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We present the dynamics of the electronic quenching OH(A?Z*) + Kr(*S) — OHX3I) + Kr(*S), with
OH(A%") in the ground ro-vibrational state. This study relies on a new non-adiabatic quantum theory
that uses three diabatic electronic states ¥, IT’, and I1”, coupled by one conical-intersection and nine
Renner—Teller matrix elements, all of which are explicitly considered in the equation of the motion. The
time-dependent mechanism and initial-state-resolved quenching probabilities, integral cross sections,
thermal rate constants, and thermally-averaged cross sections are calculated via the real wavepacket
method. The results point out a competition among three non-adiabatic pathways: =% « IT', % « I1”,
and II' < II”. In particular, the conical-intersection effects Z*-I1' are more important than the
Renner—Teller couplings =*-I1, £*-I1", and II'-I1". Therefore, T1’ is the preferred product channel.
The quenching occurs via an indirect insertion mechanism, opening many collision complexes, and the
probabilities thus present many oscillations. Some resonances are still observable in the cross sections,
which are in good agreement with previous experimental and quasi-classical findings. We also discuss
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1. Introduction

The role of the hydroxyl radical is paramount in atmospheric
and combustion chemistry. It is also the product of many
elementary reactions that in turn contribute to more complex
processes involving the OH radical. Because its efficiency, its
detection is usually carried out by laser induced fluorescence
on the OH A?’Y*-X?I1I electronic band,? that can be used to
measure the radical concentration very accurately.’ Hence,
collisional electronic quenching of the A*X" state is a process
of considerable practical interest since it reduces radiative
lifetimes and fluorescence quantum yield. It is thus not
surprising that the quenching of OH(A”X") has received a great
deal of attention especially devoted to measure quenching
cross sections with different collision partners®” and to

“ Departament de Ciéncia de Materials i Quimica Fisica & Institut de Quimica Teorica
i Computacional (IQTCUB), Universitat de Barcelona, c/Marti i Franqués 1-11,
08028 Barcelona, Spain

b Departamento de Quimica Fisica, Facultad de Quimica, Universidad Complutense,
28040 Madrid, Spain. E-mail: aoiz@quim.ucm.es

¢ Instituto de Fisica Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain

dDepartamento de Quimica Fisica, Universidad de Salamanca, 37008 Salamanca,
Spain

¢ Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche,
Via G. Moruzzi 1, 56124 Pisa, Italy. E-mail: carlopetrongolo41@gmail.com

t Electronic supplementary information (ESI) available. See DOI: 10.1039/

d0cp02512g

This journal is © the Owner Societies 2020

the validity of more approximate quantum methods.

investigate the mechanism associated with the transit through
the conical intersection.®** Among other processes involving
electronic quenching with OH(A?Z"), collisions with rare gases (Rg)
has received a special attention in the last few years as examples of
processes in which collisional energy transfer and rotational
depolarization may compete with electronic deactivation.*>* In
addition, Rg + OH(A’X") collisions are amenable to rigorous
electronic and dynamical calculations'®"**** that can be com-
pared with a considerable amount of experimental information,
ranging from thermal rate coefficients” and cross sections for
selected spin-rotational initial states™®'®'%*!23 to rotational and
lambda-doublet state resolved cross sections.”' Interestingly,
whereas quenching cross sections for He, Ne, and Ar are almost
negligible when compared with rotational energy transfer on
the excited potential energy surface (PES), for Kr and Xe
quenching cross sections are similar or larger than those with
H,, O,, or N,."®2123 Ag such, adiabatic calculations carried out
on the 2A’ excited PES for Kr and Xe cannot account for
rotational initial state depopulation.*!™?

Previous calculations for the Kr + OH(A?X") system using
quasiclassical trajectories (QCT) and surface hopping (SH) on
ab initio PESs*"** demonstrated that the sole consideration of
2-PES transition (2A’-1A’) could not reproduced the magnitude
of the quenching cross section dependence on the initial
rotational state of OH(AX"). It was necessary to include the
participation of the 1A” and the roto-electronic couplings
between 2A’ and 1A”, and 1A’ and 1A”, to recover the
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Fig. 1 R cuts of PESs for OH(A?Z*) + Kr — OH(X?I1) + Kr. Adiabatic states
1A/, 2A/, and A”. Diabatic states =*(1), IT’'(2), and IT"(3). Energy from this
work, with respect to the reactants. Lower/higher energy in red/blue. The
black dot labels the Cly, conical intersection.

experimental values and the rotational state dependence.
However, in that work the PESs and their couplings were
calculated at a fixed O-H internuclear distance corresponding
to its equilibrium value on the A>Z" electronic state. It remains
to be seen how the approximate results on two-dimensional (2D)
PESs compare with those obtained on 3D PESs. More impor-
tantly, the results reported in ref. 22 obtained using QCT-SH
need to be validated with quantum dynamics calculations.

We here investigate the non-adiabatic quantum dynamics of
the electronic quenching OH(A’Z ") + Kr(*'S) — OH(X’II) + Kr('S),
extending experimental and quasi-classical previous works by
Lehman et al®* and by Perkins et al.>* Using reactant Jacobi
coordinates r, R, and y, where y = 0 corresponds to the direction
from O to H, we plot in Fig. 1 R cuts of the three PESs required
for this study for better understanding the present definitions
some of which are different from those in ref. 22.

The doublet electronic states are labeled according to ref. 21
and 22, in both adiabatic and diabatic representations, and the
non-adiabatic couplings between them are schematically shown.

Adiabatically, the reactants correlate with the excited 2A’
electronic species of OHKr and the products correlate with the
nearly degenerate ground states 1A’ and 1A”. 2A’ is consider-
ably bound at y = 180°, i.e. for a linear Kr-OH geometry,
whereas 1A’ and A” are unbound and lie well below the reactant
energy. At large R, the main configurations of 2A’ and 1A’ are "
and IT', respectively, and at small R these configurations
exchange to I1’ and X', respectively, owing to a conical inter-
section of the A’ states at R ~ 3.8a, and y = 180°. Therefore,
Fig. 1 shows that the electronic states can be also described in a
diabatic representation as (1), I1'(2), and I1"(3), which belong
to the C; irreducible representations A’; A’, and A”, respectively.
At linearity (2) these diabats are the eigenstates of the z compo-
nent of the total and spinless electronic angular momentum L
with eigenvalues 0 and +1, respectively.

The electronic quenching is barrierless but closed in the
Born-Oppenheimer approximation. Nevertheless, the electronic
states interact via non-adiabatic effects that open the quenching
channel: the linear conical intersection (CI;,) between the A’
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states [Z°(1) and II'(2)]*"** and the [L-induced Renner-
Teller**>® couplings among all three species (i.e., RTy,, RT3,
and RT,;).%* This is depicted in Fig. 1 which also shows that the
2A’ minimum and the CIL;, point are very near, both in
geometry and in energy, as we shall discuss in Section 3.
Extending the previous studies,*"*> the present work reports
time-dependent wavepacket (WP) quantum dynamics of the
electronic quenching OH(A’X") + Kr(*S) — OH(X?IT) + Kr('S),
including three 3D PESs and all the non-adiabatic interactions
(i.e., one CI and nine RT coupling surfaces) all of them at multi-
reference configuration-interaction (MRCI) level. The paper is
organized as follows. Section 2 presents theory and computa-
tional methods. Section 3 shows the results of the electronic
calculations, the time-dependent quenching mechanism,
initial-state-resolved reaction probabilities with OH(*Z") in
the ground ro-vibrational state, some model probabilities,
and initial-state-resolved cross sections, rate constants, and
thermally-averaged cross sections. We finally report our main
conclusions in Section 4 and other results in the ESIL.{

2. Theory and computational methods

Unless otherwise specified, we employ atomic units (a.u.),
Jacobi reactant coordinates, and a counter-clockwise body-
fixed frame with the origin at the center of the nuclear masses,
where OHKT lies in the z,x plane and the z axis is either along r
(r-embedding) or R (R-embedding).

