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We present a useful methodology to simulate ionic fluids confined by two charged and perfectly

conducting surfaces. Electrostatic interactions are treated using a modified 3D Ewald sum, which

accounts for all image charges across the conductors, as well as the 2D periodicity, parallel to the

Received 26th March 2020,
Accepted 1st June 2020

DOI: 10.1039/d0cp01640c

surfaces. The energy expression is exact, and the method is trivial to implement in existing Ewald codes.
We furthermore invoke a grand canonical scheme that utilizes a bias potential, that regulates the surface
charge density. The applied bias potential also enables us to calculate individual chemical potentials of

the ions. Finally, we argue that our approach leads to a pedagogically appealing description of the
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1 Introduction

Mechanisms underlying different electrochemical properties of
ionic systems confined by polarizable surfaces has attracted
much attention recently due to their application in electric
double layers capacitors."™ Simulating such systems provides
a number of challenges, associated mainly with treating the
long-range electrostatic interactions that are used to obtain electro-
chemical properties such as surface potentials and capacitance.
Many different methods have been developed to manage electro-
static interactions in ionic fluids confined between two flat
conducting electrodes. Examples include solutions to the Poisson
equation using expansion methods,* the ICMMM2D method,’
the ELCIC method,® mapping schemes,” direct summations of
the image charges® and Gaussian representation of the surface
charges.'® However, generally such methods can be difficult to
implement with slow convergence. Instead, in this work we
implement a different approach which utilizes a double cell that
includes the ions and their nearest images to simulate the many-
reflected full system via Ewald summation. The Ewald summation
has a long history in the simulation of coulombic fluids and has
been developed over many decades to become an efficient and
valuable tool for researchers. As such, optimized implementations,
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Donnan potential, and what it measures in these systems.

such as particle mesh Ewald"' and smooth particle mesh Ewald"
can be put to good use to efficiently treat the problem of charged
fluids confined by conducting surfaces.

One of the difficulties associated with calculating properties
such as the capacitance in these systems is that knowledge of
the electrode potential relative to a fixed reference is required.
While the latter is often chosen to be the bulk fluid, this is not a
requirement. Here we show that a generalization of the Ewald
approach,'** utilizing a grand canonical treatment with single
ion insertions and deletions, allows us to maintain a given
surface potential relative to a fixed reference, which will generally
not be that of the bulk fluid. Single ion insertion and deletions
are not usual in grand canonical schemes for charged fluids, due
to obvious problems associated with non-electroneutrality. How-
ever, this is avoided in the presence of conducting surfaces by the
counterbalancing charge of the images.

A specific example, where we expect our method to be
particularly useful, is the theoretical study of electric double layer
capacitors, sometimes called “supercapacitors”.*>*° This area has
attracted substantial experimental and theoretical work.>*>3
Some experimental data®®>' support the existence of an electrode
pore size (typically of the order of nanometers), which maximizes
the capacitance of the system. However, controlling and
measuring size distributions of nanoporous electrodes is difficult,
and the measurements would strongly benefit by complementing
theoretical modelling. Mean-field analyses have indeed suggested
the presence of “superionic states” in these systems, whereby a
very strong electrostatic screening in narrow pores of conducting
materials might facilitate dense packing of equally charged
species, which in turn can generate a huge capacitance.*?
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Still, such simple mean-field predictions need validation by
more exact treatments, such as simulations. Simulation studies
of porous electrodes are notoriously difficult due to the
presence of multiple image charges. Dudka et al. have made
attempts to circumvent these problems by simulating lattice
models of ionic liquids, where interactions are restricted to
nearest-neighbours.> While such models certainly can generate
interesting insight, it is nevertheless of considerable interest to be
able to utilize a continuum space fluid model, in which Coulomb
interactions (including surface polarization) are properly treated.
In the next section, we describe the Ewald method we use to
treat the ionic fluid between two conducting surfaces. The original
derivation of this model was given by Hautman et al.*® some three
decades earlier, but it seems not to have been widely adopted in
recent treatments of these systems. The description contained
here has some slight differences, in particular, we define a
different unit cell which is useful for charged electrodes.
Furthermore, as mentioned earlier, we describe the use of a
grand canonical ensemble simulation scheme to create charged
electrodes with a potential relative to a well-defined reference.

2 Method

Our system consists of an ionic fluid confined between two
infinite and flat perfectly conducting surfaces (electrodes),
parallel to the (x, y) plane, and positioned at z = +h/2. The
electrode surface is defined by the dielectric discontinuity,
which is assumed to be sharp. In simulations we necessarily
restrict the system size to a unit cell, Cy, defined by |x| < L,/2
and |y| < Ly/2, containing a finite number of ions. The
simulation box need not be electro-neutral.

