on the assumption that the solvation free energy of the neutral
species can be reliably estimated within the dielectric conti-
nuum models. This is often the case (especially for the anions),
yet there are exceptions. Next, the presented method can not be
directly used to anions whose ionization energy is higher than
of water (e.g. F�) and in these cases, the calculations on the
ensemble of structures need to be conducted differently, for
example using Koopmans’ theorem,79 the Maximum Overlap
Method (MOM),80 ionization as excitation method or QM:QM
approach.11 Finally, we need to sample the cluster structures.
This can typically not be done at the same level of theory we use
for the energy calculations which leads to further inconsisten-
cies (see Fig. S2 in ESI†).

We conclude that the solvation free energies can hardly be
estimated within the cluster-continuum approaches better than
the experimental uncertainty given by the disputed proton
solvation free energy. With the present method, the solvation
free energies can be calculated within 40 kJ mol�1. We envision
the potential of the method especially for the highly unstable
and multiply charged species. Such species can appear e.g. in

the field of radiation chemistry where theory is often the easiest
way to estimate the energetics.

As a general observation, we conclude that the proposed
model for solvation free energies performs better when applied
to anions. This is because of the charge neutralization which is
at the core of our approach. In the case of anions, the charge
neutralization leads to a loss of electrons which facilitates
calculations in solution. In the case of cations, more electrons
are added to the system via the charge neutralization and this
could, on the contrary, complicate calculations in the solution.

The present approach to solvation follows the experimental
way which can be achieved within the liquid jet model. Recent
photoemission experiments provide us with high-resolution
photoemission data, allowing in principle for a direct determi-
nation of the adiabatic ionization energy for a given half-
reaction. Together with gas-phase data, this would allow for
a direct determination of the absolute solvation free energy of
the ions.
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