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A multiple decay-length extension of the
Debye–Hückel theory: to achieve high accuracy
also for concentrated solutions and explain
under-screening in dilute symmetric electrolytes

Roland Kjellander

The Poisson–Boltzmann and Debye–Hückel approximations for the pair distributions and mean electro-

static potential in electrolytes predict that these entities have one single decay mode with a decay length

equal to the Debye length 1/kD, that is, they have a characteristic contribution that decays with distance

r like e�kDr/r. However, in reality, electrolytes have several decay modes e�kr/r, e�k
0r

/r etc. with different

decay lengths, 1/k, 1/k0 etc., that in general are different from the Debye length. As an illustration of the

significance of multiple decay modes in electrolytes, the present work uses a very simple extension of

the Debye–Hückel approximation with two decay lengths, which predicts oscillatory modes when

appropriate. This approach gives very accurate results for radial distribution functions and thermo-

dynamic properties of aqueous solutions of monovalent electrolytes for all concentrations investigated,

including high ones. It is designed to satisfy necessary statistical mechanical conditions for the

distributions. The effective dielectric permittivity of the electrolyte plays an important role in the theory

and each mode has its own value of this entity. Electrolytes with high electrostatic coupling, like those

with multivalent ions and/or with solvent of low dielectric constant, have decay lengths in dilute solutions

that substantially deviate from the Debye length. It is shown that this is caused by nonlinear ion–ion correla-

tion effects and the origin of under-screening, i.e., 1/k 4 1/kD, in dilute symmetric electrolytes is analyzed.

The under-screening is accompanied by an increase in the effective dielectric permittivity that is also caused

by these correlations. The theoretical results for the decay length are successfully compared with recent

experimental data for simple electrolytes in various solvents. The paper includes background material on

electrolyte theory and screening in order to be accessible for nonexperts in the field.

1 Introduction
1.1 Brief overview of electrolyte theories and screening

Electrolytes are ubiquitous and in many fields of science and
industrial applications it is important to understand their
properties and to be able to calculate, for example, various
thermodynamical and structural quantities. The study of
electrolyte systems has a long history and is still a very active
field of science. This illustrates both the importance and the
complexity of such systems.

There exist an abundance of statistical mechanical theories
for electrolytes that are based on approximations of various
degrees of sophistication and accuracy. A selection of the most
prominent ones that are relevant for bulk systems are
presented and discussed in ref. 1–6. A cornerstone is the
Debye–Hückel (DH) approximation,7 which gave an answer to

an important puzzle at the time of its development in the
1920s, namely experimentally observed deviations from ideality
in very dilute electrolyte solutions. In solutions of nonelectro-
lytes such deviations disappear proportionally to the concen-
tration, while for electrolytes they decay like the square root of
concentration due to the long range 1/r decay of the Coulomb
interactions as function of distance r. In the DH approximation,
the mean electrostatic potential from a charge is screened
and decays like a Yukawa function e�kDr/r, where kD is the is
the Debye parameter and 1/kD the Debye length, which are
obtained from

kD2 ¼ b
ere0

X
j

njqj
2; (1)

where b = 1/kBT, kB is Boltzmann’s constant, T is the absolute
temperature, er is the dielectric constant of the solvent, e0 is the
permittivity of vacuum, nj is the number density and qj the
charge of ions of species j and the sum is taken over all species
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of ions in the system. The exponential screening leads to the
Debye–Hückel limiting laws for the mean activity coefficient g�
and the osmotic coefficient f, which are for a binary electrolyte

ln g� � �
kDqþjq�j
8pere0kBT

f� 1 �� kDqþjq�j
24pere0kBT

(2)

in the limit of zero ionic density. These limiting laws and the
existence of exponential screening for large r are, in fact, exact
features of statistical mechanics of dilute electrolytes.

The DH approximation is the linearized version of the
Poisson–Boltzmann (PB) approximation, which is a mean field
theory where the correlations between ions in the ion cloud
around each ion are neglected. It gives a quite good description
of electrolytes for low electrolyte concentrations, but fails when
the concentration is increased. We here primarily consider the
primitive model of electrolyte solutions, where the ions are
charged hard spheres and the solvent is modeled as a dielectric
continuum with dielectric constant er, and we will also treat
classical plasmas of such ions for which er = 1.

A large number of improvements of the DH approximation
has been suggested over the years. One of the most well-known
is the approach by Pitzer,8–10 where various DH expressions for
thermodynamical quantities are parametrized to fit experi-
mental data for a wide concentration interval. In most of the
improved DH approximations, the decay length of the mean
electric potential ci(r) from an ion of species i is equal to
the Debye length. The actual decay length in electrolytes is,
however, in general not equal to the Debye length; it is only
approximately equal to the Debye length for sufficiently low
concentrations. For higher concentrations the decay length
depends significantly on other system parameters than those
that appear in eqn (1), for example the ion sizes.

When the electrolyte concentration is increased and the
decay length starts to deviate noticeably from the Debye length,
the mean electrostatic potential ci(r) decays for large r like
e�kr/r where k a kD. The radial charge density ri(r) around an
ion and, in general, the pair distribution function gij(r) also
decay in this manner. The deviation of k from kD is not
described by the DH or PB approximations and neither is the
fact that these functions become oscillatory at high ionic
densities.11,12 The latter feature was found by Kirkwood already
in the 1930s13,14 and later confirmed in other approaches by
Martynov15 and Outhwaite.16 The presence of such oscillations
is connected to the fact that there exist several decay modes in
electrolytes, that is, contributions to the distribution functions
and the electrostatic potential that decay like Yukawa functions
e�kr/r, e�k

0r/r etc. where the decay parameters k, k0 etc. are
different. For low ionic densities, the two leading decay para-
meters, which give the longest decay lengths, satisfy k o k0.
When the ion density is further increased, k and k0 approach
each other and at the so-called Kirkwood crossover point they
become equal. Beyond that point k and k0 turn complex and we
have k = k< + ikI and k0 ¼ k ¼ k< � ik=, where i is the

imaginary unit and k< and kI are real (underbar denotes
complex conjugation). The pair of decay modes then gives rise
to a contribution that decays like an ‘‘oscillatory Yukawa
function’’ e�k<rcos(kIr + a), where a gives the phase for the
oscillations. This kind of oscillatory mode occurs in concen-
trated solutions and is the dominant one for molten salts.

The presence of several decay modes with different decay
parameters has been numerically verified for simple electrolytes
by computer simulations,17–20 the Hypernetted Chain (HNC)
approximation18,21–23 and the Generalized Mean Spherical Approxi-
mation (GMSA).24 The leading modes give rise to the oscillatory
behavior at high ion densities in accordance with the scenery
above. Many other approximate theories for electrolytes also
predict such decay modes and the occurrence of the Kirkwood
cross-over, for example the Mean Spherical Approximation (MSA),25–29

the Linearized Modified Poisson–Boltzmann (LMPB) approximation
by Outhwaite,16,30,31 the Modified Debye–Hückel (MDH) approxi-
mation by Kjellander,32 the closely related ‘‘Local Thermo-
dynamics’’ (LT) approximation by Hall,33 the Generalized
Debye–Hückel (GDH) approximation by Lee and Fisher,34,35 the
Modified MSA by Varela and coworkers,36–39 the charge renorma-
lization theory by Ding et al.40 and the ionic cluster model
approach by Avni and coworkers.41

These theories, from GMSA onwards, are linear approxima-
tions, meaning that ci(r) and ri(r) are proportional to the
ionic charge qi. They provide explicit equations for the decay
parameter with multiple solutions k, k0 etc. including complex-
valued ones when appropriate and so does also the original
theory by Kirkwood and that by Martynov. All give decay
parameters that are dependent on the ionic diameter a and
qualitatively they give similar results for k/kD and k0/kD as
functions of kDa. Most of these approximations have been used
to obtain thermodynamical quantities, distribution functions
and/or the mean electrostatic potential.15,16,27,28,31–33,37,39,42–47

Xiao and Song48–50 have developed a linear theory that exploits
all decay modes obtained in many of these approximations to
calculate thermodynamical quantities for electrolytes. We will
return to some of these linear, approximate theories later. All of
them work in general well for low ionic densities but have
shortcomings, especially for high densities.

When the electrostatic coupling between the ions is not
weak, linear theories are inadequate. Many nonlinear approxi-
mations for electrolytes have been used to obtain pair distribu-
tions and thermodynamical quantities. They include the HNC
approximation51–55 and other integral equation theories.54,56–61

There are also improved versions of the PB approximation that
correct for the neglect of correlations in the ion cloud around each
ion, like the Modified PB approximation by Outhwaite et al.16,62–64

and the correlation-enhanced PB theory by Su and coworkers.65

Furthermore, various field theories4,66–70 have been developed
for the study of bulk electrolytes. Pair distributions and thermo-
dynamical quantities for bulk electrolytes have, of course, been
calculated also by simulations.11,12,17–20,55,59,61,71–80

The nonlinear theories do not in general provide any explicit
equation for the decay parameter like the linear ones above do,
but from these theories and from computer simulations,
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the values of k, k0 etc. have been extracted numerically for
various electrolytes.17–23,81–84 The decay parameter k of the
leading decay mode can in many cases be obtained by curve
fitting to the tails of the functions for large r, but it is in general
not straightforward to obtain those of the other modes and one
must use systematic means to extract them from the distribu-
tion functions.18

One approximate way to incorporate some effects of non-
linearity into linear theories is to introduce ion pairing as
originally done by Bjerrum.85 In this approach one assumes
that anion–cation pairs exist in equilibrium with free ions in
the electrolyte, so the concentration of the latter ions is lower
than the total concentration. Since the pairs are electroneutral,
they do not contribute to the Debye parameter in eqn (1) and
the Debye length 1/kD becomes larger than in their absence – a
quite trivial reason for a change in decay length. The pair
formation is a nonlinear phenomenon because the electrostatic
interaction between two paired ions is large. The effects of this
nonlinearity is included in the value of the equilibrium con-
stant that describes the equilibrium.

There exist various ways to construct theories of pairing. One
kind of approach is to include ion pairs in a DH-type theory86–88

for the electrolyte and another is to base the ion pair theory on
the MSA;88–92 see ref. 93 for a comparison of different variants
of these approaches. Fisher and coworkers34,88,93 stress the
importance of including the interactions between the dipoles
formed by the ion pairs and the free ions. In many cases, it is
reasonable to consider a part of the effect from the presence of
such dipoles as an augmentation of the dielectric permittivity
of the electrolyte. We will treat some aspects of ion pairing and
changes in dielectric permittivity later. Transient ion pairing is,
in fact, an aspect of strong anion–cation correlations, which
affect the decay length and the (effective) dielectric permittivity
of the electrolyte.94,95

Electrolyte systems have in general a complex behavior and
most theories mentioned above are quite complicated to use,
in particular those that yield accurate distribution functions.
A fair question to ask is how thermodynamic properties and
distribution functions possibly can be accurately obtained
without undue complications and without the use of empirical
fitting parameters. In order a get a perspective on this question,
let us first consider some approaches that have been used for
such a task.

A simple linear approximation that takes into consideration
that the decay length depends on the ion diameter is the
Corrected Debye–Hückel (CDH) approximation by Abbas,
Nordholm and coworkers.78,96 They make an Ansatz that
the radial charge density ri(r) around an ion (and therefore
the electrostatic potential ci(r)) is proportional to e�kr/r, where the
decay parameter k is not the same as kD. The value of k is then
determined from an optimization of an approximate free energy
of the system. By combining CDH with the Carnahan–Starling
equation of state97 for hard spheres, they obtain the activity
coefficient for monovalent (1 : 1) electrolytes in aqueous solution
in very good agreement with simulations for a wide range of
concentrations, including concentrated solutions.78 For 2 : 1

electrolytes they obtain equally good agreement except for
small ion sizes, but the latter results are still good. As pointed
out by Abbas et al.,78 the thermodynamical quantities obtained
from this Ansatz are in very good agreement with simulation
results for high densities despite that the actual ri(r) is oscilla-
tory rather than proportional to e�kr/r.

Likewise, for a parametrized DH approach with fitting
parameters for thermodynamics like that of Pitzer mentioned
earlier, the structural entities are qualitatively different from
the accurate ones at high concentrations. The same is the case
for approaches that use the PB approximation.

Attard84 also makes the assumption that ri(r) is proportional
to e�kr/r. By requiring that ri(r) fulfills some necessary condi-
tions that we will consider later, he obtains the Self-Consistent
Screening Length (SCSL) approximation for the single decay
parameter k, which can be a real or complex number depending
on the ion density. This is a linear theory that has been
successfully used to calculate thermodynamical quantities for
monovalent electrolytes solutions with low up to moderate
concentrations. Another theory that uses only one decay mode
in the calculation of thermodynamical properties is the MDH
approximation.32 It is also successful for low up to moderate
concentrations. These two approximations will be treated in
quite some detail later.

Janecek and Netz80 investigated whether properties of
electrolytes can be described in terms of an effective screening
length. They extracted a single effective screening parameter
keff by simulation of various electrolyte solutions (corres-
ponding to 1 : 1 and 2 : 2 salt in water) and used it to calculate
thermodynamic properties from a DH-like theory where kD is
replaced by keff. For high concentrations where the simulated
radial charge density is oscillatory, a complex-valued screening
parameter was extracted instead of keff. This approach works
very well for the thermodynamics of 1 : 1 electrolytes for the
concentration range investigated and somewhat less well for
the 2 : 2 case. The parameter keff is in general not the same as
the decay parameter k of the asymptotic decay of ri(r) discussed
in the current work,† but keff approaches the actual k when the
concentration is decreased towards zero. As pointed out by the
authors, the effective screening parameter ‘‘does not provide
an accurate description of the charge density distribution.’’
They also used the ion-pairing DH-type theory by Fisher and
coworkers88,93 to calculate activity coefficients, which worked
very well for 2 : 2 electrolytes and less well for monovalent ones.

From these examples we see that even if an approximation
reproduces thermodynamical data accurately, the structural
entities like ri(r) and the pair distribution function gij(r)
obtained in the approximation do not need to be equal to the
correct ones. Even when these functions are oscillatory, the
thermodynamical entities can be accurately obtained from a

† In fact, keff is evaluated in ref. 80 from the simulations via a route that implies
that keff satisfies Attard’s approximate SCSL84 equation for k [eqn (38) in the
current work]. This is the reason why keff from the simulations agrees with k from
the SCSL approximation; see the authors’ remark about this agreement in the text
below eqn (47) in ref. 80. Any difference between the two values is due numerical
noise in the simulation.
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single Yukawa decay mode with a real decay parameter. Like-
wise, when there are more than one decay mode, the thermo-
dynamics can be accurately obtained from just one Yukawa
mode. The value of the decay parameter used is in general
different from that of the actual k of the electrolyte. To judge
whether an approximation gives a fully accurate description of
a system, it is accordingly important to investigate both thermo-
dynamical and structural quantities. A successful theory gives
accurate results for both. An important aim of the current work
is to develop a simple theory that accomplishes this. Thereby,
the presence of more than one decay mode will be included in
the treatment of simple electrolytes.

Incidentally, it should be noted that several simultaneous
modes that decay like monotonic or oscillatory Yukawa func-
tions have also a prominent role in dense ionic liquids, like
room temperature ionic liquids. An analysis of these decay
modes is important for the understanding of such systems –
not only for structure and thermodynamics, but also for inter-
actions in the systems including surface forces. The modes can,
for example, be detected in surface force experiments. It has
recently been shown95,98 that all such decay modes, including
those that are dominated by ‘‘packing’’ of molecules in the
dense liquids, are in general also decay modes of the electro-
static interactions and are therefore governed by the dielectric
response of the liquid.‡ The same is true also for the decay
mode of long-range density–density correlation fluctuations
with a decay length that diverges on approach to a critical
point and the very long-range monotonically decaying mode
that recently has been found99 for dense electrolytes. Likewise,
for dilute electrolyte solutions with discrete molecular solvent,
oscillatory decay modes that are dominated by the structure of
the solvent also constitute decay modes of the electrostatic
interactions.95,98 Such modes have often been designated as
‘‘solvation forces;’’ in the case of aqueous systems ‘‘hydration
forces.’’

1.2 Overview of the current work

We will limit ourselves in the current work to solutions of
simple electrolytes in the primitive model and to classical
plasmas. In order to illustrate the importance of the various
decay modes, we will include two Yukawa modes and show that
both modes are crucial in order to obtain very good description
of both structural and thermodynamical quantities for a wide
range of ion densities, including concentrated solutions and
dense plasmas. As concluded in the previous section, a successful
theory accurately predicts both kinds of quantities. The decay
modes are physically distinguishable and the decay lengths 1/k
and 1/k0 constitute characteristic properties of the propagation of
screened electrostatic interactions in the electrolyte. For the
oscillatory case, where k and k0 are complex, the decay length
1/k< and the wave length 2p/kI have the corresponding roles.

The basic idea in this approach is simple: for a radial function
f (r) like ci(r), ri(r) or the potential of mean force wij(r) between
two ions, one makes the approximate Ansatz that f (r) is given by

f ðrÞ ¼ C
e�kr

r
þ C0

e�k
0r

r
(3)

for all r outside the hard core of the ion. The coefficients C and
C0 and the decay parameters k and k0 are then determined
from necessary statistical mechanical conditions for the radial
function in question. Moreover, the coefficients are expressed
in terms of physical entities like effective charges of ions and
effective permittivities of the electrolyte – entities that are
precisely defined in exact statistical mechanics as explained
later. These entities are important for the understanding
of screening phenomena and intermolecular interactions in
electrolytes and the current paper also serves the purpose of
illustrating their meaning and use. The simple structure of the
approximations used in this work facilitates this objective.

An important further ingredient is the use of an exact
relationship§ between the decay parameter k and the effective
charges, namely100,101

k2 ¼ b
ere0

X
j

njqjq
eff
j ; (4)

where qeff
j is the effective charge of a j-ion. This relationship,

which is valid for a system with spherical ions, is similar to the
definition of kD in eqn (1), but it has the product qjq

eff
j instead

of qj
2 in the right hand side (rhs). In the next section we will see

in a simple manner that eqn (4) is a direct consequence of the
ion–ion correlations in the ion cloud around each ion. When
such correlations are neglected like in the DH and PB approxi-
mations, we have qeff

j = qj for the ions in the cloud and eqn (1)
for the Debye parameter is obtained.

In the present work, we will primarily investigate systems
with sufficiently low electrostatic coupling so that electrostatic
response can be linearized. The resulting mathematical formu-
las for both the structural and thermodynamic quantities are
simple and straight-forward to apply in practice. They are
obtained by using first-principle statistical mechanics and are
free from any fitting parameters. The results obtained for
conditions corresponding to monovalent ions in aqueous solu-
tions at room temperature are in very good agreement with
computer simulations and other accurate calculations for all
concentrations. Such conditions also include classical plasmas
at high temperatures. We will also see why it is insufficient with
one single decay mode for the accurate description of distribu-
tion functions of electrolytes with medium to high densities.

Nonlinear correlational effects for high electrostatic cou-
pling will also be investigated. In fact, the long-range nature
of the Coulomb interactions gives such effects in highly diluted
electrolyte solutions and thin plasmas. They can cause sub-
stantial deviations of k from kD, which are given by the

‡ An exception is charge-inversion invariant systems, for example, the restricted
primitive model where anions and cations are identical apart from their sign of
charge. In real systems, the anions and cations differ by more than the signs of
their charges, so the systems are not charge-inversion invariant.