Periodic boundary conditions (PBC) in the (x, y) directions
give an infinite number of adjacent replicas of C, parallel to the
confining electrodes (see Fig. 1(a)), which can be treated using a
suitable 2-dimensional (2D) Ewald scheme. The polarization of
the two conducting electrodes can be described with image
charges, resulting in an infinite number of reflections®* in the
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Fig. 1 (a) A unit cell Cq (b) Co reflected across the z = 0 plane. (c) The new
unit cell C replicated in the z dimension. Thin arrows indicate periodic
boundary conditions while blue and red filled circles represent ions with
opposite charge.

13660 | Phys. Chem. Chem. Phys., 2020, 22,13659-13665

View Article Online

PCCP

two subspaces z > h/2 and z < —h/2. These images give rise to a
perpendicular electrostatic field at the dielectric discontinuity,
which mimics the equilibrium response of electrons in the
conductors. The electrodes thus have a constant potential over
their surfaces. The combination of a 2D Ewald scheme with a
very large number of explicit image reflections, amounts to
a significant computational task for most reasonably sized
systems and alternatives to such a straightforward approach
are desirable. For example, Santos et al.* have recently described
a more efficient but complex treatment for this system, which
utilizes periodic Greens functions and a modified 3D Ewald
summation, combined with a separate evaluation of the con-
tribution from surface polarizations.

We now consider the basic isolated unit cell C, (without
images). The images are reintroduced by defining a com-
plementary unit cell, C,’, which consists of the mirror image
of C, reflected in say the left-hand electrode surface. This
process not only reflects the particle positions but also reverses
the sign of the charges, so the total charge of both cells always
add to zero. A similar complementary cell can be obtained by
reflection in the right hand surface of C, see Fig. 1(b). We now
define a symmetric electroneutral super-cell, C, consisting of
the central cell C, and the nearest halves of the adjacent
complementary cells, see Fig. 1(c). Thus C contains open
boundaries, but possesses internal bounding surfaces which
correspond to the positions of the original electrodes. Further-
more, though C contains 2N particles, only N are independent,
therefore we can write the energy of particles in C as a function
of the co-ordinates of particles in the sub-cell C,.

An infinite 3-dimensional array of replicas of C reproduces
the original ionic fluid, between two conducting electrodes, and
with PBCs along the (x, y) directions. Such an array can be easily
treated with usual 3D Ewald methods to obtain the energy of
the ions in C, which is numerically equal to the sum of the
energy of a sub-cell C, and a complementary cell, C,/, i.e.,

Uc(r") = Ug, (r") + Ugy (R[] (1)

where Ug is the energy of a configuration " of ions in C, and
Uc,'(R[r"]) is the corresponding energy of the complementary
cell with reflected co-ordinates R[r"] and oppositely signed
charges. Due to symmetry, Ug, (") = Ug,'(R[r"]) and we therefore
obtain the simple result for the required energy, Ug,,

Ua ) = 5Uclr") @

We shall denote this approach as the “Image Ewald” method
(IE). We note that in the direction parallel to the surfaces the
periodicity may induce crystal artifacts, yet by utilizing isotropic
periodic boundary conditions® in these directions such effects will
be mitigated. A direct effect from such a scheme is that the
reciprocal-space Ewald forces in the xy-directions will be zero, yet
there will be a long-range contribution to the total energy. In our
simulations, however, we did not use isotropic boundary conditions.

The total Ewald energy for the cell C will have the general form

UC(rN) = UC/(rN) + Usurf(rN) 3)
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where U//(r") is a shape-independent part and Us.(r") is the
dipolar contribution that gives rise to a shape-dependent sur-
face term. The shape-independent term will give rise to a
potential of exactly zero at each electrode, due to the symmetry
created by the image charges. When the cells are summed over
a spherical geometry, for example, the surface term can be
eliminated via tin-foil boundary conditions, which is appropriate
in a system of neutral electrodes, that has now been mapped onto
a properly three-dimensional lattice.