We investigate the collision dynamics of the OH(A’X") + Kr
electronic quenching following our previous works>*2° on non-
adiabatic effects in triatoms. The present theoretical treatment
is somewhat similar to that of Zhou et al.,>” who considered
three diabats coupled by both conical-intersection and Renner-
Teller effects. Spin-orbit interactions are non negligible for
this system, and accounting for them would permit to consider
additional routes for the quenching, by coupling the 2A’(Z")
to 1A’'(IT") and A”(IT”) states. In the vicinity of the conical
intersection, spin-orbit couplings are of the order 200 cm™*
approximately, being slightly stronger between the two A’
states (230 versus 170 cm™'). Those values of ~0.0009 a.u.
are nevertheless three orders of magnitude smaller than other
couplings here considered, as we shall see in Section 3, and
including them is not expected to significantly change the
results. Due to the huge additional cost required to include
them in the treatment for a small expected change in the
results, make us prefer to work within the non-relativistic
approximation.

We therefore use a total spinless A containing all rovibronic
couplings: (1) electronic, with diabatic electronic states coupled
by the electronic Hamiltonian A®; (2) vibrational-electronic,
with adiabatic or diabatic states coupled by the vibrational
Hamiltonian 7""; and (3) roto-electronic, with adiabatic
or diabatic species coupled by the total electronic angular
momentum L. In the last case, at least one electronic state is
degenerate when the molecule is linear. We here employ strictly
diabatic electronic states whose vibronic couplings are much

This journal is © the Owner Societies 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp02512g

Open Access Article. Published on 18 June 2020. Downloaded on 8/1/2025 9:38:30 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

PCCP

smaller than other couplings, and are thus safely neglected.
The electronic and roto-electronic couplings between these dia-
bats are associated with conical-intersection (CI) and Renner-
Teller (RT) effects, respectively. The former depend on just one
operator, A9 but the latters correspond to seven operators, L7, LZ,
L., f,yﬁ/@y, ﬁy, I, and L,, whose matrix elements are rarely
computed on initio MRCI states.

2.1. Electronic structure calculations and computational
details

Using the MOLPRO suite of ab initio codes,*® we have calculated
twelve 3D adiabatic surfaces: three PESs 1A, 2A’, and A”, and
nine r-embedding matrix elements of L. Labeling r or
R-embedding with or without a bar, respectively, these are
(INILJA"),  QA'ILIA"), (AL JA"), QAL |A"),
(A|Ly247), (IA'|£224%), (IA'|£22A"), (1A'|i2]2A"), and
(IA’|L L _|2A"), where the L, and L terms are the same in
both embeddings. Using again MOLPRO,*® we then obtain the
3D diabatic PESs X*, IT/, and I1”, the (X*|A°|IT") diabatic
coupling, and the surface of the adiabat-to-diabat transforma-
tion angle y.

As already pointed out, to treat the quenching of
OH(X" — II), three electronic states have to be considered.
The II state is doubly degenerated, but this degeneracy is
broken by the presence of the Kr atom when the three atoms
are not aligned. This occurs because OH presents an unpaired
electron, which can be located in a p orbital in the plane of the
triatomic system (A’) or one perpendicular to the plane (A”).
Asymptotically, when Kr is too far to interact with OH, the two
orthogonal p orbitals are equivalent and both states are degen-
erated. For symmetry reasons, when the three atoms are in a
collinear configuration, the orbitals are also equivalent and
both A’ and A” components are degenerated.

Previous calculations of the ground and first excited state
PESs*"*? were performed at a fixed OH internuclear distance at
its equilibrium value of the excited A*X" state. Considering that
this value is similar to that of the minimum of the ground X°IT
state, and that collisional quenching was studied at thermal
temperatures (0.025-0.039 eV), this was deemed as a reliable
approximation. However, the effect of the OH vibration must be
included for a more accurate and reliable description of the
processes, especially if calculations are performed at higher
collision energies. Therefore, to obtain the 3D analytical PESs
and couplings, ab initio calculations were performed over a
regular grid in Jacobi coordinates (R,r,y) referred to the Kr + OH
channel with y = 180° corresponding to the HO-Kr linear
configuration. The considered grid elements are R = [3.4, 3.6,
3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.4, 6.8, 7.2,
7.6, 8.0, 8.5, 9.0, 9.5, 10, 15]a,, 7 =[1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,
2.2, 2.4]a,, and y = [0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150,
165, 180] degrees for a total of 2808 points. Electronic structure
calculations at each point of the grid were performed with a full
electron Douglas-Kroll aug-cc-pVTZ basis set>® and using the
Douglas-Kroll Hamiltonian to account for relativistic effects of
Kr inner electrons. In a first step, the two A’ states and the A”
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state associated to the " and two components of the IT state of
OH are calculated in a state-average CASSCF calculation®® using
an active space of 5 electrons in 4 orbitals (16-18a’,6a”). This
active space ensures a good accuracy with an affordable com-
putation time and, most importantly, keeps the continuity in
the electronic wavefunctions in all the configuration space and
for the three electronic states considered. The generated con-
figurations and orbitals are then employed for an internally
contracted MRCI treatment® including Davidson correction.*?
This scheme was employed within the quasi-diabatization
procedure available in the MOLPRO program®® which allowed
us to obtain directly the diabatic PESs of the states " and IT/,
as well as the (Z'|A°|IT") non-adiabatic coupling, and the
surface of the mixing angle y [see below, eqn (2.1)]. By con-
struction, the diabatic I1” state corresponds to the adiabatic A”
state. Finally, the nine r-embedding matrix elements of L were
computed at CASSCF level. Here we should remind that these
elements are calculated in reference to the adiabatic states.
When a change of character of the electronic wavefunction
happens along a coordinate of the PES (after an avoided cross-
ing for example), some of the r-embedding matrix elements are
swapped. When this happens, they need to be rearranged
properly in order to fulfill the conditions of continuity and
derivability in the configuration space, if this requirement is
not met, it would be impossible to obtain a reliable three
dimensional fit.

The three diabatic PESs, the (X'|A°|IT") coupling surface,
and the nine -embedding £ surfaces in the adiabatic represen-
tation were then fitted independently using the Reproducing
Kernel Hilbert Space (RKHS) method.*® This method is known to
be well suited for fitting 3D PESs, and it is even better adapted to
fit couplings surfaces. The advantage of this method stems from
the use of its angle-like kernels which are convenient to fit
angular variables such as Jacobi angle from which couplings
between PESs are highly dependent. Angle-like kernels are also
well adapted to obtain a good extrapolation for distance vari-
ables when surfaces converge to a fixed value in the asymptotic
region, which is also the case of couplings (i.e. for Kr far away,
one should recover the couplings of isolated OH).