§ In this work ‘‘exact relationship,’’ ‘‘exact equation’’ etc. mean that they are
derived without any approximations in statistical mechanics for a given model,
that is, for a given Hamiltonian that defines the system.
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following exact limiting law101 – here written for the case of a
binary electrolytes¶

k2

kD2
�1þ L ln 3

4
zþ � jz�jð Þ2

þ L2 lnL
6

zþ
2 � zþjz�j þ z�

2
� �2

when L! 0;

(5)

where L = cBkD is a coupling constant, cB = bqe
2/(4pere0) is the

Bjerrum length, qe is the elementary (protonic) charge and
zj = qj/qe is the ionic valency. The deviation of k2/kD

2 from the
value 1, as described by this law, arises solely from the tails of
the long-range, purely electrostatic correlations between the
ions when r -N and does not depend on any other properties
of the ions than their charges. These other properties, like
the ion size, enter in the following term (not shown in eqn (5))
that is proportional to L2, i.e., proportional to the ionic
concentration.

For symmetric electrolytes (z+ = |z�|), the second term in the
rhs of eqn (5) is identically equal to zero and we have k o kD

for sufficiently dilute solutions because ln L o 0 there,
which means that the decay length is larger than the Debye
length (‘‘under-screening’’). For dilute solutions of asym-
metric electrolytes (z+ a |z�|), the second term is dominant
and for such electrolytes k 4 kD in the limit of infinite
dilution, so the decay length is smaller than the Debye length
(‘‘over-screening’’).

These predictions have been verified experimentally. For a
highly asymmetric electrolyte, z+ = 12 and z� = � 1, the positive
deviation of k from kD has been experimentally measured in
dilute solutions by Kékicheff and Ninham103 in agreement with
the leading term in eqn (5). For symmetric electrolytes, the
negative deviation of k from kD, has recently been measured in
dilute solutions of simple electrolytes with high electrostatic
coupling by Smith, Maroni, Trefalt and Borkovec104 and
Stojimirović, Galli and Trefalt105 (henceforth referred to as
‘‘Trefalt and coworkers’’) by surface force experiments.
This latter case will be discussed in quite some detail in the
current work.

While all linear approximations mentioned earlier give the
correct limiting laws for the thermodynamical properties,
eqn (2), in the limit of zero ionic density, they do not give the
correct behavior of k2/kD

2 in this limit as given by eqn (5).
For example, the MSA, GMSA, LMPB, MDH, LT and GDH
approximations predict that k2/kD

2 decays proportionally to
L2 when the density goes to zero. On the other hand, the
HNC approximation, which is a nonlinear approximation,
gives a k that agrees with eqn (5) for both symmetric22 and
asymmetric81 electrolytes at low ionic densities. In the analysis
presented in the current work, we will see the importance of
including nonlinear ion–ion correlation effects in order to
obtain the correct behavior of the decay parameter for dilute
systems. Such effects influence the values the effective ionic
charges and hence k via eqn (4).

The paper is organized as follows. In Section 2, some
relevant parts of the theory of electrolytes are presented as a
background for the rest of the paper and the main approxima-
tions made in the current work are introduced. A couple of
approximations with a single decay-mode are treated in Section
3 and a simple equation for k that is used in a large part of the
paper is obtained. The Multiple-Decay Extended Debye–Hückel
(MDE-DH) approximation, developed in this work, is described
in Section 4, starting with the simplest version, which is
sufficient provided that the ionic sizes are not too large
so ionic core–core correlations are not too prominent. This
version of the theory gives both radial distribution functions
and thermodynamical quantities in very good agreement with
simulations and Hypernetted Chain (HNC) calculations that are
very accurate for the systems studied. The complete version of
the MDE-DH approximation is used to successfully treat dense
systems with large ions, whereby quite intricate details of the
pair distribution functions are obtained in agreement with
simulations. In Section 5, effects of nonlinear ion–ion correla-
tions on the main decay mode are investigated. The screening
properties of thin plasmas and dilute solutions of symmetric
electrolytes are thereby studied, in particular the under-
screening that occurs in such electrolytes with high electro-
static coupling. This under-screening is accompanied by an
augmentation of the effective dielectric permittivity of the
electrolyte caused by the strongly nonlinear ion–ion correlations.
The various types of deviations of k from kD in symmetric
electrolytes and the reasons for them are studied in Section 6,
whereby an approximate limiting law for k2/kD

2 is derived for
symmetric electrolytes that extends the exact law (5) by adding
higher order contributions. An analysis is made of the experi-
mental results by Trefalt and coworkers104,105 for the deviations of
k from kD in dilute solutions of simple electrolytes with high
electrostatic coupling. Different mechanisms for this pheno-
menon are discussed. Finally, in Section 7 the main results of
the paper are summarized and concluding remarks are given.
As an aid to the reader, this section contains references to some
central equations of this work.

2 Background and basic
approximations

We will consider electrolytes in bulk phase using the primitive
model. This model is also applicable to classical plasmas where
er = 1. Each ion has a point charge qj at its center and the total
ion density in bulk is ntot ¼

P
j

nj .

The average density of ions of species j at distance r from the
center of an ion of species i is equal to njgij(r) = nje

�bwij(r), where
gij(r) is the pair distribution function and wij(r) is the pair
potential of mean force. The mean charge density around the
i-ion is given by the radial charge-distribution function

riðrÞ ¼
X
j

qjnjgijðrÞ ¼
X
j

qjnjhijðrÞ; (6)
¶ The term proportional to L in eqn (5) was originally derived in ref. 102.
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where hij(r) = gij(r) � 1 and the last equality follows from the
electroneutrality condition

P
j

qjnj ¼ 0 for the bulk phase. When

dealing with ri(r) and other functions of r, we will denote this
i-ion as the ‘‘central ion’’ and the surrounding charge density
constitutes its ion cloud.

In the Poisson–Boltzmann approximation one assumes that

wij(r) = qjci(r) (PB) (7)

for r Z a, where ci(r) is the mean electrostatic potential from
the ionic charge qi and the surrounding charge density ri(r).
The notation ‘‘(PB)’’ on the equation means that the equation is
applicable in the PB approximation only. The potential ci(r)
decays like

ciðrÞ � Ci
e�kDr

r
when r!1 ðPBÞ;

where Ci is a constant. In the limit of infinite dilution kD - 0,
Ci - qi/(4pere0) and ci(r) approaches the ordinary Coulombic
potential qi/(4pere0r) from the charge qi. Therefore, for an
electrolyte of any ionic density, it is reasonable to define an
effective charge qeff

i of the ion from Ci = qeff
i /(4pere0) in the PB

approximation, so we have

ciðrÞ �
qeffi

4pere0
� e
�kDr

r
when r!1 ðPBÞ; (8)

where qeff
i a qi. One can say that qeff

i is the charge that the ion is
perceived to have when seen from a distance, that is, as judged
from the magnitude of the large r tail of the electrostatic
potential. The magnitude of the tail is affected by the amount
of charge in the ion cloud close to the central ion and the value
of qeff

i is determined by the distribution of charge there. Since
ci(r) varies in a nonlinear manner with qi, the effective charge
also varies nonlinearly with qi. It follows from eqn (7) that in the
PB approximation we have

wijðrÞ �
qeffi qj

4pere0
� e
�kDr

r
when r!1 ðPBÞ; (9)

which does not obey the required symmetry wij = wji, a well-
known deficiency of this approximation. The reason for this
deficiency is that the ions in the ion cloud are treated in a
different manner than the central ion. The former are treated as
point ions that do not correlate with each other. They only
correlate with the central ion, which is the only ion in the
system that has an ion cloud of its own and therefore an
effective charge qeff

i a qi. All ions apart from the central ion
enter in wij with their actual (bare) charge qj. This applies also
to those of the same species as the central ion.

In the linearized version of the PB approximation, the
Debye–Hückel approximation, it is assumed that bwij(r) is
sufficiently small so that e�bwij(r) E 1 � bwij(r) and the following
well-known expressions are valid for r Z a

ciðrÞ ¼
qie

kDa

4pere0ð1þ kDaÞ
� e
�kDr

r
ðDHÞ (10)

riðrÞ ¼ �
kD2qie

kDa

4pð1þ kDaÞ
� e
�kDr

r
ðDHÞ: (11)

By making the identification of qeff
i given by eqn (8) we obtain

qeffi ¼ qi
ekDa

1þ kDa
ðDHÞ; (12)

so we can write for r Z a

ciðrÞ ¼
qeffi

4pere0
� e
�kDr

r
ðDHÞ (13)

riðrÞ ¼ �
kD2qeffi

4p
� e
�kDr

r
ðDHÞ: (14)

Note that in this case, qeff
i is proportional to qi and so are ci and

ri. In the DH approximation we have gij(r) = 1 � bwij(r) with
wij(r) equal to the rhs of eqn (9) for all r Z a.

The total charge density associated with an i-ion, including
the charge of the ion itself, is rtot

i (r) = qid
(3)(r) + ri(r), where d(3)(r)

is the three-dimensional Dirac delta function. The charge
density must satisfy the condition of local electroneutralityÐ
drrtoti ðrÞ ¼ qi þ

Ð
drriðrÞ ¼ 0, which is satisfied for ri in

eqn (11) and (14). The electrostatic potential is given by the
solution to Poisson’s equation �ere0r2ci(r) = rtot

i (r) and can be
written as

ciðrÞ ¼
ð
dr0rtoti ðr0ÞfCoulðjr� r0jÞ; (15)

where fCoul = 1/(4pere0r) is the (unit) Coulomb potential and the
integral is taken over the whole space (this is the convention
throughout the paper for integrals without limits).

The (unit) screened Coulomb potential in electrolytes can be
defined from the potential cq(r) from a point charge q in the
limit of zero q in the following manner8

fCoul
�ðrÞ ¼ lim

q!0

cqðrÞ
q

:

In the PB and DH approximations we have

fCoul
�ðrÞ ¼ 1

4pere0
� e
�kDr

r
ðPB;DHÞ:

This function governs the spatial propagation of electrostatic
potentials in the electrolyte. In the DH approximation we
have ci(r) = qeff

i fCoul*(r) for r Z a and in the PB case
ci(r) B qeff

i fCoul*(r) for large r.
Also in the general (exact) case, fCoul*(r), wij(r) and the other

functions decay like a Yukawa function if the density is not too
high, but the decay parameter k deviates from kD and the
prefactors have other values. In exact statistical mechanics, all
ions are treated on the same basis, which means that wij is
symmetrical with respect to i and j and all ions have an effective
charge qeff

l a ql for l = i, j. Dressed Ion Theory (DIT),22,23,100,101

which is an exact reformulation of classical, equilibrium
statistical mechanics of electrolytes in the fluid state, gives a
formalism to handle these matters. Provided that the ion

8 The function fCoul*(r) is, in fact, a Green’s function for spatial propagation of
electrostatic field the electrolyte,98 which is the proper way to define it.
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density is not too high we have from DIT

fCoul
�ðrÞ � 1

4pEeffr e0
� e
�kr

r
when r!1; (16)

where Eeffr is an effective dielectric permittivity of the electrolyte
that differs from the dielectric constant er of the solvent. Thus

1=Eeffr specifies the magnitude of the tail of fCoul*(r) for large r
and gives a measure of the dielectric response of the electrolyte.

In the PB and DH approximations one sets Eeffr equal to er, so
the dielectric constant of the pure solvent is used in fCoul* of

these approximations instead Eeffr , which is of a property of the
electrolyte.

The mean electrostatic potential due to an i-ion decays like

ciðrÞ �
qeffi

4pEeffr e0
� e
�kr

r
when r!1; (17)

which is in analogy with the PB and DH approximations, but

qeff
i has a different value and we have Eeffr in the denominator

instead of er. Note that ci(r) B qeff
i fCoul*(r) like in the PB

approximation. Furthermore,

wijðrÞ �
qeffi qeffj

4pEeffr e0
� e
�kr

r
when r!1; (18)

which is symmetrical in i and j as it must. Note that the decay of
hij(r) for large r is the same as for�bwij(r) because hij(r) = e�bwij(r)

� 1 B�bwij(r) when bwij(r) is small. These asymptotic formulas
constitute facts that are obtained from exact statistical mechanics

for electrolytes. DIT provides methods to calculate qeff
l and Eeffr

from the distribution functions of the system,** but we will not
enter into any details here.

The appearance of the product qeff
i qeff

j in wij(r) of eqn (18) has
some immediate, important consequences. Using eqn (17) we
see that wij(r) B qeff

j ci(r) for large r, so the effective charge
appears as the prefactor instead of the actual charge qi that one
has in the PB approximation wij(r) = qjci(r). Recall that the latter
equation caused the incorrect symmetry of eqn (9). Since
hij(r) B �bwij(r) for large r we have from eqn (6)

riðrÞ ¼
X
j

qjnjhijðrÞ � �b
X
j

qjnjwijðrÞ � �b
X
j

qjnjq
eff
j ciðrÞ:

Now, Poisson’s equation and eqn (17) imply that for large r

riðrÞ ¼ � ere0r2ciðrÞ � �
erqeffi

4pEeffr

r2e
�kr

r

� �

¼ � erqeffi

4pEeffr

� k
2e�kr

r
� �ere0k2ciðrÞ:

By comparing the rhs of these two equations we see that the
decay parameter k is given by

k2 ¼ b
ere0

X
j

njqjq
eff
j ; (19)

which is eqn (4). This is an exact equation that has been derived
in a strict manner in DIT.100,101 When the ion density goes to

zero we have qeff
j - qj for all j, Eeffr ! er and k - kD.

To conclude, the radial charge density decays like

riðrÞ � �
k2qeffi er
4pEeffr

� e
�kr

r
when r!1: (20)

The asymptotic expressions (16)–(18) and (20) do not depend on
any particular approximation and are valid in general provided
that the ion density is not too high. In order to treat higher
densities, we must add other contributions to these expressions.
This will be done next.

Eqn (18) only describes one decay mode of wij(r) of the
electrolyte system. As mentioned in the Introduction, there
exist several decay modes with different decay parameters,
k, k0 etc. and we have22,23,106 the likewise exact result

wijðrÞ ¼
qeffi qeffj

4pEeffr e0
� e
�kr

r
þ

q
0eff
i q

0eff
j

4pE 0effr e0
� e
�k0r

r
þ other terms (21)

for r Z a, where k o k0 for low to moderate ion densities and
‘‘other terms’’ indicate terms from the additional decay modes
as well as short-range terms with different decay behaviors.††
Eqn (18) gives only the leading contribution with the longest
decay length 1/k. Each mode has its own values of the effective

charges and the effective permittivity, like q
0eff
j and E0effr . The

decay parameter k0 is given by

k
02 ¼ b

ere0

X
j

njqjq
0eff
j (22)

analogously to eqn (19). The screened Coulomb potential is

fCoul
�ðrÞ ¼ 1

4pe0

e�kr

Eeffr r
þ e�k

0r

E 0effr r

" #
þ other terms (23)

and one may say that this function specifies the decay modes of
the electrostatic interactions of an electrolyte.

As an alternative to eqn (19) and (22), one can express both
of them as

k2 ¼ b
ere0

X
j

njqjq
eff
j ðkÞ; (24)

whereby it is explicit that each mode has its own value of qeff
j (k).

In fact, qeff
j (k) can be written as an integral that contains

** The notation used here differs from that in the original DIT papers ref. 22, 23,
100 and 101, where the product Eeffr e0 is denoted as E or E and the present qeff

j is
denoted as qj*, while qj* in the present work denotes something different (see
Section 7).

†† Examples of such terms include terms that decay like f (r)e�2kr/r2, where f (r) is
a slowly varying function,23,101 and cross-terms between the various modes (cf.

ref. 98). Among these terms there are also core–core correlation contributions,
which in the restricted primitive model can be distinguished from the electro-
static contributions. In the approximation used in the present work, the core–core
contributions are approximated by a hard sphere correlation term wcore, see
eqn (52).
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distribution functions for the electrolyte.100,101 Since k appears
on both sides of eqn (24), this formula is an equation for k that
has several solutions, k, k0 etc., that constitute the decay
modes.‡‡ This fact distinguishes eqn (24) from eqn (1) in a
particularly important way. The latter equation gives kD

uniquely and explicitly in terms of the system parameters qj,
nj, T and er, so there is one single decay mode in the PB and DH
approximations.

The various decay modes in eqn (21) and (23) give the
following principal contributions to the electrostatic potential
and charge density for r Z a

ciðrÞ ¼
qeffi

4pEeffr e0
� e
�kr

r
þ q

0eff
i

4pE0effr e0
� e
�k0r

r
þ other terms (25)

and

riðrÞ ¼ �
k2qeffi er
4pEeffr

� e
�kr

r
� k

02q
0eff
i er

4pEeffr

� e
�k0r

r
þ other terms: (26)

The first term on the rhs of each equation gives the leading
contributions (17) and (20), respectively, for large r when the
ion density is sufficiently low.

For elevated ion densities, the leading decay of wij(r),
fCoul*(r), ci(r) and ri(r) for large r become exponentially
damped oscillatory at a Kirkwood cross-over point. This is
included in eqn (21), (23), (25) and (26) and corresponds, as
we have seen, to a pair of decay parameters that become
complex-valued, k = k<+ ikI and k0 ¼ k ¼ k< � ik=. This beha-
vior cannot be obtained in the PB approximation since kD is a

real number. The entities qeff
i and Eeffr also become complex-

valued at the cross-over point and the corresponding primed
quantities become the complex conjugates of the unprimed
ones. Beyond the Kirkwood point, the two first terms in
eqn (26) yield when r - N

riðrÞ �
jkj2jqeffi jer
2pjEeffr j

� e
�k<r

r
cosðk=rþ aiÞ; (27)

where we have written Eeffr ¼ Eeffr

�� ��e�iW, qeff
i = |qeff

i |e�iZi and

k = |k|e�iy with real W, Zi and y and where we have defined
ai = Zi + 2y � W.

One can show23,101 that before the Kirkwood crossover point

we have Eeffr 4 0 and E 0effr o 0 and that Eeffr and E0effr go to zero at

that point. Thus Eeffr goes from er to 0 when the ion density
varies from zero to the Kirkwood point. The sum of the two first
terms in the rhs of eqn (26) remains, however, finite at that

point since the two infinities from 1=Eeffr and 1=E0effr in the
respective term have different signs and cancel each other.

In this paper we will explore approximations that express the
electrostatic correlations in terms of the decay modes with
different k values. We will thereby make the following Ansatz

for the electrostatic part wel
ij of the potential of mean force

wel
ij ðrÞ ¼

qeffi qeffj

4pEeffr e0
� e
�kr

r
þ

q
0eff
i q

0eff
j

4pE0effr e0
� e
�k0r

r
when r � a; (28)

so the two leading modes in eqn (21) are included (we will also
investigate cases where only one mode is included). This means
that we assume that these contributions to wel

ij are valid for all
r down to contact, r Z a, and we neglect all other terms in wel

ij ,
which decay faster than the leading mode. The main contribu-
tions of these other terms appear for small r, so we expect
deviations from the exact wij(r) for small r values. Our Ansatz
will work for cases where these deviations are sufficiently small.
The complete wij(r) used in the current work also contains a
contribution wcore

ij (r) from hard-core correlations among the
ions. It will be specified in Section 4.2 and is important only for
high densities. In the development of the theory we will
gradually introduce various levels of refinements, whereby we
will start with ri(r) given by the first two decay mode terms of
eqn (26) and later link this to wel

ij given by eqn (28), which
constitutes the basic approximation used in our approach.

