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The rearrangement of transition metal nanoparticles from cuboctahedral to icosahedral structures is
studied for up to 923 atoms. The atomic structure and temperature dependence of the transition are
investigated with a well-defined collective variable. This collective variable describes the folding of the
square fcc(100) facets into two triangular facets through a linear combination of the diagonals of all
fcc(100) facets of all shells of the particle. Activation barriers are determined through harmonic transition
state theory and constrained molecular dynamics simulations based on force field potentials. These
calculations predict an activation entropy larger than 1 meV K%, leading to strongly temperature
dependent activation barriers. Density functional theory calculations were additionally performed both as

Received 27th March 2020, single point calculations and as full optimizations. Cu, Ag, Au and Ni clusters show low barriers for

Accepted 26th May 2020 concerted, symmetric transition up to the 309-atomic clusters. In contrast, for Pd, Pt, Rh and Ir higher
DOI: 10.1039/d0cp01651a barriers are required, already for the 147-atomic clusters. With increasing barriers, an asymmetric but still

concerted rearrangement becomes energetically more favorable than the fully symmetric transformation.
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1 Introduction

In the limit of large clusters (>10* atoms), the thermodynamically
most stable metal particles generally have the structure of the bulk
material, in particular fcc for fcc metals. For smaller particles,
different structural motifs can be more stable, for example
decahedral and icosahedral structures."”® Many properties, in
particular the reactivity”® have been shown to depend on the
particle shape. Which particle structures are observable is not
only determined by their thermodynamic stability, but also by
the rate with which they are formed or rearrange.”"" This has
implications also for supported nanoparticles, where it has been
shown that transition metal particles can dynamically adapt to
reaction conditions.">® On the other hand, the persistence of
defects such as stacking faults in copper particles'* and grain
boundaries in gold electrodes'® have also been proposed as the
origin of the catalytic activity. Shape changes within a certain
crystal structure can occur via single atom diffusion and can be
modeled with 3D-lattice kinetic Monte Carlo simulations."®"”
For rearrangements between fcc and icosahedral clusters,
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The material-dependence of the transition can be correlated with the melting point of the bulk metals.

the lattice changes and a concerted transformation is possible,
which is more challenging to model.

The Mackay icosahedron was proposed in 1962 as a potential
cluster shape along with the realization that it can be generated
by the distortion of a cuboctahedron.'® Icosahedral clusters
have since then indeed been observed many times and have
been found to be stable mainly in the range of small to inter-
mediate clusters (<1000 atoms).'® The stability of different
cluster morphologies was also shown to depend on the inter-
action with the support for Ni and Cu clusters.>* The transition
from fcc to icosahedral particles itself has also been studied,
mainly as a spontaneous process in molecular dynamics simulations
(MDs).>* When studying the melting process of a gold cluster,
Landman and coworkers have found clusters to form intermediate
icosahedral structures prior to melting.>* Icosahedral gold
clusters were also found upon simulated freezing.>® Similiar
observations were made for nickel**** and palladium®® clusters,
where transitions involving icosahedral structures were also
found prior to melting. Baletto and coworkers used MD and
metadynamics simulations to study the transitions between
decahedral, cuboctahedral and icosahedral clusters. Barriers
were found to be accessible at room temperature up to Niseq
and Cuse;, while higher barriers were found for Pd, Pt, Au
and Ag.””7° Barreteau et al. found energy barriers for Pd,4, and
Rhy,4; to be larger than 4 eV and larger than 10 eV for Pd;zo and
Rh;,, using a tight binding approach.®
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This work is organized as follows. We will first introduce a
new collective variable that is used to study the atomic structure
of the rearrangement between cuboctahedral and icosahedral
structures of copper particles. The energy barriers for this
transformation are computed using DFT and various empirical
force fields. The temperature dependence of the rearrangement
is then analyzed based on force field MD simulations. Last, the
barrier is compared for different transition and coinage metals.

2 Results and discussion

The transformation from cuboctahedral to icosahedral structures
is shown for Cujzg in Fig. 1(a). The structural transformation can
be described as a folding of the six square fcc(100)-facets into
twelve triangular facets. For boranes, this mechanism was termed
the diamond-square-diamond mechanism.** This turns the
cuboctahedron that consists of eight fcc(111)-facets and six
fee(100) facets into an icosahedron with 20 identical, triangular
facets. In this process, the initially equally long diagonals of the
fec(100) facets distort so that one becomes longer, while the other
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becomes shorter, forming an edge. This is shown in Fig. 1(a) and
the difference of these diagonals, d'-d~, which we measure
between the corner atoms, can actually be used to construct a
collective variable. In the collective variable £(s), we simply sum
over these differences for all six fec(100) facets of a given shell s.
Optimizations are only robust, when this is done for all shells of
the cuboctahedral particles, since all of these shells need to
transform individually:

shells 6

E=NY Y di—d.

s=1 f=1

1)

&(s)

Here N is an arbitrary normalization factor and s runs over all
shells of the particle, starting from the innermost shell enclosing
13 atoms (s = 1), then 55 atoms (s = 2) up to the outermost shell.