The fitting procedure is extensively described in ref. 34 and 35.
Here, only the most relevant details will be described. To
fit the various PESs, the energy was decomposed in 1-, 2- and
3-body terms. 1- and 2-body terms were fitted implicitly
together referring the zero of energy to the asymptotic value
of the dissociated diatom. To account properly for the asymp-
totic limits of the three electronic states considered, five
diatoms were considered: OH(X’IT), OH(A’Z"), and three van
der Waals diatomic clusters Kr-H, Kr-O(*P) and Kr-O('D). Once
the energy for each diatom is subtracted from the corres-
ponding electronic states, the 3-body term, which also vanishes
in asymptotic regions, are fitted independently. The global
PESs over the whole configuration space are then obtained as
the sum of the corresponding fitted 2- and 3-body terms.
We should point out here that since all the fitted diatomics
go to zero asymptotically; the ~2 eV separation between O(*P)
and O('D) is added when the total PESs are reconstructed, a
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necessary step to keep the good relative energy differences
between the three states. For the couplings, most of the terms
were fitted directly (without decomposition) since most of them
vanish in the asymptotic regions. Only the couplings elements
depending on the OH bond length and which do not vanish
asymptotically were decomposed in order to apply efficiently
the 3D RKHS fitting. In all the cases, angle-like kernels
were used for the 3D fitting. Three new angular variables
(i.e. limited in the [0,1] interval) were thus defined from the
Jacobi coordinates as follow: x = exp(—br), y = exp(—aR) and
z=(1+ cosy)/2.

2.2. Hamiltonian theory

2.2.1. Electronic states, r-embedding, and roto-electronic
representation. Our adiabatic, real and ortho-normal electronic
states 1A, 2A’, and A" and their strictly diabatic transforms £,
IT', and I1”, are linked by**

>t siny  cosy 1A
= , M"=A", (2.1)
r cosy —siny/ \2A’
1 2(ZF AT
X = zarctan = = ,
2 e — (=AY (2.2)
—n/4 <y <n/4, mod(n/2).
We also label these real diabatic species as |o4) =
(J[40) |+1) |-1))= (=t II' 1I”),*° where ¢ is their parity

and A their L, eigenvalue at linearity. Note that they do not
correspond to the complex species labelled in the same way in
ref. 22.

The total A, the CI electronic operator A%, the RT operators
£?* and Ey, the vibrational operator 7" b and the Jacobi coordi-
nates do not depend on the embedding used but many opera-
tors of H become different in r- or R-embedding. Thus,
for practical purposes we have labeled the operators with or
without a bar depending on they are expressed in r- or
R-embedding, respectively (the invariant operators are also
unbarred). Like A, we define a RT roto-electronic operator

AL . A .
T~ as the sum of all rotational terms of H that contain L.
Writing the full spinless rotational operator’® as
~rot ~J ~L ~J .

=7 +7 , where T contains terms that depend only on

the total angular momentum f, the r-embedding full RT opera-
tor is equal to

R “ b+ B “ A A
5 b4 (P2 op) 24 2hi £ coty
sin’ y : F

0
~ 2bilyy b (4,

b . .
—24 K +2 —b)LZ+bLXcoty}
sin” y

—b(d, +d ) (L, + £ coty),

— 4 )iL,
7)1 ' (2.3)

with b = 1/(2u,7%), B = 1/(2ugR?), and . and ug are the reduced
masses associated to the r or R, respectively. Since the first two
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lines of this eqn belong to the A’ irreducible representation of
the Cs point group and the others to A”, the first and second
give rise to both potential and coupling surfaces and the others
only to couplings. Note the interactions between the total f and
electronic L rotations and between both rotations and the
angular coordinate y. The most important operators are ];22
and E: because they are multiplied by 1/sin*y that diverges
quadratically at the linearity. Nevertheless this degeneracy is

analytically removed at linearity®® where J, = L,. The #, terms of

7™ are called Coriolis operators.
Real electronic species |e) fulfill

ﬁa

ol = L (1)

(2.4)

0 0
Le— J|L,
€IS~ Iyl

)
(e ILya—yld e),

since the second term is negligible in a strictly diabatic repre-
sentation. Employing then the symmetry-adapted roto-
electronic diabatic representation |Kap) x ¢'/?|6A),>*® where
K >0 is the r-embedding helicity, p is the total parity and
62 =+oriforo=+or —, respectively, the matrix elements of

7" are presented in eqn (2.5):

<a’1/2(0'/1')!(K’a’p\fL\Kap){01/2(0/1)>
:5510{%% {(a/ﬂbliz (fﬂfﬂ;)i +2bcotyL L_|aA)
—2bi(cA'|L \aA)2

b [0x gt (140x0) A =gkt (140x1) Pk | i(aA’|L}|aA>}

b+B

—0—(50/7,,,(71'{5,(%21{( A’ |( ):L +bCOt”L o)

+b [5,@_“1 (140k0) 220 +0x0 51 (1 +5K1)‘/22;K]

(—oA'|L +cotyL_|oA) }
(2.5)

We use eqn (2.4) with 15, = [J(J+1) - KK + 1)]"/%. These
matrix elements are real as the states, those of L, L, and L,
are purely imaginary, and the others are real. This equation
defines both |oA)-diagonal potential terms and off-diagonal
coupling terms; it is also obtained by summing eqn (4.6) and
(4.7) of ref. 26, changing appropriately the notation and omitting
the unnecessary terms. It is also similar to eqn (44)-(46) of
ref. 22, taking into account that the present diabatic states are
real and that we call here “RT couplings” also 4; and C; of
eqn (44) and (46),>* following ref. 24 and 25.

2.2.2. R-Embedding, diabats, and quenching approxi-
mation. We investigate the collision dynamics transforming
the r-embedding, diabatic representation in eqn (2.5) to the
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R-embedding by exchanging b and B.*>® We also make a quench-
ing approximation in (X'| — — |IT’), assuming that the diagonal
terms (1A’| — — |1A’) and (2A’| — — |2A’) are equal and cancel
each other. According to this, only the off-diagonal matrix
elements of L need to be considered since they rule the quench-
ing dynamics.’” Eqn (2.5) then simplifies and specializes for the
off-diagonal elements as

(K" + pITVK + p)IT)

B+b

sin®y

= Ok {(Z*\BLA2 + ( - ZB> Lf +2BcotyL, L.|TT)

e D
—ZBz(Z+|LV‘,|H’)8—V}
B B[éK’.KH(l +0x0) 0y — Ok ko1 (14 0x1) P g
x i(XF|L,[IT'),
(2.6)

(+A|(K' + p|TH|K — p)liTI")

B+b

.2y
sin” y

=i {5,<,K21<<+A| ( - B) L. + Bcot yﬁx\n’@}

- iB[5K',K+1 (1+ ko) 2y + Oxr -1 (1 + 51<1)l/27»]1(}

(+A|Ly + cotyL.|T1"),
(2.7)
where |[+4) = ¥ or IT’ for A = 0 or 1, respectively.
2.2.3. Roto-electronic-angular representation. We obtain
the H roto-electronic-angular representation considering 77,
the vibrational operator 7V that does not work on strictly

diabatic electronic states, and the normalized associated
Legendre states | jK) with®®

0

g (2.8)

. 1 . L_.
K) = 3kl K+ 1) = 25l 5K = 1),

The three Born-Oppenheimer diabatic and diagonal blocks of
the Hamiltonian are equal to