Our approximation (28) is similar to the so-called exponential
Debye–Hückel (DHX) approximation,71,107 where the rhs of eqn (9)
is used as an approximation for wij(r) in gij(r) = e�bwij(r), that is,

wijðrÞ ¼
qeffi qj

4pere0
� e
�kDr

r
when r � a ðDHXÞ; (29)

whereby the DH value of qeff
i from eqn (12) is used. The DHX

approximation violates several necessary requirements of statis-
tical mechanics for electrolytes, but it has nevertheless some
merits.8,16,71,75,76

Our Ansatz (28) is accordingly an extension of the DHX
approximation to several decay modes. A major difference
between it and the DHX approximation is that the effective

entities qeff
i , Eeffr etc. in eqn (28) can be determined in a self-

consistent manner from requirements that need to be fulfilled.
In contrast, qeff

i in the DHX approximation is explicitly deter-
mined by eqn (12) from the system parameters like density,
temperature etc., which leads to the violations mentioned
earlier.

In the main approximation of the current paper, the electro-
static response is linearized. This approximation will be
denoted as the Multiple-Decay Extended Debye–Hückel, MDE-DH,
approximation and is used in the first part of the current work,
before Section 5. The linearization motivates the designation ‘‘an
extended Debye–Hückel approximation,’’ since the DH approxi-
mation is a linear approximation for the electrostatic response.
In the last part of the work, nonlinear contributions are studied
and an extended DHX approximation is used.

Approximations that explicitly deal with several decay modes
have been proposed earlier. Xiao and Song48–50 have developed
a linear theory for electrolytes that they designate as a molecular
Debye–Hückel theory (they use the acronym MDH, which should
not be confused with MDH used in the current work). This
theory, which is based on DIT, focuses on the decay modes of
ci(r) as expressed in eqn (25) with several Yukawa function

‡‡ Eqn (24) can be formulated in several equivalent manners in DIT. One of them
is an equation based on the static dielectric function ~e(k), namely ~e(ik) = 0, where i
is the imaginary unit. The decay modes are hence given by the zeros of ~e(k) in
complex Fourier space, which are poles of the Fourier transforms w̃ij(k), ~ci(k) and
~ri(k).23,100,101
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terms present, one for each decay mode with decay parameter
kl. These modes are obtained from the static dielectric function
~e(k), where k is the wave number, via an equation that is
equivalent to eqn (24).§§ They write ci(r) in terms of the
Yukawa functions of all decay modes, ciðrÞ ¼

P
l

Ci;le
�kl r=r for

r Z a, where l in principle runs over all modes, whereby they
neglect all other contributions to ci. In practice the sum is
limited to a few modes. The coefficients Ci,l are determined
from equations that use the dielectric function ~e(k) as input,
whereby the latter can be taken from various theories like the
MSA, LMPB, MDH or HNC approximations. The results are
then used to calculate thermodynamical properties of the
system. This approximation is closely related to the simplest
version of the MDE-DH approximation of the current work,
but it is not identical because the latter contains nonlinear
contributions, which are important in the pair distributions
and for thermodynamical consistency, as will be seen.

Another approach is that of Outhwaite and Bhuiyan,31 who
have used the LMPB approximation to calculate ci(r) in manner
that also shares features with the simplest version of the
MDE-DH approximation in the present work. They obtain k
and k0 as the two smallest solutions of the LMPB equation for
the decay parameters, whereby ci(r) is approximated for r Z 2a
like in eqn (3) and obtained for r o 2a by other means. The
coefficients that correspond to C and C0 are determined via
various alternative conditions on ci, where one alternative is
essentially the same as in the current work.

3 Modified Debye–Hückel
approximations with a single
decay-length

We saw in the Introduction that several approaches with a
single decay lengths go quite a long way towards the objective
to accurately obtain thermodynamical entities for electrolytes
in a simple manner. In order to explicitly see why a single mode
nevertheless is not sufficient in general, we will investigate two
such approaches that are particularly relevant for the under-
standing of the approximations suggested in the current work.

As a preparation for the Multiple-Decay Extended DH
approximation, let us consider the Modified Debye–Hückel
(MDH) approximation by Kjellander,32 where one uses the
following Ansatz with a single decay mode

rtoti ðrÞ ¼
qidð3ÞðrÞ; ro a

�k
2qeffi

4p
� e
�kr

r
; r � a

8><
>: ðMDHÞ; (30)

which differs from the DH result in eqn (14) solely by the values
of the decay parameter ka kD and the effective charge qeff

i . This
Ansatz means that the leading term in the large r decay
formula, as given in eqn (20), is assumed to be valid for all r

outside the ion and that Eeffr ¼ er, so the value of Eeffr for low ion

densities is assumed. Like the DH approximation, MDH is a
linear approximation where the charge density of the ion cloud
around an ion is proportional to the charge qi. It can therefore
be valid only for sufficiently low electrostatic coupling
(high temperatures and/or high er). By inserting eqn (30) into
the condition of local electroneutrality we obtain

qi �
ð1
a

dr4pr2
k2qeffi e�kr

4pr
¼ qi � qeffi e�kað1þ kaÞ ¼ 0;

which gives

qeffi ¼ qi
eka

1þ ka
(31)

(cf. eqn (12)). The mean electrostatic potential ci(r) equals

ciðrÞ ¼
qeffi

4pere0
� e
�kr

r
when r � a ðMDHÞ; (32)

as follows for Poisson’s equation.
The deviation of qeff

i from qi expressed by eqn (31) is caused
simply by the excluded volume that the ionic core gives rise to
in the radial charge distribution. When all ions are treated
on the same basis so all have qeff

j a qj, this deviation has quite
far-reaching effects as we now will see. By inserting eqn (31)
into the exact eqn (19) and using eqn (1) we obtain the MDH
result32

k
kD

� �2
¼ eka

1þ ak
: (33)

This equation for k has also been obtained in a different
manner by Hall33 in his LT approximation and recently by
Ding et al. in their the charge renormalization theory.40 It can
be solved numerically to give k as function of kD and when this
solution inserted into eqn (31), one obtains qeff as a function
of kD. For low ion densities, where k E kD, eqn (30) agrees
with the Debye–Hückel expression (11) for ri, but it differs
otherwise.

In order to illustrate how the solution to eqn (33) behaves,
let us write eqn (33) as f (ka) = kDa, where f (x) = [x2(1 + x)/ex]1/2

and plot f as function of ka. This function is plotted as the full
curve in Fig. 1 and the solution is the intersection point
between the curve and a horizontal line at f = kDa; the figure
shows an example with kDa = 0.477 for which the intersection
(full circle) occurs at ka = 0.500. In the figure we see that there is
a second intersection point, which is shown as an open circle.
This point also corresponds to a solution of eqn (33), which
hence has two solutions for k which we will denote as k and k0,
respectively. These two solutions exists for any kDa o 1.346,
which is the maximum of the curve; the latter occurs for

ka ¼ 1þ
ffiffiffi
3
p
� 2:732 and is marked by a full square in the

figure. The function f (x) goes to zero when x - N, so the
right-hand intersection occurs for increasingly large ka when
kDa goes to zero, which means that k0 - N in this limit. As we
will see shortly, this solution is physically relevant and gives
rise to a second decay mode.

We have thus shown that eqn (33) has two solutions k and k0

with ko k0, where k goes to kD and k0 goes to infinity when kDa§§ See footnote ‡‡ above.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

0/
16

/2
02

4 
10

:4
5:

47
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cp02742a


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 23952--23985 | 23961

goes to zero, or in other words, when the ion density goes to
zero. The two solutions k and k0 appear despite the fact that the
MDH theory was set up by using the ansatz in eqn (30) with only
one k parameter. This is an inconsistency that we will resolve
later. When the ion density and hence kDa are increased, k and
k0 approach each other and beyond kDa = 1.35, i.e., above the
maximum in Fig. 1, the solutions k and k0 to eqn (33) become
complex-valued, k = k< + ikI and k0 ¼ k ¼ k< � ik=, which is in
agreement with the general result mentioned above in Section 2.¶¶

The values of k/kD, k0/kD, k</kD and kI/kD from the solutions
to eqn (33) are plotted as functions of kDa in Fig. 2a and are
compared with results from Monte Carlo (MC) simulations and
Hypernetted Chain (HNC) approximation calculations of the
decay of ci(r) and ri(r) for a 1 : 1 electrolyte in water at room
temperature with a = 4.6 Å. These results also correspond to a
classical 1 : 1 plasma in vacuum (er = 1) when T = 23 400 K,
which has the same value of kBTer. The HNC approximation is
very accurate for these systems. It is seen in the figure that the
predictions from eqn (33) agree very well with the MC and HNC
results, including the Kirkwood crossover point and beyond.88
This is quite remarkable considering the humble origin of
eqn (33). Obviously, the second root of eqn (33) and the
cross-over to oscillatory decay have a great physical relevance.
We will explore this in the next section. Fig. 2b shows a plot of
k</kD and kI/kD from eqn (33) for larger values of akD. Other
linear approximations like the MSA and LMPB theories, which
are considerably more complicated, give predictions that are
very similar to those shown in the figure.

Apart from the local electroneutrality condition that the
charge distribution has to fulfill, there is also the Stillinger–Lovett
second moment condition108 that must also be fulfilled. This
condition expresses the fact that from the point of view of
electrostatics, electrolytes behave like perfect conductors. It can
be formulated as

b
X
i

qini

ð
drr2riðrÞ ¼ �6ere0: (34)

which can alternatively be written in a more common manner
as an equation involving the second moment of the pair
correlation functions hij(r) = gij(r) � 1. This condition is not
fulfilled for the MDH approximation [i.e., eqn (30) with k given
by eqn (33)], but this approximation does, however, fulfill it
approximately for low to medium concentrations and is much
better in this respect than the DH approximation.33

We may strictly enforce the Stillinger–Lovett condition by

refraining from the assumption that Eeffr ¼ er and select the

value of Eeffr so that eqn (34) is satisfied. Guided by eqn (20) we
then take

riðrÞ ¼ �
k2qeffi er
4pEeffr

� e
�kr

r
when r � a: (35)

If we insert this into eqn (34) and use the exact eqn (19)
we obtain

Eeffr

er
¼ e�ka 1þ kaþ ðkaÞ

2

2
þ ðkaÞ

3

6

� �
¼ e�ka exp3ðkaÞ; (36)

where we have defined the ‘‘exponential sum functions’’

exp‘ðxÞ ¼
X‘
n¼0

xn

n!
(37)

(note that expN(x) = exp(x) = ex). Eqn (36) implies that

1 � Eeffr =er �4 0:98 for ka o 1, so it is a good approximation to

set Eeffr ¼ er for low to medium ion densities as done in the
MDH approximation.

By applying the local electroneutrality to eqn (35) we obtain

qeffi ¼ qi
eka

1þ ka
� E

eff
r

er
¼ qi

exp3ðkaÞ
1þ ka

;

where we have inserted Eeffr =er from eqn (36) to get the last
equality. Using eqn (19), we obtain

k
kD

� �2
¼ exp3ðkaÞ

1þ ak
ðSCSLÞ: (38)

This equation for k is the Self-Consistent Screening Length
(SCSL) approximation by Attard84 mentioned earlier, which was
set up as an approximation that satisfies both the local electro-
neutrality and the second moment conditions. In order to
investigate k obtained in this approximation, let us this time
define f (x) = [x2(1 + x)/exp3(x)]1/2 whereby eqn (38) corresponds
to f (ka) = kDa. In Fig. 1 the plot of this f as function of ka is
shown as the dashed curve and we see that there is only one
intersection with the horizontal line f (ka) = kDa. Therefore we

Fig. 1 Plots of f (ka) for two different functions: the full curve shows f (x) =
[x2(1 + x)/ex]1/2 and the dashed curve shows f (x) = [x2(1 + x)/exp3(x)]1/2,
where exp3(x) is an exponential sum function defined in eqn (37). The
horizontal line shows f = kDa with kDa = 0.477. This line has two
intersections with the full curve that are shown as a full circle and an
open circle, respectively. The two intersections correspond to the two
solutions k and k0 of eqn (33) when kDa = 0.477. The maximum of the full
curve is marked with a full square.

¶¶ There also exist other complex-valued solutions to eqn (33), but here we are
only concerned with those two that are connected continuously with the two real
solutions k and k0.
88 The HNC data for kDa \ 1.5 in ref. 22 were not reliable and have been ignored
in the plot.
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see that this approximation does not predict a Kirkwood cross-
over point. Instead, the single real solution k goes to infinity
when kDa - 6, which follows from the fact that f (x) - 6 when
x - N. For small kDa, however, the results of this approxi-
mation are accurate since the full and the dashed curves
virtually coincide there. When kDa 4 6, eqn (38) has only
complex-valued solutions.

This is a clear example of the fact that one may not achieve
an improvement of an approximate theory by enforcing a
necessary condition. The problem is that it is too restrictive
to assume that there only exist one decay mode e�kr/r for the
charge density, so the enforcement of the Stillinger–Lovett
condition leads to a theory that gives qualitatively incorrect
results for high ion densities. In order to obtain a Kirkwood
crossover point we need two decay modes e�kr/r and e�k

0r/r.
Thereby the oscillatory decay for high ion densities can be
obtained in a correct manner. The MDH and SCSL approxima-
tions with a single decay mode can be used only for low
to moderate ion densities. We will return to the SCSL
approximation in Section 5; here we will continue with MDH
approximation that is more accurate.

The MDH Ansatz (30) corresponds, as we will verify shortly,
to the approximations wij(r) = qeff

j ci(r) and gij(r) = e�bwij(r) E
1 � bwij(r), so by inserting ci from eqn (32) we obtain

gijðrÞ ¼ 1� bqeffj ciðrÞ ¼ 1�
bqeffj qeffi

4pere0
� e
�kr

r
when r � a ðMDHÞ:

(39)

In the DH approximation, where ci is given by eqn (13), we have
instead

gijðrÞ ¼ 1� bqjciðrÞ ¼ 1� bqjqeffi

4pere0
� e
�kDr

r
when r � a ðDHÞ:

(40)

Note that hij(r) = gij(r) � 1 is proportional to qiqj in both cases
since the effective charge is proportional to the actual (bare)
change in these approximations.

The gij(r) in eqn (39) gives the charge density in eqn (30), as
can be easily verified as follows. We have

riðrÞ ¼
X
j

qjnjgijðrÞ ¼ �
X
j

bqjnjqeffj

ere0
� q

eff
i

4p
� e
�kr

r

¼ � k2qeffi

4p
� e
�kr

r
when r � a ðMDHÞ;

(41)

where we have used the exact eqn (19) for k and the fact thatP
j

njqj ¼ 0. This is the same as the second line in eqn (30). In

the DH approximation we instead obtain the charge density
given by eqn (14) for r Z a

riðrÞ ¼ �
X
j

bnjqjqj
ere0

� q
eff
i

4p
� e
�kDr

r
¼ �kD

2qeffi

4p
� e
�kDr

r
ðDHÞ;

(42)

where we have used the definition of kD in eqn (1). We can see that
the appearance of a decay parameter k a kD in the MDH approxi-
mation is intimately linked to the treatment of all ions on the same
basis, so all ions of species j have an effective charge qeff

j a qj. As
pointed our earlier, in the nonlinear Poisson–Boltzmann and the DH
approximations, the central ion with effective charge qeff

i a qi is
treated differently from the ions in its surroundings. The latter are
treated as point ions that do not correlate with each other, so for
them we can say that qeff

j = qj and by inserting this into eqn (19) we
obtain the DH expression (1) for kD.

The total ion density around an i-ion is equal to
P
j

njgijðrÞ.
In the DH and MDH approximations, this density is equal to
the bulk value ntot for r Z a because it follows from eqn (39) and
(40) that

P
j

njgijðrÞ ¼ ntot.

Fig. 2 (a) Decay parameters divided by the Debye parameter kD for a 1 : 1 aqueous electrolyte solution at room temperature as functions of kDa, which is
proportional to the square root of the ion density. The same results apply to a classical 1 : 1 plasma in vacuum at T = 23 400 K. Thick curves: obtained from
the solutions of eqn (33); thin curves: HNC results and open symbols: MC simulation results. The Kirkwood crossover point is shown as a filled symbol for
the HNC results and those from eqn (33). The MC data are taken from ref. 18 and the HNC data from ref. 21 and 22. (b) The real and imaginary parts of k
from eqn (33) divided by kD.
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4 Debye–Hückel extensions with
multiple decay lengths
4.1 Decay parameters and effective permittivities

To resolve the inconsistencies of the single decay mode
approaches, we use eqn (26) as basis for a better approximation.
We take the first two terms as an Ansatz that we assume holds for
all r Z a

rtoti ðrÞ ¼

qidð3ÞðrÞ; ro a

� er
4p

k2qeffi
Eeffr

� e
�kr

r
þ k02q

0eff
i

E0effr

� e
�k0r

r

" #
; r � a:

8>><
>>: (43)

where the second line is equal to ri(r) for r Z a. We will, however,
keep eqn (31) and hence eqn (33) as they are because the latter
gives good results for k and k0, including the Kirkwood crossover,
for monovalent ions in water at room temperature and for the
classical plasma at high temperatures. These equations are also
fulfilled by the primed quantities and the decay parameters used
are those plotted in Fig. 2. Recall that the behavior of the decay
modes as seen in this figure was obtained from an effect of
excluded volume in the radial ion distribution, as expressed in
terms of an effective charge in eqn (31) for each mode.

The Ansatz in eqn (43) constitutes an important ingredient
of the simplest version of the MDE-DH approximation, which
we will denote as the Simple MDE-DH approximation. We will
later formulate the Complete MDE-DH approximation [see
eqn (54), (55) and (97)], but eqn (43) is sufficient in many cases
and works very well provided that the ion size is not too large
and core–core correlations are not too prominent.

By applying the local electroneutrality
Ð
drrtoti ðrÞ ¼ 0 to

eqn (43) and using eqn (31) and its analogue for the primed
quantities, we can readily deduce that

er
Eeffr

þ er
E 0effr

¼ 1: (44)

To determine Eeffr and E0effr we need one more equation, which
we can obtain by applying the Stillinger–Lovett condition to the
ansatz in eqn (43) and use the exact eqn (19) and (22).
This yields

er
Eeffr

e�ka exp3ðkaÞ þ
er
E0effr

e�k
0a exp3ðk0aÞ ¼ 1: (45)

Together, these two equations for Eeffr and E0effr imply that

Eeffr

er
¼ e�ka exp3ðkaÞ � e�k

0a exp3ðk0aÞ
1� e�k0a exp3ðk0aÞ

(46)

E0effr

er
¼ �e

�ka exp3ðkaÞ � e�k
0a exp3ðk0aÞ

1� e�ka exp3ðkaÞ
: (47)

One can show that these relationships imply that er � Eeffr � 0

and �1 	 E0effr 	 0, so E 0effr is negative in agreement with the
general results mentioned in Section 2. The value zero occurs at
the Kirkwood point, that is,

k ¼ k0 ) Eeffr ¼ 0; E 0effr ¼ 0

as follows from eqn (46) and (47). This is also in agreement with
the general exact results mentioned in Section 2. In the limit of

infinite dilution where Eeffr ! er and E0effr ! �1, the second
term in eqn (43) vanishes and eqn (30) becomes valid, but close
to the Kirkwood cross-over point this second term is about
equally important as the first term.