It is important to stress, that ¢ is only a single degree of
freedom despite containing the linear combination of many
atomic distances. Furthermore, &(s) is only introduced for the
sake of analysis, but is in fact never varied or fixed for an
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Fig. 1 Cuboctahedral-to-icosahedral transition of Cu clusters. (a) Atomic structure of the Cuszgg particle at three different values of the collective
variable ¢. Edge atoms of the cuboctahedral structure are highlighted in dark green. Additional edges formed in the icosahedral structure are shown in
light green. The diagonals d* and d~ of the fcc(100) facets that contribute to the collective variable are indicated for the cuboctahedral structure. (b) The
collective variable &(s) for each shell of the Cusgg particle as a function of the overall collective variable. (c) Relaxed potential energy profile for the
transition of Cusg; obtained with DFT and force fields (FF). (d) Activation barrier for the transition as a function of size. (e) Two views of the atomic
structure of the transition state for Cug,3. For the outermost shell (s = 6), the two different groups of fcc(100) facets are indicated with different colors.
The corresponding diagonals dg; and dg 4 as well as their contribution to &(6) and &,(6) are also shown. (f) Contour plot of the potential energy surface of
Cugp3 as a function of the two collective variables ¢; and &,. Selected contour lines with a distance of 0.25 eV are shown in the transition state region.
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individual shell, since ¢ is always applied as a sum over all £(s).
For Cuggo, four shells with six fcc(100) facets and two diagonals
each lead to a linear combination of 48 atomic distances for the
collective variable ¢. For the cuboctahedron, ¢ equals zero,
since the fcc(100) facets are squares. During the transition to
the icosahedron, ¢ grows to a final value which we choose to be
¢ =1, using an appropriate normalization constant N in eqn (1).
Although all shells have to transform, they do not need to do
so simultaneously and we indeed find that the outer shells
transform first, when going from cuboctahedron to icosahedron.
This can be seen in Fig. 1(b), where &(s) is shown (with appropriate
normalization for each shell) as a function of the collective variable
for the overall particle . The value of &(s) for the outer shells
clearly changes first and faster. The shell-by-shell rearrange-
ment can be explained by the fact that this requires less atomic
displacements at the same time. The order of the transformation
can be rationalized by the fact that the entire particle slightly
contracts when forming an icosahedron. In this respect it is
interesting, that for Fe-clusters, DFT calculations have predicted
structures to be stable which are only partially Mackay
transformed.*?

In the present form, ¢ is limited to specific cluster shapes,
here cuboctahedral and closed-shell icosahedral. In this respect,
geometric descriptors such as average coordination numbers
and related quantities, as used in metadynamics simulations by
Baletto and coworkers are more generally applicable.””*® The
advantage of the collective variable used here is that it allows to
selectively drive only the cuboctahedral-to-icosahedral transition
and gives very detailed insights into its atomic structure.

Fig. 1(c) shows the relaxed potential energy surface E(¢)
for Cuse; obtained for various methods through constrained
optimizations, where ¢ is held fixed and E is minimized with
respect to all other degrees of freedom. As the shape of the
curve suggests, there is only a single, well-defined transition
state, which has been verified through normal mode analysis
for the force-field methods. DFT-calculations have been carried
out with the PBE functional®® along with the D3 dispersion
correction.*® For Cuse;, PBE-D3 shows a moderately high
barrier of 2.4 eV, while the formation of the icosahedral particle
is strongly exothermic (AE = —15 eV). Simple, classical force fields
such as Lennard-Jones and Morse potentials give a completely
different description, resulting in a much higher barrier and
much less exothermic reaction. While Fig. 1(c) shows only one set
of parameters for these potentials, this discrepancy with DFT
cannot be resolved, since changing parameters for these two
force fields will increase or lower both E, and AE at the same
time. Better agreement with DFT is reached with effective
medium theory (EMT)*® and the potential suggested by Gupta:**-”

rij

V= —xz Ze_zq [%_1} + A Z e_p [’%_1} , )