However, for the general case of charged electrodes, one
needs to take cognizance of the slab geometry. This is because,
the surface term will be responsible for creating a potential
difference between electrodes. For the slab geometry the surface
term is given by,

Usurf(rN) = 2T’:Mzz/Vcell (4)

where M, is the total instantaneous dipole moment in the
z-direction (perpendicular to the electrodes) and V. is the cell
volume. This result applies irrespective of the dielectric constant
of the medium in which the system is imbedded. That is, the
surface term remains even in the presence of tin-foil boundary
conditions. We should note, however, that the presence of this
uniform polarization field does not violate the condition that
each electrode is an equipotential surface. In the case where the
charged electrodes are identical, symmetry dictates that C has
zero average dipole moment (M,) = 0. For a large enough cell, we
expect the majority of configurations to have M, ~ 0 and
therefore it makes physical sense to ignore the surface term in
our calculations, as in the case of neutral electrodes. These will
be the types of systems considered in this study. As an aside, we
also note that the use of 3D Ewald with an inserted slab of
vacuum in order to simulate 2D boundary conditions, does
require the presence of this surface energy in order to eliminate
unwanted electrostatic contributions from neighboring fluid
layers. This is not required in the present case where adjacent
layers are required to interact. In the case of asymmetric
electrodes we will have that, (M,) # 0, and we will need to
properly account for the potential difference between electrodes
that the averaged surface term will bring about.

The IE method described here offers significant computational
advantages over many other recent approaches that have been
used to deal with such systems, both in terms of efficiency and
simplicity of coding. As mentioned earlier, Hautman et al.*®
originally described this approach some years ago, however, that
work seems not to have gained wide recognition. Since we
developed the methodology without prior knowledge of the
earlier work by Hautman et al,*® there are actually some
conceptual differences. For example, Hautman et al. used a
different type of unit cell consisting of C, and its adjacent
complement C,'. It is clear that even for symmetric, charged
electrodes the average dipole moment in such a cell is not zero,
giving a non-zero average surface energy in the slab geometry.
This would lead to a spurious electric field within the cell that
would need to be removed in an ad hoc fashion. We therefore,
argue that our choice of unit cell is conceptually preferable.
Furthermore, as far as we are aware, the method of Hautman et al.
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has not been applied to the case of electrodes with a net total
surface charge. This is likely because the original formulation uses
a Hamiltonian wherein the electrode potentials are specified. Such
an approach is precluded when these potentials (relative to a fixed
reference) are unknown. We will now show how the IE can be used
in a grand canonical ensemble simulation, which naturally gives
rise to net charged electrodes and solves the problem of specifying
a fixed reference potential.

2.1 Grand canonical simulations

To simulate ionic fluids bound by electrodes we used the Grand
Canonical (Metropolis) Monte Carlo (GCMC) method. When
employing the GCMC method it is usual to choose an initially
electroneutral configuration with subsequent insertions and
deletions of electroneutral combinations of ions. These ions are
imagined to be taken to or from a fictitious bulk, and it is useful
to define an “average” (experimentally measurable) chemical
potential per ion, pig,. This can be obtained by averaging the
Ny
individual chemical potentials, uing, i€, Hey = Zp Vitina(Zi),
i=1

where Ny, is the number of species with different valencies Z;.
Nsp Nsp

The coefficients v; satisfy > 1;Z; = 0 and > v; = 1. Individual
=1

i= i=1
ion chemical potentials are experimentally elusive to measure,
but it is relevant to note that, given the definition of pg,y, it is
possible to write the individual ion chemical potentials as,

tind(Z) = Hsate — Zie¥rer (5)

where ¥, measures the asymmetry of the model. For a Z:Z
electrolyte in the restricted primitive model (RPM) ¥t = 0,
(see ESIT) but it is non-zero in a 2:1 model, for example.
Hence, the IE provides a method to determine uinq(Z;), as
we will explicitly demonstrate below, where we also compare
IE results with those from the established modified Widom
technique.®®

In our simulation method, electroneutrality is always maintained
by the correlated presence of oppositely charged ions in the com-
plementary C,,’ sub-cell. This is physically equivalent to the creation
of counter-balancing image charges in the conducting electrodes
and allows us to perform simulations at constant electrode potential,
rather than constant electrode charge, using single ion insertions
and deletions. Constant potential systems are arguably more rele-
vant to real experimental scenarios. The fluctuating electrode surface
charge density, o5, will have an average value (og) that can be
regulated by application of a constant potential that will bias either
anions or cations via the chemical potentials. With a p, for a given
bulk electrolyte, “effective” individual ion chemical potentials are
constructed using

Hett(Z:) = psate — Zi€¥bias (6)
where the biasing potential is denoted ¥y,;.s. Eqn (6) enters the

grand canonical Boltzmann weights for the insertion/deletion
moves for the individual ions.
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2.2 Simulation details