In the top frame of Fig. 3 the values of Eeffr =er from eqn (46)
are compared to results from MC simulations and the HNC
approximation for the same system as in Fig. 2. The agreement
is good; the curve from the present theory is somewhat shifted
horizontally relative to that from HNC due the the slight
difference in Kirkwood point as seen in Fig. 2. The prediction

for E0effr =er is plotted in the bottom frame of Fig. 3.
For the case where k is complex-valued, k = k< + ikI, we write

Eeffr ¼ jEeffr je�iW and E0effr ¼ Eeffr ¼ jEeffr jeiW. One then obtains

from eqn (44) that

jEeffr j
er
¼ 2 cos W (48)

and one can derive from eqn (46) that

tan W ¼ ek<a � A cosðk=aÞ � B sinðk=aÞ
A sinðk=aÞ � B cosðk=aÞ

; (49)

Fig. 3 The ratios Eeffr =er (top frame) and E
0eff
r =er (bottom frame) as func-

tions of kDa. The full curves show the result from eqn (46), the dashed
curve show HNC results and the symbols show MC simulation results. The
HNC and MC data are taken from ref. 18 for the same system as in Fig. 2
(see ref. 21 and 22 for further HNC data). Note the difference in ordinate
scales of the two frames.
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where

A ¼ Aðk<; k=Þ ¼ exp3ðk<aÞ � ðk=aÞ2
1þ k<a

2

B ¼ Bðk<; k=Þ ¼ k=a exp2ðk<aÞ �
ðk=aÞ2

6

� �
:

In Fig. 4 we have plotted jEeffr j=er and W as functions of kDa. At
the Kirkwood crossover point, to the left in the figure, we have

jEeffr j ¼ 0 and W = p/2.
For complex-valued k and k0 the radial charge distribution is

oscillatory and the second line of eqn (43) can be written as
(cf. eqn (27))

riðrÞ ¼
jkj2jqeffi jer
2pjEeffr j

� e
�k<r

r
cosðk=rþ aiÞ when r � a; (50)

where ai = Zi + 2y � W with phases defined from Eeffr ¼ Eeffr

�� ��e�iW,

qeff
i = |qeff

i |e�iZi and k = |k|e�iy as before. Note that y =
�arctan(kI/k<).

4.2 Radial distribution functions

For binary symmetric electrolytes, the number densities of
cations and anions are equal, n+ = n� 
 n, the ionic charges
are q+ = �q� 
 q, the absolute valency z = q/qe and ntot = 2n. For
ions of equal diameter (the restricted primitive model, RPM) we
also have r+(r) = �r�(r) 
 r(r) and qeff

+ = �qeff
� 
 qeff. From

eqn (1) and (19) follow

qeff

q
¼ k

kD

� �2
; (51)

which is exact for the RPM.
In the RPM, the electrolyte bulk phase is completely speci-

fied by the two dimensionless parameters bR 
 bq2/(4pere0a) =
z2cB/a and t = kDa; the latter is the abscissa of Fig. 2–4.
Alternatively, any two independent combination of these two
parameters can be used to specify an RPM system, like reduced
total ionic density ntotR
 ntota

3 = t2/(4pbR) and the product bRt. The
inverse of the latter is the so-called plasma parameter 4pntot/kD

3.
We will test the predictions of the Simple MDE-DH Ansatz in

eqn (43) by comparing with results from MC simulations and
HNC calculations for an electrolyte with bR = 1.55, which can
be, for example, a 1 : 1 aqueous electrolyte solution at room
temperature with ions of diameter a = 4.6 Å or a classical
plasma of such ions in vacuum at T = 23 400 K. Depending on
the ion density (concentration), the parameter t has different
values. The radial charge distribution r(r) is calculated using

k and k0 obtained from the solutions of eqn (33), Eeffr obtained

from eqn (46) and E 0effr from eqn (47). In Fig. 5 the function

Fig. 4 The ratio jEeffr j=er and the phase angle W of Eeffr ¼ jEeffr je�iW from
eqn (48) and (49) as functions of kDa beyond the Kirkwood crossover point
where k is complex-valued.

Fig. 5 The radial charge distribution r(r) for a 1 : 1 electrolyte plotted as rr(r) as a function of r on a semilogarithmic scale. The ion diameter is a = 4.6 Å
and the concentration is 0.5 M in frame (a) and 0.7 M in frame (b) [t = kDa = 1.07 and 1.27, respectively, and bR = 1.55]. The open squares in frame (a) show
results from MC simulations18 and in both frames the full curves show HNC results,18,21,22 the dotted curves show results from the Simple MDE-DH
approximation, eqn (43), and the dashed curves show results from solely the first (leading) term in this equation. The unit for rr(r) is qea�2.
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r|r(r)| as function of r for the cases of 0.5 and 0.7 M electrolytes
is plotted on a semilogarithmic scale, whereby a Yukawa
function decay becomes a straight line.

In Fig. 5a we see that the MC and HNC results virtually
coincide with each other, so the HNC approximation is very
accurate for the monovalent electrolyte. The prediction from
eqn (43) (dotted curve) agrees very well with the MC and HNC
results for all r except in a very short interval just outside the
core region, 1 r r t 1.3a and the curves virtually coincide for
r \ 2a. In Fig. 5b the agreement is equally good. The dashed
curves are calculated from the first term in eqn (43), which is
leading for large r. In Fig. 5b this curve coincides with the
accurate results r \ 2.5a, but it deviates substantially from
the dotted curve for smaller r values. This implies that the
contribution from the second Yukawa term with decay para-
meter k0 is important for the 0.7 M case. For the 0.5 M it is less
important, but it still gives a noticeable contribution that
makes the dotted curve to deviate from the dashed one. The
difference in importance of the second term for the 0.7 and

0.5 M cases is due to the fact that the magnitude of E0effr in
the denominator of this term increases rapidly when the
concentration is decreased, see Fig. 3. We can conclude that
the Ansatz (43) gives very good results for the 1 : 1 electrolyte
systems; the deviation for small r has little consequence in
most cases and is caused by terms in r(r) with shorter decay
lengths that are not included in the Ansatz.

This conclusion is supported by Fig. 6, which shows results
for 0.1, 0.7 and 1.0 M electrolytes (the data for 0.7 M are the
same as in Fig. 5b). Here, r(r) is plotted on a linear scale as
4pr2r(r), which is proportional to the amount of charge at
distance r. The curves for 0.1 M show that the first term in
eqn (43) dominates for nearly all distances; the second term is

very small because E0effr has very large magnitude when the
concentration is low. The deviation from the HNC curve occurs,
like for the other cases, mainly very close to the core region and
has little consequence.

For the 0.7 M case in Fig. 6a, we can very clearly see the
importance of the second Yukawa term, since without it, the
deviation from the accurate HNC curve is large for r o 2a as
apparent from the dashed black curve. Thus it is very important
to have the two decay modes present in the theory in order to
describe the electrolyte in an appropriate manner. This conclu-
sion is, of course, further emphasized when k and k0 and become
complex-valued at the Kirkwood cross-over point and give rise to
oscillations at higher concentrations. The conditions for the 1.0 M
case in Fig. 6 are beyond this point, so r(r) has an exponentially
damped oscillatory decay. We then have complex k ¼ k0 and the
two terms in eqn (43) yield the expression for r in eqn (50). It is
seen from the results from this equation, shown as the red dotted
curve in the figure, that the agreement with the accurate HNC
curve is about equally good as the results for the other concentra-
tions. Note that the two red curves cross the abscissa axis at
virtually the same point in Fig. 6b, which means that the phase a
obtained from the Ansatz is very good.

Let us now turn to the pair distribution function gij(r) =
e�bwij(r). The Ansatz (43) can be obtained from eqn (28) for the

electrostatic part, wel
ij , of the potential of mean force. When

bwij(r) is sufficiently small we can linearize the pair distribution
function gij(r) E 1 � bwij(r) and when the electrostatic con-
tributions to wij dominate we can set wij(r) E wel

ij (r), so we have

riðrÞ ¼
P
j

qjnjgijðrÞ �
P
j

qjnjw
el
ij ðrÞ. By inserting eqn (28) and

using eqn (19), we obtain eqn (43) [compare with the derivation
of eqn (41)]. As we will see shortly, in the RPM the Ansatz (43) is
valid also for somewhat more general conditions.

When the ion density is high, the approximation wij(r) E
wel

ij (r) is insufficient because there are important steric contri-
butions missing due to core–core correlations. The latter
are in general coupled to the electrostatic correlations, so
for simplicity, we will restrict ourselves to symmetric electro-
lytes in the RPM, where the density-charge correlation func-
tion is identically equal to zero and the coupling between
electrostatic and core correlations is weak. We make the
following Ansatz

gijðrÞ ¼ e
�b wel

ij
ðrÞþwcore

ij
ðrÞ

� 	
(52)

Fig. 6 The radial charge density r(r) for a 1 : 1 electrolyte plotted as
4pr2r(r) as function of r. The ion diameter is a = 4.6 Å and the concen-
tration is 0.1 M (red curves), 0.7 M (black curves) and 1.0 M (blue curves)
[t = kDa = 0.48, 1.27 and 1.51, respectively, and bR = 1.55]. For the cases
0.7 M (same as in Fig. 5b) and 0.1 M, the full curves show HNC results, the
dotted curves show results from the Simple MDE-DH approximation,
eqn (43), and the dashed curves show results from the first term in this
equation. In the case of 1.0 M, the full curve shows the HNC data and the
dotted curve show the results from eqn (50). The bottom frame shows a
magnified view of the top one. The HNC data are from ref. 21 and 22.
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and we approximate wcore
ij (r) with the potential of mean force

obtained from a hard sphere fluid with pair distribution
function ghs(r) = e�bwhs(r). The density of the hard sphere fluid
is set equal to the total ionic density ntot, that is, the hard
sphere fluid has a reduced density ntota

3. A suitable choice of
ghs(r) in numerical calculations is to use the very accurate
Verlet–Weis’ semi-empirical expression109 for ghs(r). A Fortran
code for this expression is publicly available.110 The ghs(r) thus
obtained gives contact values ghs(a) in agreement with the
very accurate Carnahan–Starling (CS) equation of state.97 The
contribution wcore

ij (r) expresses a further decay mode for the
interactions.

Eqn (52) together with the two-mode Ansatz for wel
ij (r) in

eqn (28) constitute a starting point for the formal development
of the approximations used in the current work. The details are
given in Appendix A. Here we will only give the main points.

In the RPM, the Ansatz (52) implies that

g+�(r) = e�b[�wel(r)+wcore(r)] = e8bwel(r)gcore(r) (53)

with gcore(r) = ghs(r) and we have for r Z a

welðrÞ ¼
qeff
� �2
4pEeffr e0

� e
�kr

r
þ

q
0eff

� �2
4pE0effr e0

� e
�k0r

r

¼ q2

4pe0kD4

k4

Eeffr

� e
�kr

r
þ k04

E 0effr

� e
�k0r

r

" #
;

(54)

where we have used eqn (51) to obtain the second line.
In the MDE-DH approximations we assume that bwel(r) is

sufficiently small so that we can approximate e8bwel(r) E
18bwel(r) + [bwel(r)]2/2. We obtain

gþ�ðrÞ ¼ 1� bwelðrÞ þ ½bw
elðrÞ�2
2

� �
1þ hcoreðrÞ½ �; (55)

which can be written as

gþ�ðrÞ ¼ 1� bwelðrÞ þ hcoreðrÞ þ 1

2
½bwelðrÞ�2

þ hcoreðrÞ 1

2
½bwelðrÞ�2 � bwelðrÞ

� �
;

(56)

where hcore(r) = gcore(r) � 1. The inclusion of the square term
[bwel(r)]2/2 makes the pair distribution to fulfill the necessary
condition g+�(r) Z 0, which can be violated in linear theories
like MSA and the DH approximation. Eqn (54) and (55) con-
stitute the Complete MDE-DH approximation for the RPM
together with the eqn (31) for k, which can be written

qeff

q
¼ k

kD

� �2
¼ eka

1þ ak
; (57)

and the corresponding relationship for the primed quantities.
The inclusion of a square term [bwel

ij (r)]2/2 from electro-
statics has been done for a long time in some kinds of theories,
for example as an improvement of the DH approximation with
wel

ij (r) given by eqn (29).10 In the present case, the use of the
square term of wel

ij (r) with two decay modes and with coeffi-
cients that makes gij(r) satisfy the required electroneutrality and

second moment conditions gives, as we will see in the next
section, thermodynamic consistency to a considerable degree.
In, for example, the GMSA approximation24,47 one instead
includes an empirical contribution with parameters that are
selected to give thermodynamic consistency. The present
approach does not contain any such parameters.

In systems where the core–core correlations are not very
strong, it is a good approximation to neglect the cross-terms
between hcore and wel in eqn (56) since they are of higher order
and are smaller than the other terms for most separations r in
such cases. We then obtain for r Z a

gþ�ðrÞ ¼ 1� bwelðrÞ þ hcoreðrÞ þ 1

2
½bwelðrÞ�2: (58)

Together with eqn (54) and (57), this equation constitutes the
Simple MDE-DH approximation for the RPM. As shown in
Appendix A, this is the approximation behind the Ansatz (43)
in the RPM because eqn (58) yields r(r) used in the Ansatz (note
that r(r) = qn[g++(r) �g+�(r)] in the RPM). The square term and
hcore do not contribute to r and therefore not to c. In this
approximation all results in Section 4.1 are valid, in particular

the expressions for Eeffr and E 0effr in eqn (44)–(49). The corres-
ponding expressions in the Complete MDE-DH approximation
are given in Appendices A and B.

Since we have retained solely the linear and quadratic
terms in bwel in both MDE-DH approximations, their range
of validity is clearly limited to systems at sufficiently high
temperatures and/or high er so that bR is sufficiently low. For
monovalent ions of diameter 4.6 Å in aqueous solution at
room temperature, which constitute the system for the MC
simulations that we successfully have compared with in the
previous examples, we have bR = 1.55. The appropriate bR values
for the MDE-DH approximations apparently are of this order of
magnitude or less.

As a test of the Complete MDE-DH approximation, the radial
distribution function gij(r) has been calculated for a system with
rather large ions, a = 6.6 Å, and high electrolyte concentration,
where the core–core correlations are important and the charge
density distribution r(r) is oscillatory. For this system bR = 1.10.
The results for gij and Dg = g+� � g�� are presented in Fig. 7,
where they are compared to MC simulations results of
Zwanikken and coworkers.61 As seen in the figure, the MDE-
DH approximation gives excellent results that nearly coincide
with the MC ones. Note that the resolution of the ordinate scale
in frame (d) of the figure is an order of magnitude larger than
in frame (a). It is noteworthy that quite intricate details of the
pair distribution functions are obtained in agreement with
simulations. Our results are, in fact, slightly better than those
of both the HNC approximation and Zwanikken’s DHEMSA
approximation,61 which is quite remarkable considering the
simplicity of the present Ansatz.

In order to investigate the effects of core–core correlations in
this system, the pair distribution ghs(r) of the hard sphere fluid
is plotted in Fig. 7a and it is seen that the main oscillation of
gij(r) with a wave length Ea is caused by these correlations. It is
also seen in frames (a) and (b) of the figure that there is another

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

0/
16

/2
02

4 
10

:4
5:

47
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cp02742a


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 23952--23985 | 23967

oscillatory component with longer wave length superimposed
on the main oscillation. This component is equal to the
term 8bwel(r) in eqn (56), which is oscillatory here.***
It makes the g+� and g�� curves to repeatedly intersect with
one another and has a wave length 2p/kI = 2.06a. In frames (c)
and (d) this component gives the contribution Dgel(r) =
2bwel(r), which is the electrostatic part of Dg in the current
approximation. For r \ 1.3a it is seen that Dgel(r) gives nearly
the entire Dg(r).

As seen in eqn (56), gij(r) has also contributions from
[bwel(r)]2/2 and from the two cross-terms involving hcore and
wel. All these contributions have shorter decay lengths than the
other ones, so they mainly contribute for small r.

For the present system we have jEeffr j=er ¼ 2:77 and W =
�0.828 radians as obtained from eqn (109) and (110) in
Appendix B. This can be compared with the values obtained
from the Simple MDE-DH approximation, eqn (48) and (49),
which are 1.77 and �0.477, respectively. Eqn (58) of the
latter approximation gives gij functions for this system
that do not agree well with the MC data in Fig. 7. This shows
the importance of using the Complete MDE-DH approxi-
mation here. All other numerical results obtained so far and
those in Section 4.3 below are obtained for systems with
smaller ions where it is sufficient to use the Simple
MDE-DH approximation based on the Ansatz (43) and
eqn (54), (57) and (58).

4.3 Thermodynamic quantities

Let us now turn to the thermodynamic properties and we start
with the chemical potential mi of an ion of species i

mi = mideal
i + mex

i = kBT ln(li
3ni) + mex

i ,

where li is the thermal de Broglie wave length for species i and
mex

i is the excess chemical potential. The latter has two parts
mex

i = mex,core
i + mex,el

i , where mex,core
i is the contribution from the

formation of a hole in the electrolyte that is large enough to fit
an ion and mex,el

i is the contribution from the electrostatic
interactions. We define mex,core

i as the change in free energy
when an uncharged sphere of diameter a is inserted into the
electrolyte and mex,el

i as the free energy change when this sphere
is charged from 0 to qi. The average excess chemical potential
mex
� is given by mex� ¼

P
i

ximexi where xi = ni/ntot. The mean activity

coefficient g� is defined from ln g� 
 mex
� /kBT and we likewise

define ln gel
� 
 mex,el

� /kBT and ln gcore
� 
 mex,core

� /kBT. The latter is
equal to mex,core

i /kBT for any i because all ions have the same
size. Obviously, ln g� = ln gel

� + ln gcore
� .

Let us start with the core term and consider the excluded
volume hole in the electrolyte where an uncharged sphere of
diameter a can fit. This volume, where the centers of the
surrounding ions cannot enter, is equal to 4pa3/3. In the DH
and MDH approximations

ln gcore� ¼ 4pa3ntot
3

ðDH;MDHÞ; (59)

which can be understood from the fact that kBT ln gcore
� =

kBTntot  4pa3/3 is the reversible pressure-volume work done

Fig. 7 (a) The radial distribution function gij(r) for a 2 M 1 : 1 electrolyte with ions of diameter a = 6.6 Å (t = kDa = 3.11 and bR = 1.10) calculated in the
Complete MDE-DH approximation (black curves) compared with data from MC simulations (symbols) taken from ref. 61. The red curve (short dashes)
shows the pair distribution ghs(r) for a hard sphere fluid of the same density and sphere diameter (packing fraction Z = 0.37). The insert (b) shows a
magnified view of the gij(r) curves in frame (a). (c) The difference Dg(r) = g+�(r) � g��(r), which is proportional to the radial charge-density distribution
r�(r) around a negative ion. Full curve is the MDE-DH and symbols are the MC results [the full circles are from Dg(r) data of ref. 61 and the full squares are
calculated from gij(r) in frame (a) taken from the same reference]. The red curve (short dashes) shows Dgel(r) = 2bwel(r), which is the electrostatic part of
Dg in the present approximation. The insert (d) shows a magnified view of the curves in frame (c). Note the large differences in ordinate scales of the
various frames.

*** In the present case bwel(r) is equal to the square bracket in eqn (107) in
Appendix A.
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when a hole of radius a and volume 4pa3/3 is formed in a low-
density fluid and the density around the hole is equal to ntot

throughout. As we have seen, in these approximations the total
ion density around an ion is equal to the bulk value ntot for all
distances from the ion and the same applies to an uncharged
sphere or a hole.