(/K'|(cA|(K'ap|H|Kap)|oA)|jK)
=Sk { 8y [T™ + B(J(J + 1) - 2K?)
+H(B+b)j(j+1)]
+(/ K[(cA|H o A)|jK) }
— 3B [k k1 (14 0x0) 2k + Oxe 1 (14 0x0) e,
(2.9)

where |6A) = £, IT’, or IT”, the radial kinetic Hamiltonian is
724 = _Bo*/OR* — bo*/or?, and (cA|H|oA) are the diabatic
potential energy surfaces.
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The non-adiabatic CI and RT interactions between the
diabats ~*, IT’, and I1” are

(/' K'{ZTUK' + plH|K + p)|IT') | jK)

B .
b 23) :
sin2y

= Sxix | (' K|(EF|H® + BL? + (
+ 2BcotyLL.|IT')| jK)

~iB(K|(Z*|L,|IT)

Fig (G K A1) = dige(, K~ ‘)>}

— iB[Sxr k41 (1 + 0k0)' P 2jx = Sk k1 (14 0k1)' 2]
(/K'|(Z*|L,|]T)|jK)
(2.10)
(/K'|[(ET(K' + p|H|K — p)|iTI"}| jK)

B+b

= —idgk {2K(j’K|(Z*\< — —B>£z+3coty£x|n”>[j1<>}
sin” y

— iB[x 1 (1 850) P25 + b (14 051) 5]
(/' K'|(E*|Ly + cotyL[TI") | jK),
(2.11)
(/K'|(I|(K' + p|H|K — p)|iTl") | jK)

. B+b
— itk [zz<<ﬂ<|<n/\( b
sin”y

)L} + BceotyL,|[I1")] jK)}

—iB [51071@1 (1+6x0) 2k + Oxr k-1(1 + Ok )UZUK}

(' K'|(IV| L +cotyL.

") jK).
(2.12)

2.2.4. K approximation. The coupled-channel eqn (2.9)-(2.12)
contain /jx Coriolis terms that are very hard to implement in a
huge-time demanding computer code with six large blocks
(three Born-Oppenheimer plus three coupling terms) and they
are thus simplified via the K approximation®?

K =K+t1~K=Ky iril =[0+1)-K7]"
(2.13)

where K, is the K value of the OH reactant and [ = J or j. The
Born-Oppenheimer eqn (2.9) thus becomes

(j' Kol (o A|(Koop|H| Koap)|a )| jKo)
= oy { 1™+ B + 1) = 2K57] + (B+b)j(j + 1)
fB[(l +8x00) (1 + 51@1)”2} XSKO/l?KO}

+ (Koo A|H|o A)|Ko).
(2.14)
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Representing the A and I operators on the roto-electronic
basis, the non-adiabatic couplings in Fig. 1 are equal to

Cly, = (ZF|A|IT),

B+b

sin?y

(2.15)

RTy, = (T'|BL* + ( - 23) lf +2BcotyL L.|TT)

—iB[(14 0x0) = (1 + 01) | A5, (2 1L, ),
(2.16)
B+b . A
RT3 = —i{2Ko(2+|< ,+ - B) L.+ BcotyLﬂH”)}
sin” y

—iB[(14 0x00) = (14 051) | A, (ZF | + coty LTI,
(2.17)

B+b

sin®y

RT23 = —i |:2K0<H/| ( )i; + Bcot ’yi\|l—[,/>:|
—ﬂﬁ@+5QQW+O+ﬁQQ”1@MaTMX+mn£mT)
(2.18)
Note that the K approximation removes the Ai|j,K = 1) terms of
eqn (2.10). The couplings eqn (2.10)-(2.12) therefore simplify
respectively as
(J'Kol (Z|{Ko + p|H|Ko + p)|T1'}| jKo) = {J'Ko|CLi> + RT12| jKo),
(2.19)
(J'Kol (Z"[{Ko + plH|Ko — p)iT1") | jKo) = {j'Ko|RT13] jKo),
(2.20)
(J'Ko| (T |(Ko + p|H|Ko — p)|i1")| jKo) = (J'Ko|RT23| jKo),
(2.21)
and H is real and symmetric, since the matrix elements of L,, I:y,

and L, are purely imaginary and the others are real. In block-
matrix form we have

(1) r(2) " (3)
(1) [BOy(2.14) ClI;+RT;(2.19) RT;35(2.20)
= '(2) BO»(2.14) RTy3(2.21)
" (3) BO33(2.14)
(2.22)

The coefficients of the L components increase with J and
depend on K,, those of [2, L.L,, L, and L, diverge at C..,
geometries, mainly for I? and £,, and their relative strength
depends on the system under study and can be assessed only
via numerical calculations. The centrifugal-sudden approxi-
mation is obtained with A"?KO =0. If J = 0, the RT, L, term of
eqn (2.16) vanishes and the I1” product channel in eqn (2.17) and
(2.18) is closed. If K, = 0, also the first lines of eqn (2.17) and (2.18)
vanish. On the other hand, all RT couplings are present if K, > 0.

We represent this roto-electronic angular Hamiltonian on a
(R,r) 2D radial grid, where the 772 matrix elements are obtained
via a Fourier transform from the coordinate to the momentum
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View Article Online

PCCP

representation, calculating the matrix elements in the latter
space, and returning back to the former representation via an
inverse Fourier transform. In conclusion, the full representation
includes three diabats, two radial coordinates, Legendre states,
and overall-rotational species, and it is used for computing the
quenching dynamics as we briefly report in the next Section.
In closing this Section we summarize all our approximations.
(1) Spinless Hamiltonian: the spin is considered only in the
calculation of the electronic states.
(2) OH(X’TI): the electronic angular momentum is omitted.
(3) Strictly diabatic electronic representation: 0|e)/0Q = 0,
where |e) is an electronic state and Q is a Jacobi coordinate.
(4) Quenching approximation: only couplings (e'|O]e), e’ # e.

(5) Diagonal approximation: (1A’| — — |1A’) = (2A/| — — |247)
in the calculation of (£*| — — |IT').

(6) K approximation: K’ =K £ 1 & K = K,.
2.3. Wavepacket collision dynamics
Initial-state-resolved reaction probabilities are obtained

through the time-dependent real wavepacket (WP) formalism
of Gray and Balint-Kurti,>® essentially equal to the Chebyshev
approach of Guo.*® To this end we scale and shift the Hamilto-
nian of Section 2.2.4, obtaining H,, whose arccos mapping of
the equation of the motion is solved recursively. We employ a
complex initial WP

Vo) = lao) + ilbo) = |Z7)|so(R)) [vajo(r)) LioKo), (2-23)

that contains the sinc*' R-dependent term

so(R) = (mer)exp [4(2,uRE0)1/2(R ~ Ry)
sinfo(R — Ry)] (2.24)

X exp [—ﬁ(R — Ro)z] R R

times the OH(*Z") vibrational and rotational states |vgjo(r)) and
| joKo). The recursions are

la) = Hglao) — (1 — AH2)'?|by), first complex propagation,
(2.25)

|@ps2) = 2Hg|a@niq) — |@n), other real Chebyshev propagations.
(2.26)

The WP is propagated in all the reactant Jacobi coordinates and
the quenching probabilities are calculated at the end through a
time-to-energy Fourier transform and an asymptotic analysis on
the IT" and I1” PESs at R.,.*°

We have converged quenching probabilities Py}, (Eci) and
Pl/(Ecor) of OH(’Z"), from the ground vibrational state and the
ground rotational state j, = K, = 0 to the OH(*IT) final diabatic
states I1" and I1”, propagating WPs at all J < 140 with the
numerical parameters of Table 1, that correspond to 7227 394
basis states, and using 330 values of the collision energy E.,,
from 0.001 to 0.33 eV.

