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Introduction

Trends in stabilisation of Criegee intermediates
from alkene ozonolysist

Mike J. Newland, (2 *@ Beth S. Nelson,
Teresa Vera,” Joan Tarrega® and Andrew R. Rickard
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Criegee Intermediates (Cl), formed in the ozonolysis of alkenes, play a central role in tropospheric
chemistry as an important source of radicals, with stabilised CI (SCI) able to participate in bimolecular
reactions, affecting climate through the formation of inorganic and organic aerosol. However, total SCI
yields have only been determined for a few alkene systems, while speciated SCI yields from
asymmetrical alkenes are almost entirely unknown. Here we report for the first time a systematic
experimental exploration of the stabilisation of CH,OO and (CHz),COO ClI, formed from ten alkene-—
ozone systems with a range of different sizes and structures, under atmospherically relevant conditions
in the EUPHORE chamber. Experiments in the presence of excess SO, (an SCI scavenger) determined
total SCI yields from each alkene-ozone system. Comparison of primary carbonyl yields in the
presence/absence of SO, determined the stabilisation fraction of a given Cl. The results show that the
stabilisation of a given Cl increases as the size of the carbonyl co-product increases. This is interpreted
in terms of the nascent population of Cl formed following decomposition of the primary ozonide (POZ)
having a lower mean energy distribution when formed with a larger carbonyl co-product, as more of
the energy from the POZ is taken by the carbonyl. These findings have significant implications for
atmospheric modelling of alkene ozonolysis. Higher stabilisation of small Cl formed from large alkenes
is expected to lead to lower radical yields from Cl decomposition, and higher SCI concentrations,
increasing the importance of SCI bimolecular reactions.

formation' and so directly affecting cloud condensation

The formation of Criegee intermediates (CI) from gas phase alkene
ozonolysis has received attention over the past five decades owing
to their role as important non-photolytic sources of radicals (OH,
HO, and RO,) to the troposphere.'™ More recently, the potential
importance of bimolecular reactions of stabilised CI (SCI) has been
the subject of much research (see Vereecken et al.® and references
within). These reactions contribute significantly to the sulfuric acid
budget in certain environments through oxidation of SO,,” and the
acidity of the atmosphere through removal of organic and
inorganic acids.® Bimolecular reactions of SCI have also been
implicated in the formation of aerosol from monoterpene
ozonolysis® through dimerization,'®"" oligomerization'” and
reaction with peroxy radicals,"® contributing to new particle
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nuclei,’>*® rainfall, and climate.

The Criegee ozonolysis reaction mechanism'” proceeds via
concerted cycloaddition of the ozone molecule across the C=C
double bond to form a chemically activated primary ozonide
(POZ), followed by cleavage of the C-C bond and one of the O-O
bonds forming a carbonyl molecule and a carbonyl oxide, or
‘Criegee intermediate’,'® see Scheme 1. A population of ozono-
lysis derived CIs in the gas-phase is formed with a broad internal
energy distribution."® A fraction of CI may be formed ‘cold’
(although this is not the case for all alkenes***"), that is, without
enough internal energy to undergo prompt decomposition, these
are termed stabilised Criegee intermediates (SCI). The remainder
are formed chemically activated (CI*). These CI* tend to undergo
prompt decomposition on a timescale of nanoseconds.>* How-
ever, they can also be collisionally deactivated to add to the SCI
population. The distinction between these two routes to SCI
formation has been demonstrated in laboratory experiments
performed as a function of pressure.?®**?32 The fraction of
each type of CI that is formed will depend on the initial energy
distribution of the CI population.**

Unimolecular decomposition of CI yields a range of radical
products, with decomposition of syn-CI (i.e. CI with an alkyl
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Scheme 1 Simplified mechanism for the production of Cl and primary
and secondary carbonyl products in the ozonolysis of 2-methyl propene.

group on the same side of the terminal O atom of the carbonyl
oxide moiety), via a vinyl hydroperoxide, producing OH with
(near) unit yield. SCI can have sufficiently long lifetimes to
undergo bimolecular reactions with H,O, RCOOH, and SO,,
amongst other species, in the atmosphere. Hence the relative
yields of CI/SCI from a particular alkene-ozone system deter-
mine the effect of that system on atmospheric composition.

Inclusion of alkene ozonolysis chemistry in regional and
global chemical transport models is essential to correctly
estimate radical concentrations, and the product distribution
from the removal of alkenes by reaction with ozone. However,
such mechanisms must firstly parameterize SCI yields for a
structurally diverse range of alkenes for which no measure-
ments exist, lumping together SCI of different structures and
hence reactivities, and secondly lumping together stabilisation
of different SCI. This leads to large uncertainties on the SCI
yields and hence on the effect of alkene-ozone reactions on
atmospheric composition.

Many laboratory studies probing the chemistry of SCI have
utilised the facile photolysis of alkyl iodides to yield SCI in the
presence of oxygen.>® This has proved an invaluable resource
for the study of SCI chemistry. However, alkene ozonolysis is
expected to be the dominant source of CI to the atmosphere,
and certain atmospherically relevant questions, such as the
fractional CI and SClI yields from alkene ozonolysis, can only be
answered by probing the alkene-ozone system.