For high ion densities it is, of course, not reasonable to
evaluate ln gcore

� as if the total density around an uncharged
sphere is unaffected by the interactions with the latter. In the
MDE-DH theories for the RPM, an uncharged sphere does not
interact electrostatically with the ions because wel is propor-
tional to the charge of the central particle, but hard core
interactions are included because of the presence of the
gcore in the pair distribution function in eqn (53). Therefore,
ln gcore
� is equal to the excess chemical potential for the creation

of a hole in a dense fluid of hard spheres of number density nhs,
which is set equal to the total ion density ntot. Since we use the
Verlet–Weis’ semi-empirical expression for ghs and set gcore = ghs

we have

ln gcore� ¼ mexCS
kBT

����
nhs¼ntot

; (60)

where mex
CS is given by the very accurate Carnahan–Starling

expression for mex,core obtained from the CS equation of state97

mexCS
kBT

¼ 8Z� 9Z2 þ 3Z3

ð1� ZÞ3 ðhard sphere fluidÞ; (61)

where Z is the packing fraction Z = pnhsa3/6. The value of
ln gcore
� from eqn (60) approaches that of eqn (59) when the

concentration is decreased to zero.
The electrostatic parts of the chemical potential and the

activity coefficient can be calculated from the radial charge
distribution functions of the electrolyte. In the DH approxi-
mation we have

ln gel� ¼ �
kD2

8pntot
� kD
1þ kDa

ðDHÞ (62)

and in the MDH approximation32

ln gel� ¼ �
kD2

8pntot
� k
1þ ka

ðMDHÞ (63)

with k from eqn (33). For a binary electrolyte where the ionic
charges are q+ and q�, the prefactor of these expressions can
alternatively be written as

kD2

8pntot
¼ bqþjq�j

8pere0
;

where it is clearly seen that the prefactor is a constant that is
independent of the ion density.

In the Simple MDE-DH approximation based on the Ansatz
(43) and eqn (58), it is shown in Appendix C that

ln gel� ¼ �
kD2

8pntot

erk

Eeffr ð1þ kaÞ
þ erk0

E 0effr ð1þ k0aÞ

" #
(64)

and we see that there is one contribution from each of the two
decay modes with decay parameters k and k0. This expression is

valid also for complex-valued k and k0, but for that case one
can write it in a more convenient form given by eqn (114) in
Appendix C.

In any approximate theory where the charge density ri

is proportional to qi, like the DH, MDH and MDE-DH approx-
imations, mex,el

� is equal to the excess (interactional) average
energy per ion, Uex/Ntot (see eqn (115) ff. in Appendix C), where
Ntot ¼

P
i

Ni ¼ Vntot is the total number of ions

and V is the volume of the system. We therefore have
ln gel
� = bUex/Ntot in these approximations, so in the the Simple

MDE-DH approximation we have

bUex

Ntot
¼ � kD2

8pntot

erk

Eeffr ð1þ kaÞ
þ erk0

E 0effr ð1þ k0aÞ

" #
: (65)

The equality between mex,el
� and Uex/Ntot is not true in general,

but for conditions where linear electrostatic response is a good
approximation we have ln gel

� E bUex/Ntot.
In Fig. 8a, ln g� obtained in the Simple MDE-DH approxi-

mation is compared with results from MC simulations and we
see that the agreement is very good for all concentrations; there
are slight differences between the results for high concentra-
tions that are hard to see in the plot. The red portions of the
curves indicate the region where the radial charge distribution
is oscillatory and the Kirkwood cross-over point is shown by red
arrows. The DH prediction is also plotted and serves as a
reference in the figure. The electrostatic contribution ln gel

�
from these approximations is shown and these curves also give
the predicted average energy plotted as bUex/Ntot. The latter
quantity as obtained from MC simulations is plotted as blue
triangles in the figure and the Simple MDE-DH approximation
results are very good agreement with the MC data; the slight
differences seen for high concentrations are actually nearly the
same as for the ln g� results in the figure.

Fig. 9a shows the low concentration region in more detail,
where the results from the MDH approximation are also
included. The latter cannot give any prediction at high ion
densities (beyond the Kirkwood cross-over point) because there
is only one term for the Ansatz in eqn (30) and, as seen in the
figure, the MDH approximation works well only for concentra-
tions up to about 0.25 M (c1/2

salt E 0.5 M1/2). Again we see that it is
very important to have the two decay modes present in the
theory in order to describe the electrolyte in an appropriate
manner. The dashed-dotted curve is calculated by using
ln gcore
� from eqn (59) rather than from eqn (60). By comparing

the full and the dashed-dotted curves we can see that for
concentrations below about 0.25 M (c1/2

salt E 0.5 M1/2), it it does
not matter which expression one uses, but for higher concen-
trations one must use the CS expression in order to obtain the
correct values for ln g�.

The osmotic coefficient f is defined from f = P/Pideal where P
is the (osmotic) pressure of the fluid and Pideal = kBTntot is the
ideal pressure. The excess pressure is Pex = P � Pideal and the
excess osmotic coefficient is given by fex = Pex/Pideal = f � 1
(see eqn (116) ff. in Appendix C). In the DH approximation
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we have

fex ¼ fcont þ fel ¼ 2pa3ntot
3

� kD2

24pntot
� kD
1þ kDa

ðDHÞ (66)

and in the MDH approximation32

fex ¼ fcont þ fel ¼ 2pa3ntot
3

� kD2

24pntot
� k
1þ ka

ðMDHÞ;

(67)

where the first term in each rhs is the contribution fcont = Pcont/
Pideal from the contact pressure Pcont at the hard core surfaces
of the ions, the second term is fel = Pel/Pideal and Pel is the
pressure from the Coulombic interactions in the electrolyte.

As shown in Appendix C, in the Simple MDE-DH approxi-
mation we have

fcont ¼ fcore þ pa3ntot
3
½bwelðaÞ�2; (68)

where fcore = 2pa3ntotg
core(a)/3, and

fel ¼ � kD2

24pntot

erk

Eeffr ð1þ kaÞ
þ erk0

E 0effr ð1þ k0aÞ

" #
: (69)

Since gcore(r) = ghs(r) we have fcore = fex,hs = fhs � 1, that is, the
excess osmotic coefficient for a pure hard sphere fluid of
density nhs = ntot. The use of the Verlet–Weis’ expression for
ghs implies that this part of the osmotic coefficient is given by

the Carnahan–Starling equation of state, which says that

fhs
CS ¼

1þ Zþ Z2 � Z3

ð1� ZÞ3 ðhard sphere fluidÞ;

so we have

fcore = fhs
CS|nhs=ntot � 1 (70)

in eqn (68). When the ion density goes to zero, this fcore goes to
fcont of the DH and MDH approximations in eqn (66) and (67).
The latter only include the core contribution to fcont.

The prediction for f obtained in the Simple MDE-DH
approximation is shown as the full curve in Fig. 8b and the
low concentration region is shown in Fig. 9b. It is seen that this
prediction is in very good agreement with the MC data for all
concentrations. Again, the curve nearly coincide with the
MC data.

The activity coefficient can alternatively be obtained from
the osmotic coefficient via the relationship

ln g� 

mex�
kBT

¼ fex þ 2

ð ffiffiffiffiffiffintot
p

0

d
ffiffiffiffiffiffiffiffiffi
ntot

0
p
 �fexðntot

0 Þffiffiffiffiffiffiffiffiffi
ntot

0
p ; (71)

which can be derived from the Gibbs–Duhem equation (the

selected integration variable
ffiffiffiffiffiffiffiffiffi
ntot

0
p

is suitable since fex(ntot
0) is

proportional to
ffiffiffiffiffiffiffiffiffi
ntot

0
p

for small densities). In the integrand,
fex(ntot

0) is evaluated for an electrolyte with total density ntot
0

that varies from 0 to the final value while keeping the mole
fraction xi constant, whereby one sets the ion density equal to
ni
0 = xintot

0 when calculating fex.

Fig. 8 (a) The logarithm of the mean activity coefficient g� and its electrostatic part gel
� plotted as functions of the square root of the salt concentration

csalt for 1 : 1 aqueous electrolyte solutions (a = 4.25 Å, T = 298 K, bR = 1.68). The full and dotted curves show ln g� from the Simple MDE-DH
approximation; the full curve is obtained directly and the dotted one is obtained via an integration of the osmotic coefficient. The symbols show the
results from MC simulations taken from ref. 77. The alternatingly dashed-minidashed curve shows ln gel

� = bUex/Ntot from the Simple MDE-DH
approximation (in this approximation mex,el

� = kBT ln gel
� is equal to Uex/Ntot). The blue triangles show bUex/Ntot from the same MC simulations (ln gel

� is in
general not equal to bUex/Ntot in simulations). The Kirkwood cross-over point (K) between monotonic and oscillatory decay is indicated by red arrows; for
the red portions of the curves the radial charge distribution is oscillatory. For reference, we also show the Debye–Hückel (DH) predictions for ln g� and
ln gel
� = bUex/Ntot as dashed curves. (b) The osmotic coefficient f plotted in the same manner. The full curve shows Simple MDE-DH, symbols MC and

dashes DH results.
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In approximate theories, there is no guarantee that ln g�
calculated from fex via eqn (71) is the same as ln g� obtained
earlier. In order to have consistency, one would need to
obtain the same value of each quantity irrespectively of how
it is calculated, but this is guaranteed only in exact theory.
A well-known fact is that the DH approximation shows very
poor consistency for ln g� and the same is true for the MDH
approximation.32 The use of eqn (71) is discussed in Appendix
C, where we see that it is a common feature of all linear
approximations (where ri is proportional qi) that the contribu-
tion fel in fex integrated according to eqn (71) does not give ln
gel
�. In the DH and MDH approximations, this is the cause of the

inconsistency for ln g�.
In the Simple MDE-DH approximation, the contribution fel

does not give ln gel
� via this integration for the same reason.

However, there is also an electrostatic contribution from the
square term in fcont given by eqn (68) that originates from the
square term in eqn (58). This contribution makes the situation
different. In Fig. 8a the dotted curve shows ln g� obtained via

the integration (71) from the osmotic coefficient in Fig. 8b. In
Fig. 9a the low concentration region is shown in more detail.
The dotted curve agrees well with the full curve, so we see that
this approximation shows a good thermodynamic consistency
in this respect. Considering that the theory is based on the very
simple Ansatz (43) and eqn (58), this is an accomplishment. In
fact, it is not uncommon for more advanced theories to lack
such a consistency.

For the system in Fig. 7 with large ions, the Complete
MDE-DH approximation given by eqn (54) and (55) is, as we
have seen, needed for the distribution functions because the
cross-terms in eqn (56) give non-negligible contributions.
However, when the thermodynamic quantities of this system
are calculated in this approximation, ln g� deviates only by
0.4% and f by 0.9% from the predictions by the Simple MDE-
DH approximation, so the latter can still be used as a good
approximation for these quantities. This is a further example
of the fact that thermodynamical quantities sometimes are
not overly sensitive to the details of the structural entities like
the distribution functions. The corresponding deviations for
the contributions ln gel

� and fel are 5.5% for both.††† If the
latter quantities are needed with a higher accuracy than this,
one has, of course, to use the Complete MDE-DH approxi-
mation. The formulas for such calculations are presented in
Appendix C, eqn (125)–(127).

5 Influence of terms with higher
powers of wij

As we have seen, the approximations in this paper are based on
the basic Ansatz (52)

gijðrÞ ¼ e�bwijðrÞ ¼ e
�b½wel

ij
ðrÞþwcore

ij
ðrÞ� ¼ e

�bwel
ij
ðrÞ
gcoreij ðrÞ;

where gcoreij ¼ e
�bwcore

ij is set equal to ghs and wel
ij is given by the

Ansatz (28) with two Yukawa function terms. The electrostatic
part of gij can be expressed as a Taylor expansion

e
�bwel

ij ¼ 1� bwel
ij þ
ðbwel

ij Þ2

2!
�
ðbwel

ij Þ3

3!
þ . . . (72)

For the RPM, we have wel
+�(r) = �wel(r) with wel given by eqn (54).

In the MDE-DH approximations we only keep terms up to and
including the quadratic one in the expansion (72). This leads to
eqn (55), which contains a square term that does not contribute
to r(r) so the latter is linear in wel

ij . In fact, for all numerical
results presented so far for the monovalent ions, the inclusion
of all nonlinear terms changes the results only marginally, so
the MDE-DH approximation used is fully adequate.

There remains, however, one issue to be considered. For
dilute electrolytes where the screening is low, wel

ij (r) has a long
range and the terms with higher powers than two have, in fact,
a qualitative effect on the screening behavior. In the limit of
infinite dilution we have the exact limiting law in eqn (5) for the

Fig. 9 The quantities (a) ln g� and (b) f for the same system as in Fig. 8,
but displayed in an expanded view for low concentrations. The full, dotted
and short-dashed curves and the open circles are the same as in Fig. 8. In
frame (a), the crosses show MC simulation data from ref. 72 and the long-
dashed curve shows the result of the MDH approximation. The dashed-
dotted curves in both frames are based on the Ansatz (43), like the full and
dotted curves, but they are calculated with the same hard core contribu-
tion for ln g� and f as the DH and MDH approximations. The red portions
of the curves indicate the region where the radial charge distribution is
oscillatory.

††† In absolute values, ln gel
� give 8% of ln g� and fel 3% of f in this system.
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screening parameter k, which takes the following form for
symmetric binary electrolytes‡‡‡

k2

kD2
� 1þ z4L2 lnðLÞ

6
when L! 0; (73)

where z = q/qe. This asymptotic result originates, in fact, from
the term in eqn (72) with wel

ij to the third power.§§§ Later we will
derive an approximate extension, eqn (81), of this limiting law.

As we have seen, since the logarithm in eqn (73) is negative
for small L, the second term in the rhs is negative there, so
k o kD for dilute symmetric electrolytes and there is accord-
ingly under-screening. However, the approximate formula (33)
for k in the MDE-DH approximation implies over-screening,
k 4 kD, and when kD - 0 it gives (k/kD)2 B 1 + (ka)2/2 B 1 +
(kDa)2/2. Therefore, this k is qualitatively incorrect for very
dilute solutions in this approximation. Other linear approxima-
tions for the electrostatic response in electrolytes, like MSA,
LMPB and GDH, share the same features; they all predict that
k Z kD and a limiting form proportional to (kDa)2.

As mentioned in the Introduction, it has been experimen-
tally observed that k o kD in dilute solutions of symmetric
electrolytes at high electrostatic coupling, so this phenomenon
is relevant to investigate. Since eqn (73) has general validity as
an exact limiting law, it is applicable also for low electrostatic
coupling so it is theoretically interesting to start with this
latter case.

In order to analyze these matters, let us investigate the
predictions of the full nonlinear expression for r(r) = qn[g++(r)
� g+�(r)] with gij(r) given by eqn (53) and (54), that is,

rðrÞ ¼ �qntot sinh
b qeff
� �2

4pEeffr e0
� e
�kr

r
þ

b q
0eff

� �2
4pE0effr e0

� e
�k0r

r

" #
gcoreij ðrÞ

(74)

for r Z a and zero otherwise. At high dilution, the contribution
from the second Yukawa term with decay parameter k0 can be

neglected because E0effr is very large there and gcore
ij (r) E 1, so

r(r) is given to a very good approximation by

rðrÞ ¼ �qntot sinh
b qeff
� �2

4pEeffr e0
� e
�kr

r

" #
for r � a: (75)

Approximations that are similar to eqn (75) have been investi-
gated earlier by Attard84 and Kjellander.32 Here the task is

to use this equation to evaluate the behavior of k and Eeffr in
eqn (74) for low electrolyte concentrations.

Using the exact eqn (51), we can write the coefficient in the
prefactor of the argument of sinh in eqn (75) as

b qeff
� �2

4pEeffr e0
¼ bq2

4pe0er

k2

kD2

� �2 er
Eeffr

¼ bRa
k
kD

� �4 er
Eeffr

:

The local electroneutrality condition and the Stillinger–Lovett
second moment condition can be expressed in the RPM asð

drrðrÞ ¼ �q

and

bqntot

ð
drr2rðrÞ ¼ �6ere0;

respectively. By inserting eqn (75) into these equations and
using ntota

3 = t2/(4pbR), we obtain the following set of equations

for the two unknowns k/kD and Eeffr =er for given dimensionless
system parameters t and bR

t2

bR

ð1
1

dRR2 sinh bR
k
kD

� �4 er
Eeffr

� e
� k

kD

h i
tR

R

0
BB@

1
CCA ¼ 1 (76)

and

t4

6bR

ð1
1

dRR4 sinh bR
k
kD

� �4 er
Eeffr

� e
� k

kD

h i
tR

R

0
BB@

1
CCA ¼ 1; (77)

where we have made the variable substitution R = r/a. This set

of equations can be solved numerically for k/kD and Eeffr =er. It
constitutes an approximate nonlinear theory that is valid for
dilute electrolytes. We will denote this approximation as the
Extended DHX (EDHX) approximation. It is the limiting form
for infinite dilution of the nonlinear (DHX) version of the MDE-
DH approximation, where r(r) is given by eqn (74) and g+�(r) =
e8bwel(r)gcore(r) with wel from eqn (54) [cf. the discussion in
Section 2 in connection to eqn (28) and (29)].

Before proceeding we note that the linearized version of this
approximation is equal to the self-consistent screening length,
SCSL, approximation by Attard, which was discussed in
Section 3. This follows because linearization of eqn (75) gives
[cf. eqn (35)]

rðrÞ ¼ �qntot
b qeff
� �2

4pEeffr e0
� e
�kr

r
¼ �k

2qeffer
4pEeffr

� e
�kr

r
for r � a

‡‡‡ Note that for any constant C 4 0 we have L2 ln(CL) = L2 ln(L) + L2 ln(C) B
L2 ln(L) when L - 0. This means that any factor C can be included in the
logarithm and the limiting law is still valid. For eqn (73) to be useful apart from at
high dilution, one must therefore at least add the next order asymptotic term,
which proportional to L2, that is, proportional to the ion concentration. That
term, which depends on the ionic characteristics like the ionic size, specifies an
appropriate C. No exact simple expression for that term is, however, presently
known, but we will later derive an approximate expression for it, eqn (81). We may
note that z4L2 ln(L) = (bRt)2ln(bRt/z2), which means that for two systems with
different ionic valencies but with the same value of bR, eqn (73) does not give the
same asymptote as function of t except in the limit of infinite dilution. This
peculiarity occurs despite that the statistical mechanics in the RPM is determined
solely by bR and t and it can easily be eliminated by selecting C = z2. Eqn (73) is,
however, derived for use in the infinite dilution limit only, where the value of C

does not matter. A better selection of C is done in eqn (81), which is valid for a
larger range of concentrations; see also footnote ¶¶¶.
§§§ The term �(bwel

ij )3/3! corresponds to the low concentration limit of the term
(hij

#)3/3! in eqn (103) of ref. 101 in the derivation of the exact limiting law for
k2/kD

2.
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and the application of the local electroneutrality and Stillinger–
Lovett conditions yields (k/kD)2 given by eqn (38), which is the
SCSL approximation. Furthermore, this linearized expression

for r(r) yields Eeffr =er given by eqn (36). Since the EDHX and
SCSL approximations contain only one decay mode, they can be
useful only for dilute electrolytes.

The numerical solution of eqn (76) and (77) of the EDHX
approximation gives the following results. Fig. 10 shows the

ratios k2/kD
2 and Eeffr =er as functions of t = kDa for a monovalent

electrolyte with a = 4.6 Å in aqueous solution at room tempera-
ture, which corresponds to bR = 1.55 (recall that kDa is propor-
tional to the square root of concentration). The predictions of
the EDHX approximation are compared in the figure with
results from MC simulations, the HNC, MDE-DH and SCSL
approximations. In the insert to Fig. 10a, which shows a
magnified view of the dilute region, we see that the EDHX
approximation indeed gives k o kD for the dilute electrolyte in
agreement with the exact asymptotic formula and the HNC
approximation. However, the slight dip of k2/kD

2 below 1 occurs
for small ion densities where the deviation of k from kD is
negligible in practice. Despite that the curves for MDE-DH and
SCSL approximations in the insert show the qualitatively incorrect
behavior with k 4 kD, it only on this greatly magnified scale that
this can be seen. Likewise, in the insert to Fig. 10b we can see that

Eeffr 4 er for dilute solutions as shown by the HNC and EDHX
approximations, while the MDE-DH and SCSL approximations

give Eeffr o er there, which is incorrect. Also in this case, the
incorrect behavior occurs for low densities where the deviation

of Eeffr from er is negligible for most practical purposes.
In the main frames of Fig. 10 we see, as before, that the

MDE-DH approximation gives a very good over-all account of

the properties of the monovalent electrolyte. Furthermore, we
can see that the EDHX and SCSL approximations do not work
for higher concentrations, because, as pointed out earlier, they
only contain one decay mode. In the figure one can clearly see
that it is very important to include two decay modes with
different decay parameters k and k0, as in the MDE-DH
approximation, in order to get agreement with the accurate
calculations outside the dilute region.