Finally, initial-state-resolved cross sections ¢(E.,) and ther-
mal rate constants at the temperature T, k(7), are calculated via
the usual expressions. Following ref. 21 and 42, we also obtain
thermally averaged cross sections from the mean relative

This journal is © the Owner Societies 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp02512g

Open Access Article. Published on 18 June 2020. Downloaded on 8/1/2025 9:38:30 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

PCCP

Table1 Parameters of the quantum dynamics calculations. Values in a.u.,
unless otherwise specified

Initial sine so(R): o, Eo, Ry, 8
R range and number of grid points

17, 0.039 eV, 11, 0.01
2.95-16 and 307

r range and number of grid points 1.45-7 and 79
Number of Legendre states 100

R and r absorption start at 12 and 5

R and r absorption strengths 0.05 and 0.01
Asymptotic analysis at R, 11

velocity, (v(T)) = (8ksT/mug)"?, as (a(T)) = k(T)/(v(T)). For analyzing
some probabilities we also use thermally averaged partial cross
sections (¢/(300)) resolved on the quantum numbers j and
Jo =Ko = 0, at 300 K.

3. R-Embedding results and discussion

3.1. Electronic calculations

The present diabatic PESs and the respective couplings can be
considered as 3D extensions of the previous 2D PESs and
couplings presented in ref. 21, in which the OH bond distance
r was fixed at its equilibrium value on the A>’Z" state. The effect
of varying r is best seen near the 2A’-1A’ CI seam at linearity,
where the adiabats belong exactly to the £ and IT’ irreps,
respectively, and their A coupling vanishes by symmetry. As
already pointed out in ref. 21 and 22, and also below Fig. 3, that
seam plays a central role in the quenching and it is presented in
Fig. 2 at y = 180° (Kr—-OH configuration). We clearly see that the
initial =" PES becomes fully repulsive at r > 2.5a, and that the
CI seam lies very near the PES minimum and then moves at
larger R and r values and higher energies. We report further
details and the implications of this result by discussing Fig. 3.

Nevertheless the main topographic characteristics of the
three PESs are essentially the same and will be described
mainly at the calculated equilibrium bond length of the OH
asymptote in the " PES: r = 1.916a,. The top-left panel of Fig. 3
shows that the =" PES (2A’ in Cs symmetry), which correlates
with OH(AZ"), exhibits two pronounced van der Waals (vdW)
wells in linear configurations. The global minimum corre-
sponds to a collinear Kr-OH vdW complex at Ryqw = 3.847ay,
Tvaw = 1.900ag, Vvaw = 180° and Vigw = —0.990 eV. This
minimum is very near to a conical-intersection point with the

4.0

3.5

2 S*ev ]

3.0

r/a.u.

2.54

2.0+

5.0 6.0
R /a.u.

Fig. 2 y = 180°. =* PES (eV with respect to the reactants). The Z* -1’ CI
seam is labeled by a green line.
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IT' species, at Re; = 3.827ay, rgr = 1.916ay, ycr = 180° and
Var = —0.984 eV. It is the presence of this deep Kr-OH mini-
mum that allows collisions at thermal energies to access the
conical intersection, boosting the quenching cross sections to
values comparable to those of collisions with H, and somewhat
higher than those with N,. This is in contrast to other Rg +
OH(A) systems with lighter rare gases (He, Ne, Ar), whose Rg-
OH(A) minima are much shallower and their conical intersection
lies well above the respective asymptotes at a much shorter R
distance, above the strong repulsive wall of the Rg-OH(X) PES. As
a consequence, their respective quenching cross sections are two
to three orders of magnitude smaller than those for Kr + OH(A).
As can be expected, however, for Xe + OH(A) the situation is
analogous to the Kr + OH(A), but the quenching cross section are
almost a factor of two bigger for the former.>?

The origin of the well between OH X" state and the noble gas
can be traced back to the electronic structure of the system.
OH(X") is characterized by the excitation of one electron from
the o bonding to the = orbital. In the same time, ¢ presents a
favourable overlap with the collinear p orbital of Kr. This deficit
of electron in the o bonding orbital allows it to drag the
electronic density of the p orbital providing a partial charge
transfer of about —0.4 a.u., according to a Mulliken population
analysis of the MRCI wavefunction, and therefore stabilizing
the system. In the OH(IT) ground state, the o bonding orbital is
filled and cannot drag electronic density: in this case, Krypton
remains neutral and the interaction with OH is purely repul-
sive. The OH X" state can thus be considered as partial Lewis
acid when it interacts with Krypton.

The secondary minimum, at a linear OH-Kr configuration
with y = 0, occurs at R ~ 5.3a, is shallower (V ~ —0.28 eV), and
is therefore less important for the quenching dynamics. In the
adiabatic representation, both minima are the result of avoided
crossings of the =" and the repulsive wall of the IT’ ground
state, which can cross in C,, linear configuration where the A’
species take exactly their " and I1’ character and their electro-
nic coupling vanishes. However, when the system departs from
linearity, the A’ component of the IT state couples with the ="
state and crossing becomes avoided.

We also see that the =" PES is strongly anisotropic: the linear
configurations are indeed preferred whereas the Kr perpendi-
cular approach to OH is inhibited. In contrast, the I1’ PES that
correlates with OH(X’IT), shown in Fig. S1 (ESIt), is unbound,
fairly isotropic, symmetric with respect to y = 90°, and very
similar to the I1” one that it is not shown. Our 3D results
confirm essentially the previous 2D calculations®'** at constant
r, except that the present global minimum is deeper and takes
place at somewhat smaller value of R than that of ref. 21, where
Ryaw = 4.16ay, r = 1.913a,, and V,qw = —0.754 eV.

Due to the topographic singularities at the conical inter-
sections, the adiabatic representation is not ideally suited for
dynamical calculations and the fit is much more problematic.
The diabatic representation, where the ' and II' character
are preserved in the whole PES, becomes a much better option.
In this representation, £ and I1’ states can cross not only in
linear conformation, but everywhere. However, the crossings
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Fig. 3 r=1916a0. =% PES (eV with respect to the reactants), conical-intersection coupling Cly, = (Z*|H|IT'), Renner—Teller matrix element (Z*|L%[TT').
J =70 and Ky = 0, total coupling Cly, + RTy, of eqn (2.15) + (2.16). Negative/zero/positive levels in red/black/blue. The Z* -1’ diabatic crossing is labeled

by a green line.

only occur in the regions of the " wells. When Kr approaches
perpendicularly to OH, the interaction is repulsive for both X"
and IT' and they never cross. Since the couplings become
effective only when the energy difference between the coupled
states is small, the regions of the two wells will be more relevant
for the efficiency of the quenching. In addition of the PESs, it is
therefore interesting to discuss the evolution of the couplings
depending on the geometry of the system, and in particular the
L couplings. We thus plot in Fig. 3 also some relevant cou-
plings, at r = 1.916a,, and at J = 70 and K, = 0 when they depend
on these quantum numbers.