The ionic fluid was modelled using the RPM wherein the solvent
only enters via the dielectric constant, ¢, = 78.3. At a temperature
of 298 K, this gives a Bjerrum length of about 7.16 A. In order to
highlight some interesting aspects of asymmetric electrolytes,
we assumed a 2:1 salt, consisting of divalent and opposing
monovalent charges embedded in hard spheres of diameter 5 A.
Generalization to other kinds of salt is straightforward. The
Ewald sums used a minimum image cutoff in the real space
sum. We set L, = L, = 200 A, and used an equal number of
reciprocal wave vectors in the Fourier sum along the reciprocal
z as in the reciprocal (x, y) directions, with a suitable sym-
metrization in the latter case.®” A total of 1800 vectors were used
for the Fourier component. The Ewald splitting parameter, often
denoted as o, was set to 7/L,. At least 2 x 107 configurations were
used for the final production runs, subsequent to equilibrations,
which used even more configurations.

For all simulation results presented in the main article, we
have set fugc = —10.7 where f is the inverse thermal energy. In
the ESI, we provide results for other scenarios, including a 3 : 1 salt,
and a monovalent salt where the cations carry a non-central charge.

3 Results

A quantity of interest is the average electrostatic potential, ¥(z),
which can be evaluated by integration of the average charge
density profile, as described in the ESI{ This calculation
simply adds the direct contributions from the charge densities
and (due to symmetry) will always give a value of zero, for the
potential at the electrode surfaces. Fig. 2(a) and (b) shows the
average electrostatic potential ¥(z) profiles from our GCMC
simulations, using IE, with a slit of width, z = 145 A. This is
obviously large enough to produce a bulk fluid in the mid-plane
region as evidenced by the flat profile there. Two different ¥y,
are chosen, and these are compared with the result for ¥;,5 = 0.
Normally, we measure ¥(z) relative to the bulk, which requires
addition of a constant potential correction, called the “Donnan
potential”,38 ¥ ponn, due to charge distributions external to the
slit. Due to the asymmetry of the electrolyte model, ¥ponn is not
simply equal to Wpias, since there is a finite ¥,.r in the bulk.
From eqn (6) and (5) can write,

Pt (Zi) = tsare — ZiePret — Zie(Poias — Prer)
= lina(Zi) — Zie(Poias — Prer) (7)
= Uind(Zi) = Zie¥ponn
Therefore we have, Yponn = Phias — Prer- We note that Yponn i

then also equal to the surface potential of the electrodes relative
to the bulk fluid. But while ¥y, is chosen a priori, ¥, .f remains
undetermined. It can be obtained, however, by noting that the

mid-plane potential behaves as,
Y(z=0) > —¥ponn (8)

as h— oo. That is, the potential (relative to the bulk) at the
center of the slit should be zero for wide slits as one has
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Fig. 2 Average potential profiles, as obtained from Image Ewald simulations.
a) P piase = —2. The profile for Ppias = O is also shown. (b) fPpiase = —3. The
profile for Ypas = 0 is also shown.

effectively a bulk fluid there. From Y(z) in Fig. 2 for the case
Yhias = 0, we obtain a mid-plane value essentially equal to V.f,
which follows from eqn (8). We then verify that the mid-plane
values for the other ¥(z) do approach —¥penn.

We evaluated the IE by comparing it with a more straight-
forward approach, where we use GCMC simulations, as discussed
above, but explicitly evaluate a finite number of multiple image
reflections between the electrodes. Previous work has noted that
convergence of the sum of reflected images is facilitated by using
an even number of terms.’ Further details are also provided in
the ESL{ We also used the minimum image (MI) convention to
treat the PBC in the x, y directions, rather than Ewald sums.
Hence we use the acronym MI to denote this approach. In the MI
method, long-range interactions outside the MI truncation
were estimated by an “external” mean-field potential,*>*° from
previously established average charge densities, appropriately
symmetrized, and adjusted so that the external potential
vanishes at the surfaces. It should be noted that the inclusion
of this long-range correction only had a small influence on the
properties investigated here, i.e. the results were very similar to
those obtained with a simple MI truncation, without any long-
range correction. Fig. 3 summarizes our comparisons between
the IE and MI approaches for f¥pi.s¢ = —2 and i = 145 A. As
noted above this width is sufficient to produce bulk conditions
in the center of the slit.