The fact that ko kD for low concentrations, as shown by the
asymptotic formula eqn (73), is a general feature for symmetric
electrolytes. Due to the factor z4 in this equation, the under-
screening will become much more pronounced when the
valency of the ions is increased. This has been verified for
divalent (2 : 2) electrolytes in ref. 18 and 22 by HNC and MC
calculations; these HNC and MC results are shown in Fig. 11
together with the corresponding result from the EDHX approxi-
mation. As seen in Fig. 11a, we have k o kD for the divalent
case in a wide concentration interval and the negative deviation
of k2/kD

2 from 1 reaches about 30% (shown by the MC data)
before it rises again. This highly significant difference from the
monovalent case is solely due to the difference in ionic charge
by a factor of two; everything else is the same. In this case the
HNC approximation (dashed curve) does not provide accurate
values of k, except for low concentrations. As pointed out
earlier, the EDHX approximation is applicable only for suffi-
ciently dilute electrolytes, but for higher concentrations it
nevertheless has the correct qualitative behavior in a part of
the concentration interval shown.

The results for the effective dielectric permittivity Eeffr for
the divalent electrolytes is shown in Fig. 11b. Again, the HNC
approximation provides accurate results only in the dilute region.

In contrast to the monovalent case, we see that Eeffr 4 er in the

Fig. 10 The ratios (a) k2/kD
2 and (b) Eeffr =er plotted as functions of kDa for monovalent electrolytes in aqueous solution at room temperature (bR = 1.55).

The respective insert shows the same plot in an expanded view for low concentrations (low kDa). The dot-dashed curves are the result from the EDHX
approximation, eqn (76) and (77), and the dotted curves are from the SCSL approximation; both are drawn in magenta color. The full curves are the Simple
MDE-DH results, the dashed curves and crosses show the results from HNC calculations (the crosses occur only in b), and open circles are from MC
simulations. The HNC and MC data are taken from ref. 18 and 22.
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entire interval shown. The under-screening is accordingly accom-
panied by an augmentation of the effective dielectric permittivity
of the electrolyte caused by the strongly nonlinear ion–ion

correlations. For 1 : 1 electrolytes we have Eeffr 4 er only in a small
part of the very dilute region in the insert to Fig. 10b. Further-

more, we saw in Fig. 3 for the latter case, that Eeffr =er quickly
approaches er from below when kDa is decreased from
the Kirkwood cross-over point and then stays nearly constant

Eeffr � er when kDa - 0. In contrast, for the 2 : 2 case in Fig. 11,

Eeffr approaches er from above in a slow manner when kDa - 0.
Incidentally, we may note that for high values of kDa (outside the
figure) there is a Kirkwood cross-over point at kDa E 1.7 for the

2 : 2 case with a = 4.6 Å and Eeffr decreases quickly to zero when
that point is approached, see ref. 18 and 22.

The nonlinear electrostatic effects in ion–ion correlations
are important for any system where the electrostatic coupling
is appreciably stronger than the monovalent case we have
investigated, that is, for lower temperatures, lower er or higher
valencies. This means that terms in higher powers of wel

ij

than the square one in eqn (72) cannot be neglected and the
MDE-DH approximation is inadequate in these cases.

From the results from the EDHX approximation we see that
apart from dilute systems it is clearly insufficient to have only
one decay mode. We need to include at least two decay modes
with different decay parameters k and k0 as shown in eqn (74)
and the corresponding expression for g+�(r) mentioned earlier.

Then we have at least four parameters to determine k, k0, E0effr

and Eeffr . For the monovalent case we have the fortunate
circumstance that k and k0 can be quite accurately be deter-

mined by solving eqn (33) and that E0effr and Eeffr then can be
determined from the application of the local electroneutrality

condition and the Stillinger–Lovett second moment condition.
This is not the case in general so one will need to apply further
conditions that allow four parameters or more to be deter-
mined. This will not be pursued in the current paper.

6 The various types of deviations of j
from jD for symmetric electrolytes

The deviations of k from kD can be analyzed in terms of the
effective charges qeff since we have the exact relationship

eqn (19), k2 ¼ b
P
i

niqiq
eff
i =ðere0Þ, which can be written as

[eqn (51)]

k
kD

� �2
¼ qeff

q
(78)

for the RPM. For the monovalent electrolytes in aqueous
solution we have seen that k 4 kD for most concentrations,
so the decay length 1/k is shorter than the Debye length 1/kD

and we have over-screening. The relationship to the effective
charge given in eqn (78) implies that qeff is larger than the
actual (bare) ionic charge q. This is also apparent from our
approximate formula (31) for qeff.

The fact that qeff 4 q for most concentrations in the
monovalent case is simply a geometrical effect of the finite
ion size. When the ion diameter a is increased from some small
value, the surrounding ion cloud is pushed further out, as
apparent already in the DH approximation, where eqn (11)
for r Z a can be written as

riðrÞ ¼ �
kD2qi

4pð1þ kDaÞ
� e
�kDðr�aÞ

r
ðDHÞ

Fig. 11 Frames (a) and (b) show the same kind of plot as Fig. 10a and b, but for divalent (2 : 2) electrolytes in aqueous solution at room temperature. The
symbols show the results from MC simulations, the dashed curves from HNC calculations, the dot-dashed curves from the EDHX approximation
that is valid only for low concentrations, and the red dotted curves show the asymptotes given by eqn (81) and (82), respectively. The ions have diameter
a = 4.6 Å and bR = 6.22 except for the HNC results in frame (b), where a = 4.2 Å (short dashes) and 5.0 Å (long dashes); the corresponding HNC curve
of a = 4.6 Å would lie between these curves. The HNC and MC data are taken from ref. 18 and 22.
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with the factor (r � a) in the exponent. The range of the cloud is
extended due to this factor when a is increased. This makes the
electrostatic potential larger far from the ion, as apparent in
eqn (10) for the DH case, so the ion appears to have a larger
charge, that is, a larger qeff. In the DH approximation this
applies only for the central ion, but in the general case this
applies to all ions because all of them are treated in the same
manner, so if qeff 4 q we have k 4 kD.

For cases like divalent (2 : 2) electrolytes where k o kD, there
is, instead under-screening, so the decay length 1/k is longer
than the Debye length and qeff o q. This lowering of qeff is
caused by strong anion–cation correlations; each ion strongly
attracts ions of opposite charge causing large values of g+�(r)
near contact, r = a. The large amount of opposite charge near
the ion leads to a reduction of the potential for large r. The ion
thus appear to have a smaller charge, that is, a smaller qeff.
The strong (nonlinear) anion–cation correlational attractions
hence gives qeff o q and k o kD. Nothing more than strong
anion–cation correlations are needed to give rise to the negative
deviations of k from kD in dilute solutions. This is apparent
from the EDHX approximation, which shows this behavior, and
when the electrostatic coupling is large, this gives, as we have
seen, a large negative deviation.

Decay lengths 1/k that are much longer than the the Debye
length 1/kD have been experimentally obtained in surface force
measurements of divalent (2 : 2) and trivalent (3 : 3) electrolytes
in dilute aqueous solutions104 and monovalent electrolytes
in dilute isopropanol solutions105 by Trefalt and coworkers.
Isopropanol has dielectric constant er = 17.9, so the electrostatic
coupling for monovalent ions in isopropanol corresponds
approximately to divalent ions in water. Their experimental
results are shown in Fig. 12 together with theoretical data that
will be discussed later.

They analyzed their results in terms of ion pairing, where
anion–cation pairs are in equilibrium with dissociated ions, as
described by a simple mass action law with equilibrium constant
K, where the ionic activity coefficients are set to one. By only
including the dissociated (free) ions with density nfree

i in the DH
expression (1) for the decay parameter, they obtained an effective k,

defined from ðkeffD Þ2 ¼ b
P
i

nfreei qi
2=ðere0Þ, which can be written

keffD
kD

� �2
¼ nfree

n
(79)

for symmetric electrolytes. The paired ions thereby do not
contribute since the pair has zero net charge. This expression
was successfully fitted by Trefalt and coworkers to the measured
values of k by selecting reasonable values for K. This approach
leads to the asymptotic formula104

keffD

kD

� �2
� 1þ a1L2 ¼ 1þ a2ðkDaÞ2;

when L and kDa! 0;

(80)

where a1 is a negative constant that is proportional to K and
a2 = a1bR

2/z4. This does not agree with the exact formula (73),

but can nevertheless be a fair approximation within a finite
concentration interval. Eqn (80) says that the deviation
(keff

D /kD)2 from 1 is proportional to the ion concentration in
the limit of infinite dilution. As we have seen, this is typical for
approximations where nonlinear ion–ion correlations are not
correctly included.

Ion pairing in simple electrolytes is an example of strong
anion–cation correlations, where the contact value of g+�(r) is
very large. The pairing is a transient state for the ions involved
in the pairing. Fundamentally, all ions should be treated on the
same basis irrespectively if they are paired or not, but as an
approximation one can model the system such that paired ions
are treated as a separate species as done in the pairing theories
mentioned in the Introduction. The effective charge qeff above
for symmetric electrolytes, thereby correspond to an average
over free ions and ions that are members of some pair,

qeff ¼
nfreeqefffree þ ðn� nfreeÞqeffpaired

n
;

where qeff
paired = 0 in the RPM. Since the paired species does not

contribute to k2 given by eqn (19), we obtain

k
kD

� �2
¼ nfree

n
� q

eff
free

q
:

Fig. 12 The ratio k/kD as function of concentration on a logarithmic scale
for monovalent (1 : 1), divalent (2 : 2) and trivalent (3 : 3) electrolytes in dilute
aqueous solution and monovalent (1 : 1) electrolytes in dilute isopropanol
solution. Experimental data from ref. 104 and 105 are shown as symbols
and predictions of the asymptotic formula (81) for low concentrations are
shown as curves. The values of the ionic diameter a, which is the single
fitting parameter for the asymptote, are shown in the rectangles to the
right in the plot, where also the ionic species are displayed.
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In the approach by Trefalt and coworkers, they have accordingly
tacitly assumed that the effective charge of the free ions is equal
to the bare ionic charge, which gives eqn (79) without the factor
qeff

free/q. This can be a reasonable approximation for a system
with high electrostatic coupling provided nfree { n. However,
this assumption, together with their additional assumption
that the ionic activity coefficients are equal to one, set a limit
on the applicability of their approach. The equilibrium condi-
tion used for paired and free ions thereby constitutes a simple
model for the effects of ion–ion correlations. The reason why
the asymptotic expression (80) does not agree with the exact
formula (73) is the approximation qeff

free = q.
Even if an ion pair is a transient state caused by strong

anion–cation correlations rather than a kind of separate
species, the two ions will act like a dipole in the interactions
with the other ions including other transient pairs. There may
also be other transient aggregates with more than two ions.
Pairs and other transient aggregetes and their effects on the
decay lengths and the effective dielectric permittivities of the
electrolyte can be handled by the exact DIT formalism.94,95 It is,
for example, found that the strong anion–cation attractive
correlations at short separations (transient pairs corresponding
to high values of g+�(r) near contact) have qualitatively the same
effect on the dielectric properties of the electrolyte as an actual

pair. As we saw in Fig. 11, we have Eeffr 4 er for 2 : 2 electrolytes
of low to moderate concentrations, so there is an augmented
dielectric permittivity of the electrolyte as expected from such a
mechanism.

In order to investigate the dilute region further, let us extract

the leading asymptotic terms for k2/kD
2 and Eeffr =er in the limit

t = kDa - 0 from eqn (76) and (77) of the EDHX approximation.
We will thereby include terms up to order t2, that is, up to
terms that are proportional to concentration. Since this
approximation is designed to give accurate results for dilute
electrolytes, the derived asymptotic formulas should be correct
in the limit of zero concentration. As shown in Appendix D
we obtain

k
kD

� �2
� 1þ bR

2

6
t2 ln t

þ 1

2
þ bR

2D
6
� bR

2sðbR2Þ
� �

t2 when t ¼ kDa! 0

(81)

and

Eeffr

er

" #�1
� 1� bR

2

324
t2 when t ¼ kDa! 0; (82)

where the constant D ¼ CEu þ ln 3þ 1

54
� 1:6944, CEu � 0:5772

is Euler’s constant and s(x) = x/(5!�2) + x2/(7!�4) + . . . is defined in
eqn (136) of Appendix D.

In the rhs of eqn (81), the second term, which is negative for
small kDa, dominates when kDa - 0 due to the logarithm and
decays to zero in this limit. Eqn (81) agrees with the exact

limiting law (73) since bRt = z2L and ln t = ln(L) + ln(z2/bR) B
ln(L) when the concentration and hence L and t go to zero.¶¶¶

For divalent electrolytes in aqueous solution, the predictions
of the asymptotic formulas (81) and (82) are plotted as red
dotted curves in Fig. 11a and b, respectively. Despite that these
formulas were derived from the EDHX approximation in the
limit zero concentrations, each asymptote continues not far
from the simulated results in a quite wide concentration
interval and give therefore surprisingly reasonable estimates
of the latter. This means that the asymptotes can be useful also
outside the region of very high dilution, at least for the purpose
of approximate assessments of ion–ion correlation effects in

k2/kD
2 and Eeffr =er at high electrostatic coupling where the MDE-

DH approximation is inadequate.
As a test of such an assessment, the asymptote from formula

(81) has been compared with the experimental data by Trefalt
an coworkers104,105 mentioned earlier.888 Data are available for
CsCl, NaCl, CuSO4, MgSO4 and LaFe(CN)6 solutions in water
and tetrabutylammonium bromide (TBAB) and LiCl solutions
in isopropanol. Note that for a given T, er and valency z of the
symmetric electrolyte, the predicted asymptote as function of
concentration contains only one parameter, namely the ionic
diameter a. In the asymptotic formula, the diameter will
correspond to an average value since the anions and cations
in the experiments have somewhat different sizes.

The results of a comparison with the experimental data with
a as the single fitting parameter is presented in Fig. 12, whereby
all cases apart from monovalent ions in water (CsCl and NaCl)
were fitted; the experimental uncertainties for the latter were
too large to make a fit meaningful. For the other cases, the fits
to the low-concentration part of the experimental data are quite
good overall considering the experimental uncertainties. The
values of the ionic diameters obtained are reasonable, but as we
will see below, they are probably somewhat too large. Note that
ionic sizes used in primitive model calculations fitted to
experimental data are usually different from bare diameters
and often include effects of hydration, in particular for multi-
valent ions. As regards the LiCl solutions in isopropanol there
are to few experimental data points available in order to say
something definite about the fit in this case. The first data
point to the left in the plot for this system and for TBAB in
isopropanol are outliers, which demonstrate the experimental
difficulties in this kind of measurements.

We can conclude that strong anion–cation correlations
constitute the explanation for the experimentally observed
over-screening in dilute solutions at room temperature when
z is high or er is low, whereby the decay lengths are considerably

¶¶¶ Note that 1 + bR
2t2 ln(t)/6 = 1 + z4L2 ln(kDa)/6 contains the hard core diameter

a and is not a universal limiting law for k2/kD
2 valid for all symmetric electrolytes

because it presumes that the ions are hard spheres. The universal law (73) instead
contains the factor ln(kDcB).
888 A favorable comparison between the experimental data and the exact
asymptotic expression (73) was done in ref. 104 for the aqueous solutions. Such
a comparison could not be done for the isopropanol solutions for reasons
outlined in footnote ‡‡‡, but eqn (81) can be used for both kinds of solutions
since it is expressed solely in terms of t and bR.
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longer than the Debye length. The same is true for thin ionic
plasmas at moderately high temperatures. There is no need to
assume actual ion pairing, although such pairing can be used
as a simple way to model such correlations as mentioned in the
Introduction and discussed above. The asymptotic formula (81)
can accordingly be used as a simple means to approximately
assess nonlinear ion–ion correlations effects in dilute solu-
tions. The fact that the asymptote nearly quantitatively
describes the variation of the decay length with electrostatic
coupling strengths (varying z, er or T) is thereby a great
advantage.

Finally, it is of interest to investigate the asymptotes from
eqn (81) and (82) in more detail in the dilute region. The ratios

k2/kD
2 and Eeffr =er for divalent and monovalent symmetric

electrolytes in water are plotted in Fig. 13 as functions of kDa
for low values of the latter. Fig. 13a shows a magnified view of
Fig. 11a in the dilute region of the 2 : 2 case and we see that the
asymptote joins the other curves when kDa - 0 as it should.
It thereby joins the HNC curve somewhat faster than the curve
from the EDHX approximation in this limit.

Fig. 13b shows how the ion diameter affects both the HNC
curves and the asymptotes when a varies between 4.2 to 5.0 Å
for 2 : 2 electrolytes. The middle case, a = 4.6 Å, is the same as in
frame (a) of the figure. We can see that the asymptote for a
certain a value, say a = 5.0 Å, lies close to the HNC curve for
a slightly smaller a value, say 4.6 Å, in a whole kDa interval.

This implies that the fits made in Fig. 12 for the asymptotes
most likely give somewhat too large values of a.

In Fig. 13c it is seen that the asymptote for the monovalent
case accurately describes the slight dip of k2/kD

2 below 1 for
small kDa. When kDa is increased, the asymptote approaches
and then crosses the full curve, that is, the decay parameter
from the MDE-DH approximation, eqn (33), which goes like like
k2/kD

2 B 1 + t2/2 for small t. We may note that eqn (81)
contains a t2/2 contribution, namely from the term 1/2 in the
coefficient of the t2 term.

The ratio Eeffr =er for both divalent and monovalent electro-
lytes is plotted in Fig. 13d. For the 2 : 2 case the asymptote lies
quite closely to the the accurate results in a wide interval, as we
saw previously in Fig. 11. The asymptote in the 1 : 1 case joins

the accurate curves from above, Eeffr =er 4 1, in the dilute region,
where these latter curves lie slightly above 1, as seen more
clearly in the inset to Fig. 10b.

7 Summary and concluding remarks

This work is based on the following observations. In electrolytes
there are several decay modes for the electrostatic interactions,
each having a decay length and a magnitude. In the DH and PB
approximations there is, however, only one mode that gives a
screened Coulomb potential equal to fCoul*(r) = e�kDr/(4pe0err)

Fig. 13 The ratios k2/kD
2 and Eeffr =er as functions of kDa for divalent (2 : 2) and monovalent (1 : 1) electrolytes in dilute aqueous solution compared with

the asymptotes (red curves). (a) The same curves as in Fig. 11a for the divalent case shown the dilute region at large magnification. The red dotted curve is
the asymptote for k2/kD

2 from eqn (81). The ion diameter is a = 4.6 Å and bR = 6.22. (b) An illustration of the ion size dependence of k2/kD
2 for divalent

electrolytes; from bottom to top a = 4.2, 4.6 and 5.0 Å. Black curves are from HNC calculations and red curves from the asymptotic formula (81). (c) The
red dotted curve shows the asymptote for k2/kD

2 from eqn (81) for monovalent electrolytes with bR = 1.55. The full, dashed-dotted and dashed curves

(MDE-DH, EDHX and HNC results respectively) are the same as the corresponding curves in Fig. 10a. (d) Eeffr =er for divalent electrolytes (black curves and

red dots, bR = 6.22) and monovalent electrolytes (blue curves and red mini-dashes, bR = 1.55) in aqueous solution. The red curves show Eeffr =er from the

asymptotic expression (82). The curves for the divalent case are the same as in Fig. 11b shown the dilute region at large magnification and the blue curves
are the same as the corresponding ones in Fig. 10b. The HNC and MC data are taken from ref. 18 and 22.
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with a decay length equal to the Debye length 1/kD and
magnitude proportional to 1/er. The mean electrostatic
potential ci(r) due to an ion of species i is in the DH approxi-
mation obtained for r 4 a by multiplying fCoul*(r) by the
effective charge qeff

i given by eqn (12), so we have ci(r) =
qeff

i e�kDr/(4pe0err). In the PB approximation ci(r) decays for large
r as the rhs of this expression.