The CIy, term (Z*|A|IT') on the top-right panel of Fig. 3
vanishes by symmetry in C., and is nearly antisymmetric with
respect to y = 90°, with a maximum value equal to 0.14 a.u. at
R = 3ay and y = 117° at the r value here considered. Never-
theless, this configuration is at a repulsive * energy, not
important for the low-energy quenching that is favored by the
" attractive region and by rather large coupling values near
R ~ 3.8a, and y ~ 160°.

The eqn (2.14)-(2.21) use the R-embedding and the matrix
elements of L between diabatic states, which are calculated
from the MOLPRO r-embedding and adiabatic species in two

17098 | Phys. Chem. Chem. Phys., 2020, 22,17091-17105

steps, through the properties of £.2° (1) The R-embedding L
components are obtained from the r-ones by rotating counter-
clockwise the body-fixed axes around y by 7. (2) The diabatic
matrix elements are then calculated via eqn (2.1) and (2.2), and
the quenching approximation (1A'| — — |1A") = 2A'| — — |24A).
For example

L2 = Lf cos?y + J:i sin’y + (2£ _£_+iL,)cosysiny  (3.1)
and

(S*|E2|IT) = (1A'|£2|2A")(cos®y — sin®y).

(3.2)

Another example of these transformations is in Fig. S2 (ESIt)
that reports the angle y(R) of eqn (2.2), three L(R) couplings
in both embeddings and representations, and two £ (R)
couplings in the r-embed and adiabatic representation, at r =
1.916a, and y = 175°. This figure also shows that our r-embed,
adiab matrix elements Im(2A’|£ |A"), Im(1A'|Z |A"), and
Im(2A'|£_|A") are nearly equal to those of Fig. 2 of ref. 22,
provided a A” change of sign, but that R, is larger by ~0.32a,
due to the present variation of r and to the sensitivity of the CI
seam to the calculation accuracy.
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Among the eight matrix elements of L in eqn (2.16)-(2.18),
the largest one is (X*|Z2|I1") plotted in the bottom-left panel of
Fig. 3. It is approximately antisymmetric with respect to y = 90°,
as the electronic coupling due to A, and varies sharply both in
value and in sign near the linear conical intersections where it
attains large absolute values. This result is due to sudden
changes of y in these regions where both numerator and
denominator of eqn (2.2) almost vanish, as the above-left panel
of Fig. S2 (ESIT) shows. Fig. S3 (ESIt) then reports the 12, L,
and I:y matrix elements. The decidedly smaller £ values with
respect to L* point out that the latter term is essentially due to
L} + L, and L,L, and L, are nearly constant at R > 4d,.

According to eqn (2.16)—(2.18), all Renner-Teller couplings
do not depend solely on the L matrix elements but also on their
coefficients, all of which are functions of the Jacobi coordinates
and those of the L components depend also on the overall-
rotation quantum numbers J and K,. For example, the B
coefficient of I* in eqn (2.16) is 1/(2urR*) < 10~° a.u. in the
considered R range, and the coefficients of £2, L.L,, L,, and L,
are large near linear geometries if K, > 0, especially that of L,.
We thus plot in the bottom-right panel of Fig. 3 the overall non-
adiabatic £"(1)-TT'(2) coupling CI,, + RTy,, eqn (2.15) + (2.16),
at J = 70 and K, = 0, showing that it is very similar to the H¢!
coupling. This fact implies that the ="-T1 interaction is essen-
tially due to the conical intersection, as we shall see also in
Section 3.3.2.

After the non-adiabatic CI and RT matrix elements of operators
belonging to the A’ irreducible representation of the Cg point
group, we close this Session by presenting in Fig. 4 the total
couplings X'(1)-I1"(3) RTy3, (2.17), and IT'(2)-T1"(3) RT,3, (2.18),
due to £, and L, ~ A".

Even at J = 70 and K, = 0, where 290,0 is large and equal to
70.5 a.u., these Renner-Teller couplings RT;; and RT,; are
smaller than the conical-intersection term CI;,, confirming
that the latter effects are more important than the former when
OH(A’X") is in the ground ro-vibrational state. In particular,
both RT,; and RT,; are different from zero at large R values and
RT,; is rather important at linearity, because L, couples the

180

/_1E_3%. : . .
160 —%O E
140 - 1E-4 g
120 - N
© 0—
— 80 ]
= 60 ]
404 -1E-4 7
A
20 [0 \
0152 : : .
3.0 4.0 5.0 6.0 7.0 8.0
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nearly degenerate 1" and I1” components of the OH(*IT) product
via the coty factor of eqn (2.18). This is different from CI,, that is
larger far from the linearity where it vanishes by symmetry. Since
RT;; < RT,3, these results show that the relative strength of the
non-adiabatic couplings is CI;, > RT,3 > RTy3 > RTj,. Finally,
other L matrix operators are plotted in Fig. S4 (ESIt) and it is easy
to check that all fulfill the C., selection rules at y = 0 and 180°.

3.2. Time-dependent reaction mechanism

The time-dependent reaction mechanism on the three coupled
diabats |e) is shown in Fig. 5 that presents normalized electro-
nic norms and snapshots of the j-summed (R,7) density

(3.3)

dlp (1) =D [(eRoj | W' (1)) / (1)

of aWP atJ =70, j, = K, = 0, and at five times ¢ < 573 fs. The time is
proportional® to the propagation number 7 in eqn (2.26) but this
proportionality is lost afterwards and the WP spreads on all the
conformational space at larger times, masking the mechanism.

The initial =" WP remains essentially on this PES up to ~180
fs, moving towards the interaction region without being affected
by the non-adiabatic couplings with the II states. Contrasting
this finding with other barrierless quenchings with smaller or
equal exoergicity, as OH(X) + H™” and OH(A) + H,** we see that
this collision is much slower than the others owing to the larger
mass of the Kr atom. During this early stage of the reaction, only
R decreases while both r and y do not vary appreciably.

The attack of Kr to the O atom and the quenching process
begins at ~180 fs, when part of the WP enters into the strong
interaction region at R < 5a,, where the WP jumps on the IT’
PES at R ~ 3.8ay and y ~ 160° owing to the '-TI’ conical
intersection. At 181 fs the hops from X' to IT’ occur mainly
at Rpop ~ 3.5-4 and 4.5-5a,, where the WP forms KrOH
metastable complexes near the CI seam. Nearly 20 fs later,
that is at ~200 fs, also the I1” surface begins to be populated at
Rhop ~ 3.5-4a, and the collision complex reveals now its full
non-adiabatic nature, spreading on all the three PESs.

180 -

P
160
140 ]
120-L\ ]

100 ’ \ RT23/a.u. i

80 1
60 - 1
404 0—]

20 B
-1E-3 1E-3.

3.0 5.0 6.0

R/ a.u.

Y / deg

r =1916aq, J = 70 and Ko = 0. RT3, egn (2.17), and RT,3, egn (2.18). Details as in Fig. 3.
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Fig. 5 J =70 and jo = Ko = 0. WP norms and y-averaged (R,r) densities at 5 times.

At larger times we see both the non reactive WP on X", due to
recrossings of the CI seam, and the reactive densities on I1" and
I1”, together with the formation of the quenching products
resolved on these final states. Nevertheless, the major part of
the WP is not reactive and is reflected back into the reactant
channel.