i J#i ij#i

with 7, j as atomic indices, r; interatomic distances and with
parameters (x, A, p, g, o) fitted to DFT structures (Table S1 in the
ESIt) starting from initial values from the literature.>” The EMT and
Gupta potentials give relatively low barriers (AE, < 3 eV) while also
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predicting a strongly exothermic reaction on the order of —10 eV.
Due to its simpler functional form, we will from now on only use the
Gupta potential for force field calculations, which also gives atomic
structures that agree best with DFT. Another important finding
shown in Fig. 1(c) is that DFT single point energy calculations using
structures optimized with the Gupta potential compare very well
with full DFT-optimizations. For Cuse;, the barrier from single point
energy calculations is 2.6 €V, in good agreement with the value of
2.4 eV obtained from full optimization. This justifies studying the
larger cluster Cug,; only with single points at the DFT level of theory.
Fig. 1(d) shows the activation barrier as a function of size and we
find negligible barriers using PBE-D3 up to Cuzge and then strongly
increasing barriers, with AE, > 6 eV for Cugy;. The trends are
similar for the Gupta and EMT potential, which however predict
small (AE < 1 eV) barriers for Cuzg. Similar trends are found with
other density functionals: barriers for Cuzgg are below 0.2 eV and
barriers for Cusg; are 2.0 and 1.8 eV with BEEF-vdW>® and PBEsol,*
respectively. This shows that the trends found with PBE-D3 are not
specific to this functional, but are more generally observable and
can be thus considered to be more reliable.

For the larger, 561- and 923-atomic copper nanoparticles we
find that a less symmetric transformation is energetically more
favorable and this will be referred to as the asymmetric transition.
In this asymmetric transition, the six fec(100) facets change no
longer simultaneously but in two groups, consisting of three facets
each. The variable ¢ can be split into two components ¢; and &, in
order to describe this behavior. The splitting of the six fcc(100)
facets (f=1,...,6) into two groups again applies to all shells, so that
one can rewrite eqn (1) for &;:

shells 3

G=MD Y di,—dy,. (3)

s=1 f=1

&i(s)

and analogously for ¢&,, in which one sums over the other three
facets f= 4, 5, 6 for each shell. The three fcc(100) facets belonging
to & always enclose a common fec(111) facet in the cubocta-
hedron. The remaining three fcc(100) facets, belonging to &,
enclose the opposite fee(111)-facet.

This is illustrated in Fig. 1(e), where the asymmetric TS is
shown for Cug,;. In the transition state, the faster changing
three fce(100) facets (constituting &,) have diagonal distances of
16.7 and 24.0 A, while the slower changing three facets (con-
stituting ¢,) have diagonal distances of 19.3 and 22.8 A. Fig. 1(f)
shows a contour plot of the potential energy surface E(4,&,) as
a function of the two collective variables &; and ¢&,. The
symmetric transformation ¢; = ¢&,, as observed for Cuzoo has a
barrier that is higher by 0.6 eV for Cug,; and by 0.1 eV for Cuse;.

When asymmetric transition is favored, as for Cug,3, only
the asymmetric transition state is a true first order saddle
point. In these cases, the highest point of the symmetric path
is no longer a true transition state but a higher-order saddle
point. This is because there are four different ways to group the
six fcc(100) facets into the two coordinates ¢; and &,. When
symmetric transition is favored, as for Cuz9, only the symmetric
transition state is a true first order saddle point. In these cases,
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there is no stationary point for asymmetric transition, meaning
that a more asymmetric transition is simply increasingly less
favorable.

To study kinetics, it is crucial to take into account thermal
corrections and we have therefore performed MD simulations
for Cuse;. Calculations were carried in the NVT ensemble with a
Nosé-Hoover-thermostat and a timestep of 5 fs. All simulations
use the Gupta potential that has been implemented into a local
version of LAMMPS.*® We have first performed unconstrained
MD simulations and determined the rate constant for the
cuboctahedral-to-icosahedral transition from the average time
after which it occurred. The transition was detected by a char-
acteristic decrease of the maximum Cu-Cu distance (corres-
ponding to opposite corners) below 12.3 A. Activation barriers
F, were then calculated from these rate constants based on
transition state theory (TST). Transitions are easily observed
within a few thousand MD steps at T > 500 K. This corresponds
to an activation free energy of F, < 0.5 eV, which is surprisingly
low given the computed activation energy of E, = 2.6 eV. The
activation free energy F, increases significantly with lower
temperatures, as shown in Fig. 2(a). At 450 K, transitions
happen on average after around 600 ns (120 million MD steps),
which requires multiple trajectories of 6 million steps each, to
obtain sufficient transitions to determine the rate constant.