A correct treatment of electrolytes provides a screened
Coulomb potential fCoul*(r) with multiple decay modes, where
the modes give contributions like (cf. eqn (23))

contributions in 4pe0fCoul
�ðrÞ: e

�kr

Eeffr r
and

e�k
0r

E0effr r
: (83)

with magnitudes inversely proportional to Eeffr and E 0effr ,
respectively, which are effective dielectric permittivities of the
electrolyte for the respective mode. They depend on the dielec-
tric response of the electrolyte. We have here only included the
two main modes with the largest decay lengths. The mean
electrostatic potential ci(r) has the following principal contri-
butions from these modes (cf. eqn (25))

contributions in 4pe0ciðrÞ:
qeffi e�kr

Eeffr r
and

q
0eff
i e�k

0r

E 0effr r
: (84)

where qeff
i and q

0eff
i are the effective charges of the i-ion, whereby

each mode has its own value of this charge. The decay

parameter k can be expressed in terms of qeff
j as k2 ¼

b
P
j

njqjq
eff
j =ðere0Þ [eqn (4) and (24)] and k0 is given by the

analogous expression with q
0eff
i . The electrostatic part of the

potential of mean force wij(r) for species i and j has contribu-
tions with yet another factor of effective charge, namely
(cf. eqn (21))

contributions in 4pe0wel
ij ðrÞ:

qeffi qeffj e�kr

Eeffr r
and

q
0eff
i q

0eff
j e�k

0r

E0effr r
: (85)

For elevated ionic densities these functions turn into exponen-
tially damped oscillatory ones, whereby k and k0 are complex-
valued, k = k< + ikI and k0 = k< � ikI. The contribution in
eqn (85) from the second mode then is the complex conjugate
of that from the first. The sum of the two modes then decays
like e�k<rcos(kIr + a), where a is a phase.

In the Multiple-Decay Extended Debye–Hückel, MDE-DH,
approximation developed in the current work, one assumes as
an approximation that solely the first two decay modes con-
tribute to the electrostatics in electrolytes, so wel

ij is given by the
sum of the contributions in eqn (85). Furthermore one takes
wij(r) = wel

ij (r) + wcore
ij (r), where wcore

ij is the contribution from the
ionic core–core correlations that is approximated by whs from a
hard sphere fluid. The term wcore

ij expresses a further decay
mode for the interactions. We have

gijðrÞ¼ e
�b½wel

ij
ðrÞþwcore

ij
ðrÞ� ¼ ½1�bwel

ij ðrÞþ ½bwel
ij ðrÞ�2=2þ . . .�e�bw

core
ij
ðrÞ

(86)

and only the first few terms of the expansion in bwel
ij are used as

a further approximation, so the MDE-DH approximation is
limited to sufficiently weak electrostatic coupling where bwel

ij

is small. The decay parameters k and k0 used are solutions to
the equation k2/kD

2 = eka/(1 + ak) [see eqn (33)] originally
derived in the LT and MDH approximations.32,33 These solu-
tions are presented in Fig. 2. The effective charges are obtained
by inserting the respective k value into qeff

i = qie
ka/(1 + ka)

[eqn (31)]. By applying the necessary local electroneutrality
and the Stillinger–Lovett second moment conditions, explicit

expressions for Eeffr and E 0effr are derived and the resulting
theory does not contain any fitting parameters.

For symmetric electrolytes with ions of diameter a, which is
the main case treated in the current work, ci(r) is proportional
to the ionic charge qi, so the MDE-DH theory is a linearized
approximation for the electrostatic response like, for example,
the MSA, GMSA, LMPB, MDH and GDH theories. In contrast to
these latter approximations, the MDE-DH theory contains the
square term [bwel

ij (r)]2/2, which contributes to the pair distribu-
tions but not to ci (see Section 4.2). This term guarantees that
gij(r) Z 0 for all r and leads to a good thermodynamic
consistency.

The approximation comes in two versions, the Simple
and the Complete MDE-DH approximations (the differences
between the two are explained in Section 4.2, eqn (55) ff.). The
simple version is applicable when wcore

ij is not too large, for
example systems with small ions. Its results are in very good
agreement with simulations and Hypernetted Chain calcula-
tions for all concentrations investigated, including high ones,
provided the electrostatic coupling is not too high for instance
monovalent electrolytes in water at room temperature. All
numerical results in Section 4 apart from Fig. 7, where the ions
are large, are calculated in this approximation. Furthermore, in
the Simple MDE-DH approximation, there are simple analytical

expressions for Eeffr and E 0effr [eqn (46) and (47)] and for the
thermodynamic properties: the activity coefficient g� is given by
ln g� = ln gel

� + ln gcore
� with ln gel

� from eqn (64) and ln gcore
� from

eqn (60) and the osmotic coefficient f = 1 + fel + fcont with fel

from eqn (69) and fcont from eqn (68) [see also eqn (124)].
These expressions are valid also for complex-valued k and k0,
but they are reformulated in Appendix C into equivalent
formulas that are more easy to use for that case.

The Complete MDE-DH approximation is used to obtain the
results in Fig. 7, which shows the pair distribution functions for
a dense system with large monovalent ions. These results are in
excellent agreement with simulations, including quite intricate
details. It is, however, sufficient to use the formulas of Simple
MDE-DH approximation to calculate the thermodynamic quan-
tities for this case; the difference between the two versions of
the approximation for these quantities is less than 1%. Thus, in
practical applications, the simple version of the approximation
is in many cases sufficient unless structural entities are
required. This is agreement with the observation discussed in
the Introduction that it is simpler to calculate thermodynami-
cal entities than structural ones.
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In the MDE-DH approximations and the other approxima-
tions with linearized electrostatic response mentioned above,
we have k Z kD for all concentration where k is real, while the
exact limiting law (5) says that there is under-screening, ko kD,
for sufficiently dilute solutions of symmetric electrolytes.
This under-screening is caused by nonlinear electrostatic
response of the electrolyte that is not included in the MDE-DH
approximations. In order to investigate this matter, the non-
linear approximation given by the first equality in eqn (86) is
used in the low density limit, where contributions from wcore

ij and
the second decay mode in wel

ij go to zero and therefore can be
neglected. The approximation where these contributions to wij

are not included is called the Extended DHX, EDHX, approxi-
mation since it is an extension of the exponential Debye–Hückel,
DHX, approximation (cf. Section 2).

The EDHX approximation is used to calculate k and Eeffr for
symmetric electrolytes and it is found that k o kD for suffi-
ciently dilute solutions in agreement with the exact limiting

law. Furthermore, it is found that Eeffr 4 er in the dilute region,

while the linear approximations predict that Eeffr o er. The
EDHX results are thereby in agreement with the HNC approxi-
mation, which is considerably more complex. In the case of
monovalent electrolytes in water at room temperature, it is
found that this qualitatively incorrect behavior of the linear
approximations has negligible consequences in practice
because they occur for so low concentrations that the devia-

tions of k/kD and Eeffr =er from 1 are miniscule.
For multivalent ions in water and monovalent ions in

solvents with considerable lower er, the situation is completely
different and under-screening is very substantial for dilute
solutions of symmetric electrolytes, as found by MC simulations,

HNC calculations and experiments. Likewise, Eeffr is considerably
larger than er for the dilute solutions due to the nonlinear ion–
ion correlation effects. An approximate limiting law (81) for
symmetric electrolytes that extends the exact law by including
higher order terms is derived in the EDHX approximation and a

corresponding law for Eeffr =er, eqn (82), is also derived. These

approximate laws contain the ion size dependence of k and Eeffr
for dilute solutions. Despite that they are strictly valid only for
very low concentrations, they can be used as a reasonable
approximation in a wider concentration interval to describe
the effect of nonlinear ion–ion correlation effects in dilute
electrolytes. The approximate limiting law for k/kD is used to
analyze the experimental results by Trefalt and coworkers104,105

for this ratio in aqueous multivalent electrolyte solutions and
monovalent electrolytes dissolved in isopropanol. The law is
successfully fitted to the experimental results for low concentra-
tions whereby the ion diameter is the sole fitting parameter. This
gives important insights into the reasons behind the deviations
of k from kD and mechanisms of the latter is discussed in some
detail Section 6.

In order to give a further perspective on the decay modes
and the associated entities in electrolytes, it is worthwhile to
mention the following facts regarding more sophisticated
models for electrolytes than the primitive model. Recall that

for a classical plasma of spherical ions, the decay parameters k,
k0 etc. satisfy the exact eqn (24) with er = 1. For an electrolyte
solution with molecular solvent, that is, in presence discrete
polar molecules, we still have er = 1 because the particles are in
vacuum, but eqn (24) is not valid as it stands because it is, in
fact, restricted to systems where all particles are spherically
symmetric. The solvent molecules and any ion species that is
not spherical give rise to additional terms in this equation that
depend on the orientational degrees of freedom of these
particles. The equation thereby is replaced by the following
exact equation98

k2 ¼ b
e0

X
j2sphercial

njqjq
eff
j ðkÞ

þ b
e0

X
j2non spherical

nj QjðkÞQeff
j ðkÞ

D E
orientations

;

(87)

where the first sum is over all spherical species and the second
sum over the nonspherical ones. Here, Qj is a particle-
orientation dependent entity that originates from the internal
charge distribution of a j-particle and Qeff

j is also orientation
dependent but originates from both the particle and its sur-
rounding distribution of charge. The entity Qeff

j plays a similar
role as a prefactor for ci for a nonspherical particle as qeff

j does
for a spherical one (for definitions and further details see
ref. 98). The average h�i in eqn (87) is taken over all orientations
of the j-particle. The last term contains, for example, effects of
solvent-solvent correlations (both orientational and spatial
ones). The solvent-ion correlations also contribute to this term
and such correlations also influence the values of qeff

j in the
presence of solvent because oriented solvent molecules around
an ion affects the charge distribution there.

Eqn (87) has a rather complicated form. It is, however,
mathematically equivalent to a much simpler, exact equation95,98

k2 ¼ b
Er�ðkÞe0

X
j

njqjqj
�; (88)

where qj* is a renormalized ionic charge**** that is different from
qeff

j . Er�ðkÞ, called the dielectric factor, is a kind of renormalized

dielectric permittivity, which is not the same as Eeffr ðkÞ. Both

Er� and Eeffr can be defined in terms of static dielectric response
function of the electrolyte.95,98 Note that Er�ðkÞ is a function of k,
while qj* is independent of k and has the same value for all
decay modes. The decay parameters k, k0 etc. are solutions to
this equation and, of course, also solutions to the equivalent
eqn (87).†††† Er�ðkÞ contains the major effects of solvent-
solvent, solvent-ion and ion–ion correlations that are important
for the decay mode with decay parameter k. The value of qj* is, of
course, also affected by these correlations, but since it does not
depend on k, it is not specific for any mode. The general eqn (88)

**** The notation used here differs from that in ref. 22, 23, 100 and 101, where
qj* denotes the effective charge qeff

j of the present work.
†††† Both eqn (87) and (88) are mathematically equivalent to the equation
~e(ik) = 0, cf. footnote ‡‡ in Section 2.
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has a form that is very similar to the definition (1) of the Debye
parameter.

Thus there are two different entities Er�ðkÞ and Eeffr ðkÞ that
take the role that er has in the PB and DH approximations.

Er� appears in the eqn (88) for k and Eeffr appears, as we have
seen, in the magnitude of, for example, the screened Coulomb
potential fCoul*, the mean electrostatic potential cj and the
charge density rj. Each mode has its own values for these
entities.

In some PB, DH and other primitive model approaches one
replaces er by an ion-concentration dependent entity eelectrolyte

r ,
which is obtained from macroscopic measurements of
the dynamic dielectric response of bulk electrolytes at finite
but small frequency, whereby a zero frequency macroscopic
response is extracted. This entity contains contributions from
the orientational and translational degrees of freedom of the
solvent molecules and from ion-solvent correlations that are
not included in the primitive model. It is, however, not the same

as Er�ðkÞ or Eeffr ðkÞ. When some mode has a small k it may,
however, be a reasonable approximation to set Er�ðkÞ and

Eeffr ðkÞ equal to eelectrolyte
r for that particular mode, but not for

the other modes. When the ion concentration goes to zero,

Er� ! er and Eeffr ! er for the mode with longest decay length,
which goes to the Debye length in this limit.

For a system with spherical particles, eqn (88) is mathe-
matically equivalent to eqn (24). In the primitive model both

Er�ðkÞ and Eeffr ðkÞ solely contains contributions from the ionic
degrees of freedom.

Conflicts of interest

There are no conflicts to declare.

Appendices

A Pair distribution functions for RPM,
theoretical considerations

In this Appendix we will fill in the details regarding the pair
distribution functions for RPM electrolytes in the MDE-DH
approximation. As customary, we define the functions

gSðrÞ ¼
1

2
gþþðrÞ þ gþ�ðrÞ½ � ¼ 1

2
g��ðrÞ þ gþ�ðrÞ½ �

gDðrÞ ¼
1

2
gþþðrÞ � gþ�ðrÞ½ � ¼ 1

2
g��ðrÞ � gþ�ðrÞ½ �;

(89)

whereby g+�(r) = gS(r)�gD(r). Eqn (53) implies that gS(r) =
cosh[bwel(r)]gcore(r) and gD(r) = � sinh[bwel(r)]gcore(r), so by
inserting eqn (54) we have

gSðrÞ ¼ cosh
b qeff
� �2

4pEeffr e0
� e
�kr

r
þ

b q
0eff

� �2
4pE 0effr e0

� e
�k0r

r

" #
gcoreðrÞ; (90)

and

gDðrÞ ¼ � sinh
b qeff
� �2

4pEeffr e0
� e
�kr

r
þ

b q
0eff

� �2
4pE0effr e0

� e
�k0r

r

" #
gcoreðrÞ; (91)

Note that

r(r) = qn2gD(r) = qntotgD(r) (92)

and that the density of ions around an ion is given by ntotgS(r).
The Debye parameter is given by kD

2 = bntotq
2/ere0 and we have

k2 = bntotqqeff/ere0.
When the electrostatic coupling is sufficiently weak, we can

use the approximations cosh(x) E 1 + x2/2 and sinh(x) E x in
these expressions and obtain as a good approximation

gSðrÞ ¼ 1þ 1

2
bwelðrÞ
� 	2� 

gcoreðrÞ (93)

gD(r) = �bwel(r)gcore(r). (94)

Explicitly, this is

gSðrÞ ¼ 1þ 1

2

b qeff
� �2

4pEeffr e0
� e
�kr

r
þ

b q
0eff

� �2
4pE 0effr e0

� e
�k0r

r

" #28<
:

9=
;gcoreðrÞ

(95)

and

gDðrÞ ¼ �
b qeff
� �2

4pEeffr e0
� e
�kr

r
þ

b q
0eff

� �2
4pE0effr e0

� e
�k0r

r

" #
gcoreðrÞ: (96)

This is the basis of the Complete MDE-DH approximation for
the RPM. The radial charge distribution is

rðrÞ ¼ � er
4p

k2qeff

Eeffr

� e
�kr

r
þ k

02q
0eff

E 0effr

� e
�k0r

r

" #
gcoreðrÞ

¼ � erq
4pkD2

k4

Eeffr

� e
�kr

r
þ k

04

E0effr

� e
�k0r

r

" #
gcoreðrÞ

(97)

in this approximation.
In the Simple MDE-DH approximation, where the cross-

terms between hcore and wel are neglected, we obtain for r Z a

gSðrÞ ¼ 1þ 1

2
bwelðrÞ
� 	2þhcoreðrÞ (98)

gD(r) = �bwel(r) (99)

or explicitly

gSðrÞ ¼ 1

þ 1

2

b qeff
� �2

4pEeffr e0
� e
�kr

r
þ

b q
0eff

� �2
4pE 0effr e0

� e
�k0r

r

" #2
þhcoreðrÞ (100)
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and

gDðrÞ ¼ �
b qeff
� �2

4pEeffr e0
� e
�kr

r
�

b q
0eff

� �2
4pE0effr e0

� e
�k0r

r
(101)

for r Z a. By inserting this gD(r) into eqn (92) and using k2 =
bntotqqeff/ere0, we obtain the radial charge density r(r) in Ansatz
(43). The presence of the square term in gS(r) in this approxi-
mation means that there is a contribution with the decay length
1/2k in this function, which is in semi-quantitative agreement
with the exact asymptotic analysis in ref. 101 (cf. footnote †† in
Section 2).

When one uses the Complete MDE-DH approximation, the

expressions for Eeffr and E0effr are different from eqn (44)–(49). As
shown in Appendix B, the local electroneutrality and the
Stillinger–Lovett second moment conditions yield

Eeffr

er
¼M1M3

0 �M1
0
M3

M3
0 � 6M1

0 (102)

E 0effr

er
¼ �M1M3

0 �M1
0
M3

M3 � 6M1
(103)

where

M1 ¼
k4

kD2

ð1
a

drre�krgcoreðrÞ (104)

M3 ¼ k4
ð1
a

drr3e�krgcoreðrÞ (105)

and the corresponding expressions for M1
0 and M3

0 with k0

inserted. When gcore(r) E 1 one obtains M1 E 1 and M3 E
6e�ka exp3(ka) and likewise for M1

0 and M3
0, whereby the result

in eqn (46) and (47) is obtained as a good approximation.
In the case of complex-valued decay parameters k and

k0 ¼ k, we have M1
0 ¼M1 and M3

0 ¼M3, whereby eqn (102)

and (eqn 103) yield Eeffr ¼ jEeffr je�iW and E 0effr ¼ Eeffr . Explicit

expressions for jEeffr j=er and W are given in Appendix B
[eqn (109) and (110)]. From eqn (95) and (96) it follows that

gSðrÞ ¼ 1þ 1

2

bjqeff j2

2pjEeffr je0
� e
�k<r

r
cosðk=rþ aÞ

" #28<
:

9=
;gcoreðrÞ

(106)

and

gDðrÞ ¼ �
bjqeff j2

2pjEeffr je0
� e
�k<r

r
cosðk=rþ aÞ

" #
gcoreðrÞ; (107)

where Z is defined from qeff = |qeff|e�iZ and the phase is
a = 2Z � W = 4y � W since Z = 2y in the RPM, which follows
from eqn (51).

B Equations for Eeffr and E 0effr

In this Appendix we will derive eqn (102) and (103) of Appendix

A for Eeffr and E0effr of RPM electrolytes in the Complete MDE-DH

approximation when k and k0 are real-valued. We will also
obtain the corresponding equations for the complex-
valued case.