By transforming the WP from the Legendre representation j
to the angular one 7,** Fig. S5 (ESIt) shows a complementary
picture of the mechanism plotting r-summed (R,y) densities.
Because we are considering a rotationless OH(*X") diatom with
Jo =0, the initial -averaged density depends only on R, as the top
panel of Fig. S5 (ESIt) shows. During the OH(A) + Kr collision
many Legendre polynomials are occupied and the WP thus
spreads on all the y values, mainly at 180° near the " minimum
and the most important CI point. Therefore, the IT metastable
complexes begin at ~180 fs with a Kr—OH linear geometry.

In conclusion, these results reflect nicely the non-adiabatic
couplings and extend to three coupled electronic states and to
(R,y) densities the findings found with just two of them,*”**
showing the different role played by two final electronic states
here investigated in two different conformational subspaces.

3.3. [Initial-state-resolved quenching probabilities

3.3.1. Full calculations. We present in Fig. 6 quenching
probabilities Py, P/, and P}, . = P{, + P}, resolved and
summed on the final IT states, at J = 0, 30, 70, 100, and 140 and
atj, = K, = 0. Contrarily to the OH + H" quenching,®” where only
the (IT’'| L, |TT”) matrix element was considered but it is closed at
J =0, the OH(A) + Kr quenching is open at any J value owing to
other couplings. As Fig. 3 shows, this finding is mainly due to
the (Z*|A°'|TI") conical intersection coupling, and the IT”
channel is closed at J = 0 according to eqn (2.17) and (2.18).

The most striking feature of the probabilities is their reso-
nance structure in all the energy range and at all J values,

17100 | Phys. Chem. Chem. Phys., 2020, 22,17091-17105

decreasing however as J increases, similar to that observed in
other electronic quenchings.’” Many causes can contribute to
this finding: (1) The strong exoergic character of the quenching,
associated with an indirect Kr insertion, with the formation of
many long-lived intermediate complexes on the II surfaces as
Fig. 5 and Fig. S5 (ESIt) show, and with an electronic-to-
translational energy transfer. (2) The formation of OH(’II)
rotational states.**? (3) The presence of the van der Waals
minimum on the X" PES. (4) The K approximation used which
enhances the oscillatory structure by omitting all K # K, terms
that in general average the probability oscillations.

Because the quenching is barrierless, low-J probabilities do
not present any threshold, which appears only around J = 30
and increases very slowly with the overall rotation. This J
shifting is simply due to the centrifugal barrier BJ(J + 1) of
the Born-Oppenheimer matrix elements, where B is small
owing to the Kr large mass and to R > 2.95a,, as we already
found in comparing CI,, and Cl;, + RT;, in Fig. 3. We also see
that the IT’ electronic component is preferred with respect to
I1”, on account of the important A electronic coupling CI,,
and that the IT" and I1” populations decrease or increase with J,
respectively. In fact, the former channel in essentially due to
conical-intersection effects and the latter depends only on
Renner-Teller couplings that increase with J.

3.3.2. Model calculations. In ref. 22 the quenching cross
sections were calculated through the quasi-classical trajectory
surface hopping method, using space-fixed cartesian coordi-
nates, adiabatic electronic states, first-derivative radial cou-
plings, and hopping probabilities obtained from non-
adiabatic couplings. Results of both full and model calculations
were presented to assess the relative importance of the different
couplings.*® This is quite different from the present quantum
formalism which relies on body-fixed Jacobi coordinates, on
diabats, on a R-embedding Hamiltonian A containing all
couplings, and on the A, equation of the motion. Nevertheless,
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Fig. 6 J =0, 30, 70, 100, 140, and jo = Ko = 0. Quenching probabilities, resolved and summed on the final IT diabats.

we here follow this idea at the probability level, contrasting full
and model calculations of some representative total quenching
probabilities Pﬁ’, L atJ =70 and j, = K, = 0. In fact, calculations
of cross sections atj, > 0 is beyond our computer facilities.
We plot in Fig. 7 the results of four models: (1) centrifugal
sudden (CS) with 49, = 0 in eqn (2.14)~(2.18); (2) Ly = L, = 0 in
eqn (2.16)~(2.18); (3) conical-intersection only (CI) with L = 0; (4)
Renner-Teller only (RT) with y = 0 in eqn (2.1). The sharp and
strong resonances make it difficult in some cases to compare
quantitatively different probabilities. To this aim, we use the

thermally averaged partial cross sections <01J.[, (T )> =

((a,)(T)) + (o )(T)) of Table 2, resolved on the quantum
numbers J = 70 and j, = K, = 0, and at T = 300 K.

The left panel presents two widely used approximations. The
CS one does not work well at this high J value, with the I1”
channel closed at K, = 0, according to eqn (2.17) and (2.18), and
with larger resonances shifted to higher energies. Nevertheless,

This journal is © the Owner Societies 2020

the Maxwell averaging on E., reduces strongly these differ-
ences with a CS <‘7|7'?’+n”(300)> lower by ~20%. On the other

hand, the model probability obtained with L, = L, = 0 is
practically equal to the full results and indistinguishable on
the scale of Fig. 7. The right panel reports model probabilities
when some non-adiabatic couplings are switched off. We see

that both PJ L and <al7.?, +n"(300)> are large by considering

only CI effects, and the opposite is true if only RT effects are
taken into account. These two effects are not addictive and CI is
by far the most important coupling when j, = K, = 0, because
the geometries where X" is attractive and the term (X*|H!|TT')
is large are near, as we have seen in Fig. 3. The CI model slightly
overestimates some resonances with respect to the full calcula-
tions. This finding implies that CI and RT effects can be in
mutual competition because they are large at different geome-
tries as we have seen in Section 3, and RT couplings can induce
a few recrossings from IT’ and I1” to £*, which are small when
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Fig. 7 J =70 and jo = Ko = 0. Full and model total probabilities.

Table 2 J =70 andj, = Ko = 0. Thermally averaged partial cross sections
at 300 K

Calculation <a¥1°, I (300)>/1§2
CSs 0.11
Ly=L,=0 0.14
CI 0.13
RT 0.01
Full 0.14

K, = 0 according to eqn (2.16) and (2.17). These findings are
essentially confirmed by other model calculations at different
values of J, j,, and K,.

Therefore, the general trend of model probabilities, with
respect to full calculations, is that the CS approximation cannot
be used at large J, the L, = L, = 0 approximation works very well
at low K, values, and CI effects are larger than those RT which
are enhanced when OH(A) is in an excited rotational state, as it is
usually found.?” On the overall, the effects of model calculations
are larger in quantum than in quasi-classical calculations®
where these effects are considered indirectly, via hopping prob-
abilities from the couplings, and they are summed over J by the
cross sections results.

3.4. [Initial-state-resolved quenching cross sections and rate
constants

Fig. 8 shows quenching cross sections ¢ at j, = 0, from 0.001 to
0.33 eV, and Table 3 reports some representative numerical
values.

The IT' channel is strongly preferred at low E, in agree-
ment with the reaction probabilities and with the bottom-left
panel of Fig. 6 of ref. 22, and the collision energy enhances the
I1” weight with a branching ratio opy+/op increasing from ~ 0.1
at the threshold to ~0.6 at 0.33 eV. We also see that at least
nine resonances survive the partial wave sum of the probabil-
ities, mainly for the quenching on the IT’ surface. The IT' + IT”
and I’ cross sections increase sharply from the threshold up to
maximum values equal to 14.8 A% at 0.045 eV and to 11.6 A% at
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Fig. 8 jo = 0. Quenching cross sections, resolved (black) and summed
(red) on the final IT diabats.