—a— Constrained MD (UlI) [}
—©— Unconstrained MD
—— Harmonic TST

(@) 30F
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Fig. 2 Thermal effects computed for Cusg; using the Gupta potential. (a)
Activation free energy as a function of temperature, as obtained from
unconstrained MDs, harmonic TST and constrained MDs. (b) Free energy
profile as obtained through constrained MDs using Umbrella Integration
(UI). An inset shows the transition state region from ¢ = 0.0 to 0.7.
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Investigations at lower temperatures therefore require the
use of constrained MD simulations. Using the collective variable
¢ defined above, this was done with Umbrella Integration (UI).
The Helmholtz free energy curves F(¢) were obtained from
trajectories at 46 different values of &,, each 500 ps long, and
are shown in Fig. 2(b) for various temperatures. With increasing
temperature, the free energy barrier drops significantly, until
the barrier almost disappears at 600 K. Activation free energies
were obtained as described in ref. 41 from the free energy
difference AF,_ :« = F(¢ = &*) — F(¢ = 0), where £* refers to the
maximum in the free energy diagram:

0 (IE1)
Fy=AFy oo —kgTIn|—Lp=0)], 4
a 0z —kpTIn| oo =P(E=0) (4)
with the Boltzmann constant kg and the normalized initial state
probability distribution P(¢) and the average velocities at the

transition state <£*> The obtained barriers F, are shown in

Fig. 2(a) as a function of temperature and agree well with the
predictions obtained both from harmonic transition state theory
and unconstrained MD simulations. A similar temperature-
dependence is found for other metals and parameterizations of
the Gupta potential from the literature®?” (see the ESIY).

This clearly shows that the activation free energy is strongly
temperature dependent, going from high barriers (> 1 eV) below
300 K to negligible barriers at 500 K. This gives the appearance
of a temperature-driven phase transition like melting, which is
clearly not the case, but is due to the high activation entropy. It
is also worth noting that previous investigations have found the
stability of nanoparticles, as modeled with force fields, to
depend significantly on temperature.*>** While the cuboctahedral
particles studied in this work are in all cases less stable than the
icosahedral structures, it is worth noting that cuboctahedral
particles are not particularly stable fcc structures. This is because
they correspond to Wulff constructions with equal 100- and
111-surface energies, while the actual surface energies of 111-
surfaces are generally lower.

In addition to Cu clusters, other fcc metals have been studied.
Ag, Au and Ni behave very similarly to Cu in that they show low
barriers for the cuboctahedral-to-icosahedral transition up to the
309-atomic cluster and rearrange symmetrically up to these sizes
(Table 1). They can also be very well described with the discussed
collective variable and full DFT-optimization is feasible up to the

Table 1 Activation energies E, in eV obtained with DFT (PBE-D3) for the
cuboctahedral-to-icosahedral transition of clusters of size n for various
pure metals. Activation energies were determined as the energy difference
between the highest-energy image of either NEB or constrained optimi-
zation and the energy of the cuboctahedral structure

n Cu Ag Au Ni Pd Pt Rh Ir
147 0.0 0.0 0.0 0.0 1.84 1.8 479 6.4
309 0.0 0.9 0.0 0.9°
561 24 39° 2.8 agb

@ Asymmetric transition optimized through NEB calculations. ” Structures
were obtained from constrained optimization with the Gupta potential.
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Fig. 3 Activation energy E, at the PBE-D3 level of theory for the
cuboctahedral-to-icosahedral transition of the 147-atomic cluster of
various fcc-metals as a function of the experimental bulk melting
temperature.*®

309-atomic clusters. Pd, Pt, Rh and Ir, however, behave very
differently, as they show generally higher barriers and rearrange
asymmetrically already at smaller cluster sizes. Here, DFT-
optimizations were carried out with the NEB method** using 7
to 12 images (see also Fig. S3, ESIT). The barriers for the 147-atomic
clusters are higher than 1.5 eV and the asymmetric transition is
energetically more favorable, for Rh and Ir by more than 1 eV. Again,
similar results are obtained with the PBEsol and BEEF-vdW
functionals. Fig. 3 shows the barriers of the 147-atomic clusters
as a function of the experimental melting point.*® It can be seen
that the barrier generally increases with the melting point. The
elements with the lowest melting points, Ag, Au, Cu and Ni
show a negligible barrier. The activation energy increases
dramatically from Pd and Pt (both 1.8 eV) to Rh (4.7 eV) and
Ir (6.4 eV). While the activation barrier for the cuboctahedral-
to-icosahedral transition is clearly correlated with the bulk
melting point, the underlying reason is not obvious. Although
the rearrangement to the icosahedral structure is not a melting
transition, it has two properties in common: an increase in
energy caused by distortion/destruction of the fee-structure and
an (intermediate) gain in entropy. One can speculate that both
the energetic cost and the entropic gain are related for melting
and the cuboctahedral-to-icosahedral transition and therefore
change systematically between different metals.