We have from eqn (97)

rðrÞ ¼ � q

4p
er
Eeffr

� k
4

kD2
� e
�kr

r
þ er
E0effr

� k
04

kD2
� e
�k0r

r

" #
gcoreðrÞ:

Let us introduce the unknowns

Y ¼ er
Eeffr

and Y 0 ¼ er
E0effr

:

The local electroneutrality condition yields

Y � k
4

kD2

ð1
a

drre�krgcoreðrÞ þ Y 0 � k
04

kD2

ð1
a

drre�k
0rgcoreðrÞ ¼ 1

and the Stillinger–Lovett second moment condition (34), which
can be written as

Ð
drr2rðrÞ ¼ �6ere0=ðbqntotÞ ¼ �6q=kD2 in the

RPM, yields

Y � k
4

kD2

ð1
a

drr3e�krgcoreðrÞ þ Y 0 � k
04

kD2

ð1
a

drr3e�k
0rgcoreðrÞ ¼ 6

kD2
:

This set of equations can be expressed as

M1 M1
0

M3 M3
0

2
4

3
5 Y

Y 0

" #
¼

1

6

" #
; (108)

where the matrix elements M1 and M3 are defined in eqn (104)
and (105) in Appendix A and M1

0 and M3
0 are defined analo-

gously with k0 inserted. The solution to eqn (108) is
Y = (M3

0 � 6M1
0)/D and Y0 = �(M3 � 6M1)/D, where D = M1M3

0

� M1
0M3 is the determinant. This solution can be written as in

eqn (102) and (eqn 103) in Appendix A.
In the case of complex-valued decay parameters k = k< +

ikI = |k|e�iy and k0 ¼ k we have Y 0 ¼ Y , M1
0 ¼M1 and

M3
0 ¼M3. In this case we can write Y ¼ ðM3 � 6M1Þ=D and

D ¼M1M3 �M1M3 ¼M1M3 � ðM1M3Þ ¼ 2i=ðM1M3Þ, where

I(�) means the imaginary part. Furthermore we have

M1 ¼ jkj4e�i4y
ð1
a

drre�k<r cosðk=rÞ � i sinðk=rÞ½ �gcoreðrÞ=kD2


 jkj4e�i4y Gcos
1 � iGsin

1

� 	
and

M3 ¼ jkj4 e�i4y
ð1
a

drr3e�k<r cosðk=rÞ � i sinðk=rÞ½ �gcoreðrÞ


 jkj4e�i4y Gcos
3 � iGsin

3

� 	
;

where Gcos
n and �Gsin

n are defined as the real and the complex
parts of the integrals, respectively. We hence obtain

er
jEeffr j

eiW ¼ Y ¼
eið4yþ3p=2Þjkj4 Gcos

3 � 6Gcos
1 þ i Gsin

3 � 6Gsin
1

� �� 	
2jkj8 Gcos

1 Gsin
3 � Gsin

1 Gcos
3

� 	 ;
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where we have used �i = ei3p/2. By extracting |Y| and arg(Y)
we obtain

jEeffr j
er
¼ 2jkj4jGcos

1 Gsin
3 � Gsin

1 Gcos
3 j

Gcos
3 � 6Gcos

1

� �2þ Gsin
3 � 6Gsin

1

� �2h i1=2 (109)

and

W ¼ 4yþ 3p=2þ arctan
Gsin

3 � 6Gsin
1

Gcos
3 � 6Gcos

1

� �
(110)

when Gcos
1 Gsin

3 � Gsin
1 Gcos

3 Z 0 (otherwise there is a further term
�p in W).

C Theoretical considerations for Uex,
c� and /

Here we will present the theoretical details regarding the thermo-
dynamic entities. The electrostatic contribution mex,el

i to the excess
chemical potential is, as we have seen, the free energy change
(= the reversible work) when the charge of a sphere inserted in the
electrolyte is changed from 0 to qi. It can be calculated via a
coupling parameter integration

mex;eli ¼
X
j

ð1
0

dx
ð
dr
@½xuelij ðrÞ�

@x
njgijðr; xÞ

¼
ð1
0

dx
ð1
a

dr4pr2
qi
P
j

qjnjgijðr; xÞ

4pere0r
¼
ð1
0

dx
ð1
a

drr
qiriðr; xÞ

ere0
;

where uel
ij (r) = qiqj/(4pere0r) is the electrostatic pair potential, x is

the coupling parameter 1 r x r 1, gij(r;x) is the pair distribution
function around a partially charged ion with charge xqi placed
at the origin and ri(r;x) is the charge density around this ion.
All other ions are fully charged throughout. The corresponding
contribution to the mean activity coefficient g� is

ln gel� 

mel;ex�
kBT

¼ b
X
i

xim
ex;el
i ¼ b

ntot

ð1
0

dx
ð1
a

drr
X
i

niqiriðr; xÞ
ere0

:

(111)

For approximations where the charge density ri(r) is proportional
to the ionic charge qi, like the DH, MDH and MDE-DH
approximations, we have ri(r;x) = xri(r). Then, the integration

over x contributes with a factor
Ð 1
0dxx ¼ 1=2 so we have

ln gel� ¼
b

2ntot

ð1
a

drr
X
i

niqiriðrÞ
ere0

(112)

for such linear approximations. In the DH and MDH approxima-
tions this gives ln gel

� in eqn (62) and (63), respectively.
In the Simple MDE-DH approximation based on the Ansatz

(43), we take ri(r) from the second line in this equation and
obtain after simplification

ln gel� ¼ �
er

8pntot

k3

Eeffr

e�ka þ k
03

E 0effr

e�k
0a

" #
; (113)

where we have made use of eqn (19) and its primed counterpart
eqn (22). Using eqn (33), we can alternatively write this expres-
sion as eqn (64). When the charge density is oscillatory and k
and k0 are complex-valued, these expressions for ln gel

� can be
used as they stand, but they can alternatively be written in a
more convenient manner as

ln gel� ¼ �
kD2

8pntot
� jkaj

2 þ k<a� k=a tanW
a j1þ kaj2

ðk complexÞ;
(114)

which can be explicitly expressed in terms of k< and kI as

ln gel� ¼ �
kD2

8pntot
� ðk<aÞ

2 þ ðk=aÞ2 þ k<a� k=a tanW
a½ð1þ k<aÞ2 þ ðk=aÞ2�

ðk complexÞ:

Note that tan W can be obtained in terms of k< and kI from
eqn (49).

The average internal energy U of the system is

U ¼ U ideal þUex ¼ 3NtotkBT

2
þ 1

2

X
i;j

Ninj

ð
druelij ðrÞgijðrÞ:

The second term on the rhs can be written as

Uex

Ntot
¼ 1

2ntot

ð1
a

drr
X
i

niqiriðrÞ
ere0

; (115)

where we have used Ni/Ntot = ni/ntot. By comparing with
eqn (112), which is valid for approximations where the charge
density ri(r) is proportional to the ionic charge qi, we see that
bUex/Ntot = ln gel

� in such cases. Consequently, in the Simple
MDE-DH approximation bUex/Ntot is equal to the rhs of
(eqn 113), so (eqn 65) follows when (eqn 33) is used. When k
and k0 are complex, bUex/Ntot can be calculated from rhs of
eqn (114).

Next, we treat the osmotic coefficient. The excess pressure of
the electrolyte consists of two parts Pex = Pcont + Pel, where Pcont

is the contact pressure evaluated at the hard core surfaces of
the ions

Pcont ¼ 2pa3kBT
3

X
i;j

ninjgijðaÞ (116)

and

Pel ¼ �1
6

X
i;j

ninj

ð
drr

duelij ðrÞ
dr

gijðrÞ ¼
1

6

ð1
a

drr
X
i

niqiriðrÞ
ere0

:

(117)

The excess osmotic coefficient, fex = fcont + fel is accordingly
given by

fex ¼ 2pa3

3ntot

X
i;j

ninjgijðaÞ þ
b

6ntot

ð1
a

drr
X
i

niqiriðrÞ
ere0

; (118)

where the first term is fcont = Pcont/Pideal and the second is
fel = Pel/Pideal.
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In the Simple MDE-DH approximation based on the Ansatz
(43) we obtain

fel ¼ � er
24pntot

k3

Eeffr

e�ka þ k
03

E 0effr

e�k
0a

" #
; (119)

which can be written as eqn (69). For the case of complex-
valued k and k0, this expression is still valid, but it can be
written analogously to eqn (114) [the prefactor for fel has 24p
instead 8p in the denominator].

As mentioned in Section 4.3, the DH and MDH approxima-
tions show very poor consistency for ln g� obtained from
eqn (112) and that obtained from the osmotic coefficient via
eqn (71). The reason for this lies in the handling of the
electrostatic contributions. Both approximations treat the core
contribution consistently, because we have

fcont ¼ 2pa3ntot
3

ðDH;MDHÞ; (120)

which yields the contribution 4pa3ntot/3 when inserted into
eqn (71), that is, the same as ln gcore

� given in eqn (59). Eqn (120)
follows from the fact that

P
j

njgijðrÞ ¼ ntot for r Z a in the DH

and MDH approximations, so we have
P
i;j

ninjgijðaÞ ¼ ðntotÞ2.

The inconsistency originates from the fact that fel inserted
into eqn (71) does not give the same electrostatic contribution
as the one obtained from eqn (111). The latter is, in fact, a
general feature of linear approximations, where the charge
density ri(r) is proportional to qi. This can be realized as
follows.

For these kinds of approximations, ln gel
� is calculated from

eqn (112) and a comparison with the second term in eqn (118)
shows that the integral is the same in both equations and that
the prefactors differ only by a factor of 1/3, which implies that
ln gel
� = 3fel. This means that in eqn (71) one obtains one third

of ln gel
� from the first term on the rhs and that the second term

must yield two thirds of ln gel
� in order to have consistency. Thus

the integral in this second term must be equal to one third of
ln gel
�, that is, equal to fel. Consistency is achieved provided

the function fex(ntot) satisfies
Ð s
0dtf

ex t2
� ��

t ¼ fex s2
� �

, where we
have made the substitutions ntot

0 = t2 and ntot = s2. This implies

that fel(s2) = Ks, that is, felðntotÞ ¼ K
ffiffiffiffiffiffiffi
ntot
p

, where K is a
constant. This is satisfied for the Debye–Hückel limiting law
(2) for fex = f � 1 at infinite dilution, but not otherwise. Since
the limiting law is an exact result of statistical mechanics,
it must obey the consistency requirement, but no other linear
approximation can be consistent in the sense that fel inserted
into eqn (71) yields ln gel

� (except in the limit of infinite
dilution).

Since the charge density ri(r) is proportional to qi in the
MDE-DH approximations, they share the same feature, that is,
ln gel
� is not obtained from fel via the integration in eqn (71).

However, fel is not the only contribution to fex where
electrostatics matter in these approximations; there is a further
contribution due to the quadratic terms in wel in eqn (55) and
(58) in the complete and simple versions of this approximation,

respectively. We will start by considering the Simple MDE-DH
approximation and see that there is an electrostatic part in
fcontact due to the presence of the quadratic term [bwel(r)]/2
in eqn (58) and hence in eqn (98). This is an important
contribution that is necessary for the good agreement between
the MDE-DH and MC data for f in Fig. 8 and 9 and for the good
consistency between the two different manners to calculate
ln g�.

From eqn (118) we obtain for the RPM

fcont ¼ 2pa3

3
ntotgSðaÞ (121)

fel ¼ kD2

6

ð1
a

drrgDðrÞ ¼
bq
6ere0

ð1
a

drrrðrÞ; (122)

where gS and gD are defined in eqn (89) and we have used
(eqn 92). It follows from eqn (98) that in the Simple MDE-DH
approximation we have

fcont ¼ 2pa3ntot
3

½bwelðaÞ�2
2

þ gcoreðaÞ
� �

¼ pa3ntot
3
½bwelðaÞ�2 þ fcore;

(123)

where fcore = 2pa3ntotg
core(a)/3. By inserting wel(r) from eqn (54)

into eqn (123) we obtain

fcont ¼ pa3ntot
3

b qeff
� �2

4pEeffr e0
� e
�ka

a
þ

b q
0eff

� �2
4pE 0effr e0

� e
�k0a

a

" #2
þfcore

(124)

with fcore given by eqn (70). In the Simple MDE-DH approxi-
mation, we accordingly have f = 1 + fcont + fel with fcont from
eqn (124) and fel from eqn (119).

In the Complete MDE-DH approximation it follows from
eqn (93) and (121) that

fcont ¼ 2pa3

3
ntot 1þ ½bw

elðaÞ�2
2

� �
gcoreðaÞ

¼ 1þ ½bw
elðaÞ�2
2

� �
fcore

(125)

and we have from eqn (94) and (122)

fel ¼ �bkD
2

6

ð1
a

drrwelðrÞgcoreðrÞ: (126)

When wel(r) from eqn (54) is inserted, fel can be written in
terms of M1 and M1

0, which are integrals involving gcore defined
in eqn (104) in Appendix A. Furthermore, in this approximation

ln gel� ¼ �
bkD2

2

ð1
a

drrwelðrÞgcoreðrÞ; (127)

which contains the same integral, and ln gcore
� is given by

eqn (60).
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D Asymptotic formulas at high dilution

In this appendix we consider k2/kD
2 and Eeffr =er in very dilute

solutions of symmetric electrolytes of ions with diameter a and
derive approximate asymptotic formulas for these entities when
t = kDa - 0. These formulas will be extracted from eqn (76) and
(77), which can be written as

t2

bR

ð1
1

dRR2 sinh bRX
4Y � e

�XtR

R

� �
¼ 1 (128)

t4

6bR

ð1
1

dRR4 sinh bRX
4Y � e

�XtR

R

� �
¼ 1; (129)

where X = k/kD and Y ¼ er=Eeffr . We will extract all contributions
to order t2 or less, that is, up to and including contributions
that are proportional to the total ionic density ntot. We do this
by expanding sinh x = x + x3/3! + x5/5! + . . . and expressing the
integrals involving [e�XtR/R]n in terms of known functions,
namelyð1

1

dRR2 e�XtR

R

� �n
¼
ð1
1

dRR2�ne�nXtR

¼ ðnXtÞn�3Gð3� n; nXtÞ ¼ F nþ2ðnXtÞ

andð1
1

dRR4 e�XtR

R

� �n
¼
ð1
1

dRR4�ne�nXtR

¼ ðnXtÞn�5Gð5� n; nXtÞ ¼ F nðnXtÞ;

where Gðm; xÞ ¼
Ð1
x
tm�1e�t is the incomplete Gamma function

and where we have defined FmðxÞ from

FmðxÞ 
 xm�5Gð5�m; xÞ ¼

6e�x exp3ðxÞ=x4; m ¼ 1

e�xð1þ xÞ=x2; m ¼ 3

E1ðxÞ; m ¼ 5;

8>>><
>>>:

(130)

where E1(x) is the exponential integral E1ðxÞ 

Ð1
x dt e�t=t. The

function FmðxÞ for m 4 5 has the limit

lim
x!0
FmðxÞ ¼

1

m� 5
when m4 5; (131)

but for m r 5 it diverges when x - 0. For m = 5 the divergence
is logarithmic since F 5ðxÞ ¼ E1ðxÞ � �CEu � ln xþ x when
x - 0, where CEu � 0:5772 is Euler’s constant.

Using these results in eqn (128), which is the local electro-
neutrality condition, we obtain

X
odd n

bn�1R t2

n!
X4nYnF nþ2ðnXtÞ ¼ 1 (132)

and likewise eqn (129), which is the Stillinger–Lovett condition,
can be written

1

6

X
odd n

bn�1R t4

n!
X4nYnF nðnXtÞ ¼ 1: (133)

Since X = k/kD - 1 and Y ¼ er=Eeffr ! 1 when t - 0, we have
X = 1 + aX(t) and Y = 1 + aY(t), where the as yet unknown
functions aX(t) - 0 and aY(t) - 0 when t - 0. Hence

Xl B 1 + laX(t) and Yl B 1 + laY(t) when t - 0.
(134)

We start with the Stillinger–Lovett condition (133). We first
note that F 5ð5XtÞ � � lnð5XtÞ ¼ � lnð5XÞ � ln t � � ln t when
t - 0. This implies that the term for n = 5 in eqn (133) decays
like �t4 ln t in this limit. This factor decays faster than t2 so the
n = 5 term can be skipped. Using eqn (131) we can see that the
terms for n4 5 decay like t4, so they can also be skipped. Thus
there remains only the terms for n = 1 and 3.

The n = 1 term in the left-hand side (lhs) of eqn (133) is

t4

6
X4YF 1ðXtÞ ¼ Ye�Xt exp3ðXtÞ;

where we have used eqn (130), and the n = 3 term is

bR
2t4

6 � 3!
X12Y3F 3ð3XtÞ ¼ bR

2t2

324
X10Y3e�3Xtð1þ 3XtÞ:

We now insert these terms into eqn (133), whereby we skip
contributions that decay faster to zero than t2 in order to extract
the asymptote. In the n = 3 term, the factor e�3Xt(1 + 3Xt) decays
when t - 0 like

e�3Xt(1 + 3Xt) B 1 � (3Xt)2/2 B 1 � (3t)2/2 � aX(t)(3t)2

B 1 � (3t)2/2,

where we have used eqn (134). Furthermore, X10 B 1 + 10aX(t)
and Y3 B 1 + 3aY(t). This means that t2X10Y3e�3Xt(1 + 3Xt)
decays like t2 and we can conclude that the n = 3 term decays
like bR

2t2/324. By inserting this result and the n = 1 term into
eqn (133) and rearranging we obtain

Y � 1� bR
2t2=324

e�Xt exp3ðXtÞ when t! 0:

Now, e�Xt exp3(Xt) B 1 � (Xt)4/24 B 1 � t4/24, so
[e�Xt exp3(Xt)]�1 B 1 + t4/24, so we can finally conclude that

Y ¼ er
Eeffr

� 1� bR
2t2

324
when t! 0 (135)

to the order t2.
We now proceed with the local electroneutrality condition

(132). The n = 1 term in the lhs of this equation is

t2X4YF 3ðXtÞ ¼ X2Ye�Xtð1þ XtÞ

and the n = 3 term is

bR
2t2

3!
X12Y3F 5ð3XtÞ ¼ bR

2t2

6
X12Y3E1ð3XtÞ:

Analogously to the previous arguments we find that t2X12Y3

decays like t2, so the entire n = 3 term decays like up

bR
2t2

6
E1ð3XtÞ � �bR

2t2

6
CEu þ lnð3tÞ½ �
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to the order t2. There are also contributions of the order t2 from
the terms with n Z 5. The factor t2X4nYn in these terms decays
like t2 and by using eqn (131) we see that the terms decay when
t - 0 like

bn�1R t2

n!
F nþ2ðnXtÞ � bR

2t2
bn�3R

n!ðn � 3Þ when n � 5:

The leading contribution from all terms with n Z 5 is accord-
ingly equal to bR

2t2s(bR
2), where we have defined

sðxÞ ¼
X

odd n�5

xðn�3Þ=2

n!ðn � 3Þ ¼
X1
l¼1

xl

ð2l þ 3Þ!2l; (136)

where we have made the substitution n = 2l + 3. By gathering
these results and inserting them together with the n = 1 term
into eqn (132), we obtain after rearrangement

X2 �
1þ bR

2t2 CEu þ lnð3tÞ½ �=6� sðbR2Þ
� �
Ye�Xtð1þ XtÞ when t! 0:

Now, from eqn (135) it follows that 1/Y decays like 1 + bR
2t2/324

and we have [e�Xt(1 + Xt)]�1 B 1 + (Xt)2/2 B 1 + t2/2. Thus we
can finally conclude that

X2 ¼ k2

kD2
� 1þ bR

2t2
CEu þ lnð3tÞ

6
� sðbR2Þ þ

1

324

� �
þ t2

2

(137)

to the order t2. Eqn (135) and (137) constitute the wanted result,
which can be written as eqn (82) and (81), respectively, in the
main text.
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