Table 3 j, = 0. Quenching cross sections?

Ecol/leV or/A? orIA? o /A
0.011 5.6 1.0 6.6

0.029 10.1 2.7 12.8
0.039 11.2 2.9 14.1 (17.2 + 0.4
0.045 11.6 3.2 14.8
0.052 11.1 3.4 14.5
0.081 9.2 4.2 13.4
0.140 8.6 4.0 12.6
0.176 8.1 3.9 12.0
0.225 7.2 3.4 10.6
0.240 71 3.4 10.5

@ All resonances, except at 0.039 eV.

0.044 eV, respectively, that is at the third resonance. Their
average values then decrease at larger energies because the
quenching is barrierless and exoergic. This trend is less evident
for oy that presents smother variations with a maximum value
equal to 4.2 A% at 0.083 eV, near the forth resonance. At 0.039 eV
the total quantum cross section opm» is equal to 14.1 AZ
whereas quasi-classical®® value is 17.2 + 0.4 A%, We believe that
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Table 4 j, = 0. Thermal rate constant k7.7 and thermally averaged
cross section (opy/4n)

T/K krpam/107 1 em?® 571 (o)A
100 3.1 8.0

200 5.8 10.7

300 7.8 11.6 (10 + 1)**
400 9.2 11.8

500 10.3 11.8

700 11.7 11.4

900 12.4 10.7

this difference is mainly due to many and sharp oscillations
of the quantum probabilities which are averaged by quasi-
classical calculations.

We also report in Fig. 9 and Table 4 initial-state-resolved
non-adiabatic thermal rate constants and thermally averaged
cross sections at j, = 0. Total and IT'-resolved k and (¢) increase
sharply at low temperature and reach their asymptotic values at
900 K: 12.4 x 10 ‘' and 8.8 x 10~ '* em® s * for k, and 10.7 and
7.6 A% for (s). The rate constants increase monotonically
whereas (o) has a maximum at 450 K, equal to 11.9 A%
At 300 K, {or:11(300)) = 11.6 A% in good agreement with the
experimental value®* of 10 + 1 A%

Quantum oyy.117(0.039) and (o, #(300)) differ by 2.5 A%
owing to the averaging of the latter on its resonances, whereas
quasi-classical®® observables are nearly equal since the oscilla-
tions are washed out in the quasi-classical opacities. We fit the
total rate constant from 100 to 900 K to the extended Arrhenius
expression k*" = A(T/K)"exp(—EJ/kgT), finding A = 3.02 x
107" em?® s7%, x = 0.230, and E, = 0.0094 eV. This is a small
activation energy, because the ' PES is barrierless, the centrifugal
barrier is little important, the quenching is exoergic, and the WPs
do not feel any repulsive potential on the IT" and I1” PESs.

4. Summary and conclusions

Following a previous quasi-classical trajectory surface hopping
study,”® this paper presents the non-adiabatic quantum
dynamics of the electronic quenching OH(A’Z") + Kr('S) —
OH(X’T) + Kr('S), with OH(A’Z") in the ground ro-vibrational
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state. We use a new non-adiabatic quantum theory based on
three diabatic electronic states, £*(1), IT’'(2), and IT"(3), coupled
by nine conical-intersection (CI) and Renner-Teller (RT) matrix
elements. Using a triatomic Hamiltonian H, all the matrix
elements of the electronic Hamiltonian A and of the total
electronic angular momentum £ are taken into account and
ab initio calculated in three dimensions. The time-dependent
mechanism, initial-state-resolved quenching probabilities, integral
cross sections, thermal rate constants, and thermally averaged
cross sections are calculated through the real wavepacket (WP)
method and an asymptotic analysis.

Since the minimum structure of the initial =" PES and its CI
seam with the IT' surface are very near, the quenching is
opened by the '-TI' CI;, coupling at y ~ 160°, whereas RT
couplings are more important near the linearity. When
OH(A’X") is in the ground ro-vibrational state, CI;, is
the preferred non-adiabatic pathway, much more than those
S'-T" RTy,, X'-TI" RTy; and IT'-T1" RT,;. In particular,
the relative strength of the non-adiabatic couplings is CI;, >
RT,; > RT3 > RTy,, with (IT'|Z,|T1”) in RT,; more important
than other L matrix elements.

These electronic results are confirmed and strengthened by
the analysis of the quantum dynamics, showing that the IT’
channel is preferred with respect to I1”, and that conical-
intersection and Renner-Teller effects are non-additive and in
competition at some collision energies E.,;. When OH(AX") is
in the ground ro-vibrational state, the quantum results also
suggest that the conical-intersection coupling rules the
dynamics but can overestimate the reactivity, which is reduced
by the Renner-Teller effects that modulate the dynamics.

Time-dependent WP snapshots show that the quenching is
rather slow and that the opening rates of the IT’ and I1”
channels are ~180 and 200 fs', respectively. Quenching
probabilities P(E..;) present many sharp oscillations that imply
an insertion, complex-forming mechanism that is reflected on
some smooth resonances of the cross sections o(E.q), as in
other electronic quenching processes.’” We obtain total o(E.o =
0.039 eV) = 14.1 A% and thermally averaged (¢(300 K)) = 11.6 A2,
These quantum findings compare well with previous quasi-
classical®®* and experimental results,”® which are equal to
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17.2 & 0.4 and 10 & 1 A? respectively. The total cross sections
increase from small values at the threshold up to the maximum
values 6(E.o = 0.045 eV) = 14.8 A% and (¢(450 K)) = 11.9 A% On
the other hand, the total rate constant increases monotonically
in the temperature range here investigated, with a ~ T
temperature dependence and a small activation energy.

In closing, we contrast the present quenching OH(A’X") + Kr
with other quenchings we investigated with similar quantum
methods, namely O('D) + N,,*® OH(A’L") + H,** and OH(XTI) +
H" *” with the reactant diatom also in the ground rotational state.
When the quenching is due to non-adiabatic couplings of differ-
ent nature, as in O('D) + N, with Spin-Orbit and Renner-Teller
effects or in OH(A) + Kr, the RT couplings are less important,
because they are significantly different from zero near the linearity
whereas the others are important in larger geometry ranges. This
is confirmed by the H,O photodissociation®” where CI and RT
terms are in competition, like here. OH(A) + H has a smaller
resonance structure and larger cross sections than those found
here, probably because its reduced mass yuy is 15 times smaller,
giving both a faster collision with shorterlived intermediate
complexes and larger cross sections. On the other hand OH + H'
presents many resonances, like OH(A) + Kr, and larger cross
sections owing to its smaller ug.

Clearly, this work should be extended to a coupled-channel
formalism, to excited OH(A) rotational states, and to other cross
sections investigated in ref. 21 and 22. Nevertheless, these quantum
calculations are very expensive and much beyond our present
computer resources. A final comment concerns the comparison of
full 3D calculations with respect to those 2D**? with constant r. The
real WP method of Gray and Balint-Kurti*® relies on the projection of
the WP at R., onto the final ro-vibrational states of the products
OH(IT") and OH(IT") and it cannot used in reduced dimensionality.
Nevertheless, we are planning to carry out surface-hopping QCT
calculations on the new PESs with a fixed OH distance and with the
full 3D PESs. In addition, not only the quenching cross section will
be calculated but also the rotational energy transfer cross sections
and the OH rotational distributions on the 1A’ and A” PESs.
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