This journal is © the Owner Societies 2020
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Fig. 3 Comparisons between Image Ewald results, and MI simulations
with a limited number of image reflections, using f%pias€ = —2. (@) Locally
measured mid plane and surface potentials, ¥ mig. and P¢,r. In the MI
approach, these are randomly sampled during the simulations. With the
Image Ewald method, P, = 0, and ¥4 is Obtained by integration of the
average charge density profile. (b) The average surface charge density,
(o). (c) Integral capacitances, C,.

In Fig. 3(a), we note how the MI method gives a surface value
of ¥(z), which varies significantly from zero, with the number
of reflections used. The potential difference between the mid-
plane and the surface in the MI does approach the IE result
asymptotically but the convergence is quite slow. Surprisingly,
these results indicate that the mid-plane potential from the MI
actually displays only a modest variation with the number of
image reflections, and is in all cases rather close to the value
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obtained by the IE. One could then be tempted to just assume
that ¥(z) is zero at the surface and use the mid-plane value to
set the surface potential relative to the bulk (recall that the
negative of the mid-plane value is equal to the proper reference
surface potential). However, such a strategy belies other serious
errors obtained with too few reflections. For example, in
Fig. 3(b), we see that the average surface charge density varies
strongly with the number of image reflections, only slowly
converging towards the IE value. In Fig. 3(c), we compare
predictions of the integral capacitance C;. Using Image Ewald,
this is simply obtained as C; = (Ags)/Wpias, Where (Aog) is the
difference between the average surface charge density at ¥pias
and the average surface charge density at with a vanishing bias
potential (i.e. Wpias = 0). However, with the MI approach, we
have to account for truncation errors, which leads to a finite
(local) surface potential. Interestingly enough, the capacitance
converges faster towards the Image Ewald value than the net
potential, or the average surface charge density. This is obviously
due to a cancellation of errors. It should be emphasized that
since we generally would define the differential capacitance (Cp)
as Cp = Adg/A¥ponn = Aog/AWias, Wwe do not need to establish
Y, to generate a Cp, curve. This is a significant advantage for
narrow pores (slits).

We now turn our attention to the individual chemical
potentials, uinq. Using eqn (5) we calculate ping for the 2:1

cation chemical potential
2:1 salt
-11.64

Bl"l'-+2

O—O modified Widom (bulk)
---- Image Ewald

-11.72
50 150 250 350 450 550

[box length (modified Widom)]/ A

anion chemical potential
2:1 salt

-10.23

B,

O—O modified Widom (bulk)

---- Image Ewald

-10.25

100 200 300 400 500 600
[box length (modified Widom)]/ A

Fig. 4 Calculated individual chemical potentials for the cation (top) and
anion (bottom). The dashed line indicates the value acquired using Image
Ewald simulations, combined with eqgn (5).
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RPM salt using our method, by setting ¥p;,s = 0 and measuring
¥.er. We compare with results from the modified Widom
technique using canonical bulk simulations, a cubic box, and
Coulomb interactions that are truncated by the minimum
image convention. The canonical densities were given by the
mid-plane density from grand canonical IE simulations, at zero
applied bias potential. Size convergence was estimated by
simulating three different simulation box sizes, using the
modified Widom method. The results are summarized in
Fig. 4, where the standard deviations from the canonical
simulations are smaller than the size of the symbols, and
therefore not indicated. We note a modest but significant size
dependence of the modified Widom simulations, but also that
the large size limit seems to approach the Image Ewald result.

4 Conclusions

In summary, we have utilized a simple and effective way to manage
long-range interactions, using an exact model of infinite image
reflections, in systems where an ionic fluid is confined between two
charged (in general), planar, and perfectly conducting surfaces, or
electrodes. Note that “confined” should be interpreted with some
care, since our grand canonical method ensures that the fluid is in
chemical equilibrium with a bulk solution, at some prescribed
chemical potential. Using wide surface separations, our system will
accurately approximate the behaviours at a single electrode surface
and we are able to calculate the individual chemical potentials. An
important advantage is that we are also able to model a porous
electrode, by utilizing a short surface separation. Our method relies
on straightforward 3D Ewald techniques, which are wide-spread,
and can therefore be highly optimized using particle-mesh Ewald,
smooth particle-mesh Ewald etc., to achieve a computational scaling
of O(NlogN), where N is the number of charges in the system.
Hence, the Image Ewald method is suitable for a multitude of
system setups. One such case is the study of electrochemical
behaviours of salt solutions and ionic liquids, in the presence
of nanoporous electrodes. Finally, we note that while we have
utilized the Metropolis Monte Carlo technique in this work, the
IE method can naturally be directly implemented in molecular
dynamics codes.
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