3 Conclusions

We have proposed a reaction coordinate that allows the systematic
investigation of the cuboctahedral-to-icosahedral transition. The
transformation occurs via a single transition state, albeit shell-wise
and, for higher barriers, also in an asymmetric fashion, where the
six fec(100) facets transform in two groups. The concept of the
collective variable in this work that is adapted specifically to a
certain transition should also be applicable to other transitions
and more challenging situations, such as nanoparticles interacting
with supports or adsorbates. Cu, Ag, Au and Ni show low activation
barriers (<1 eV) for the transition from cuboctahedron to
icosahedron up to the 309-atomic clusters. Using constrained
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MD simulations, the transformation can be studied over a wide
temperature range and the free energy barrier is shown to be
strongly temperature dependent. The high activation entropy
lowers the activation free energy for the case of Cuse; from
2.6 eVatT=0Kto0.5eVat T=500K. Pd, Pt, Rh and Ir show
barriers higher than 1.5 eV already for the 147-atomic cluster,
where the asymmetric transition is clearly preferred. While all
calculations in this work were carried out for isolated particles,
it can be expected that many results, such as the strong
temperature dependence and the correlation of barriers with
the bulk melting point also apply to supported nanoparticles.

4 Computational details
4.1 DFT calculations

DFT-calculations were carried out with a plane-wave cutoff of
300 eV, Gaussian smearing with ¢ = 0.05 eV using the projector
augmented wave method (PAW) with standard PAW potentials
and the VASP program in version 5.4.1.***” Clusters were
separated by at least 12 A and k-point sampling was restricted
to the I'-point. DFT calculations for nickel particles were per-
formed spin-polarized. The barrier from constrained optimizations
was determined as the maximum energy along £. Optimizations
have been carried out with the ASE,*® where the constraint was
implemented in a local version.*’ Optimizations were carried with
a convergence criterion of 0.01 eV A~ for minimizations and
constrained optimizations and 0.05 eV A™" for NEB calculations.

4.2 Force field calculations

All optimizations were carried out with the ASE*® and a con-
vergence criterion of 0.1 meV A~*. Tight convergence thresholds
are necessary due to the very low curvatures and the resulting
low frequency vibrations. The imaginary frequencies for the
transition mode are on the order of 10 cm™*. All transition
states were verified to have only a single imaginary frequency.
The connectivity was furthermore checked through small displace-
ments along the transition mode followed by optimizations that
led to icosahedron and cuboctahedron, respectively. Harmonic
frequencies were calculated from a numerical Hessian computed
using finite differences.

4.3 MD simulations

All MD simulations were performed using LAMMPS*® with the
Gupta potential and the parameters in Table S1 in the ESIL.f The
Gupta potential was implemented into a local version of
LAMMPS and the additional subroutine is also provided as
ESL} Unconstrained MDs were analyzed based on the average
transition time (t), which was used to determine the rate constant
k = 1/(t). The activation free energy F, was then determined from
transition state theory, k = kgTh " exp(—F./(ksT)).

Umbrella integration®® was performed using a harmonic
potential x/2(¢ — &)* with x = 5 eV (NA*)™", where N is the
normalization constant in eqn (1). At T > 500 K, additional
potentials are required to prevent artificial reconstructions that
cause the corner atoms, for which ¢ is defined, to diffuse over
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the cluster surface. These additional pairwise potentials can be
chosen to act only from interatomic distances large enough to
not perturb regular vibrations. The constraints were applied
between all pairs of atoms in the outer shell (atom 1) and all
atoms in the outer or second shell (atom 2) if the distance d
between atom 1 and 2 is smaller than d; both in the icosa-
hedron and in the cuboctahedron. A quadratic attractive
potential k/2(d — d,)* with k = 50 eV A~ was applied for these
pairs for distances d > d,. The distance d; = 3.0 A was chosen to
capture the nearest neighbor distance and d, = 3.4 A was
chosen larger, to not significantly perturb regular vibrations.
The effect of these additional potentials was carefully checked
by varying these parameters. For example for Cuse;, at a
temperature of 500 K, increasing d, to 3.8 A changes the final
free energy barrier by 0.02 eV.
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