Total SCI yields have previously been measured from a
number of atmospherically relevant alkene-ozone systems including
short chain alkenes,”” " isoprene,*>* and monoterpenes.”*> These
yields are generally measured indirectly, either by the removal of
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an SCI scavenger (e.g. SO,) or formation of a product from an
SCI scavenging reaction (e.g. production of H,SO,, via the SO, +
SCI reaction). However, very little experimental information
exists on the relative amounts of different SCI formed in non-
symmetrical systems. For non-symmetrical, non-cyclic, alkenes,
a pair of CI and carbonyl co-products are formed (Scheme 1).
The yield of each SCI depends on: (i) the yield of each CI -
determined by the fragmentation of the POZ («); (ii) the fraction
of each CI that is stabilised (S). The stabilisation of a given CI
produced from different alkene-ozone systems might be
expected to differ. For example, while the fraction of CH,00
stabilised in ethene ozonolysis has been determined to be
0.35-0.54 based on a wide range of experimental studies, the
chamber studies of Nguyen et al.** suggest that the majority of
CH,0O0 formed in isoprene ozonolysis is stabilised.

Here, we present results of a series of alkene ozonolysis
experiments carried out at the European PhotoReactor facility
(EUPHORE), Valencia, Spain, in which yields of chemically
activated and stabilised CH,00 and (CHj3),COO are determined,
for the first time, for a systematic range of alkene-ozone systems
under atmospherically relevant conditions. An empirical structure-
activity relationship for the stabilisation of these types of Criegee
intermediates, based on the size of the carbonyl co-product formed
in the decomposition of the primary ozonide is also presented, with
the atmospheric implications of the results discussed.

Experimental
EUPHORE

EUPHORE is a 200 m® simulation chamber used for studying
reaction mechanisms under atmospheric boundary layer conditions.
The chamber is fitted with large horizontal and vertical fans to
ensure rapid mixing (three minutes). Further details of the chamber
setup and instrumentation are available elsewhere.**” Experiments
comprised time-resolved measurement of the formation of carbonyl
products and the loss of alkene and ozone (and in some experiments
SO,). SO, and Oz abundance were measured using conventional
fluorescence and UV absorption monitors, respectively; alkene and
oxygenated volatile organic compound abundance was determined
via FTIR spectroscopy and PTR-MS. The precision of the SO, and O3
monitors were 0.25 and 0.47 ppbv respectively (evaluated as
2 standard deviations of the measured value prior to SO, or O3
addition). Experiments were performed in the dark (i.e., with the
chamber housing closed; j(NO,) < 107° s ), at atmospheric
pressure (ca. 1000 mbar) and temperatures between 297 and
305 K, on timescales of ca. 30-90 minutes. Chamber dilution
was monitored via the first order decay of an aliquot of SF,
added prior to each experiment. Cyclohexane (ca. 75 ppmv) was
added at the beginning of each experiment to act as an OH
scavenger, such that SO, reaction with OH was calculated to be
<1% of the total chemical SO, removal in all experiments.

Experimental approach

Experimental procedure comprised addition of SFe and cyclo-
hexane, followed by O3 (ca. 1000 ppbv for the experiments with
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alkenes producing CH,00, which generally have reaction rates
with ozone ~1 x 107" e¢m® s™'; and ca. 500 ppbv for the
experiments with alkenes producing (CH3),COO, which gener-
ally have reaction rates with ozone ~1 x 10 '® cm® s™') and
SO, if used (ca. 2000 ppbv). A gap of five minutes was left prior
to addition of the alkene, to allow complete mixing. The reaction
was then initiated by addition of the alkene (ca. 800 ppbv for the
systems producing CH,00, and 400 ppbv for those producing
(CH;),CO0). The chamber was monitored for 30-90 minutes
subsequent to the addition of the alkene depending on the rate
of reaction with ozone, the rate of alkene/ozone consumption
being dependent on k(alkene + ozone). Roughly 50% of the CH,00
producing alkenes were consumed after 60 minutes, while 90%
of the faster reacting alkenes were consumed within roughly
25 minutes. The experiments were performed under dry conditions
(RH < 1%). A full experiment list is given in Table S1 (ESIt).

Results and discussion
Total SCI yields

Alkene ozonolysis experiments were performed in the presence
of ca. 2000 ppbv SO,, such that the overwhelming majority
(=94%) of the SCI was scavenged and converted to a carbonyl.
The total SCI yield, ¢, was calculated by regressing the loss of
ozone (dOj) against the loss of SO, (dSO,) (eqn (E1)), both
corrected for chamber dilution. In reality the experimentally
determined value of ¢ is a minimum value, ¢,,;, since other
loss channels for the SCI (e.g. decomposition) may still be
having a small but non-negligible effect (Newland et al
(2015a)), accounted for in eqn (E1) by f.

dSo
W; = d)SCI-tol f = ¢SCI-min

(E1)
In addition to the presence of SO, as a potential SCI reaction
partner in the chamber, there is also H,O (<1% RH), HCOOH
(of the order of 10 ppbv produced in the ozonolysis reaction),
and carbonyls on the order of a few hundred ppbv. For
stabilised CH,00, decomposition is slow (0.1 s~*, [IUPAC) and
the only other potentially significant loss process under the
experimental conditions employed was bimolecular reaction
with water vapour or HCOOH. Based on the IUPAC*® recom-
mended rate constants, 2000 ppbv of SO, is estimated to scavenge
>98% of CH,00 at RH = 1% and [HCOOH] = 10 ppbv (typical
mixing ratio present in the chamber for the experimental
conditions). For (CH;),COO the only other important loss
process under the experimental conditions employed was
unimolecular decomposition. 2000 ppbv of SO, is estimated
to scavenge 94% of (CH;3),COO at 303 K based on the IUPAC
(IUPAC) recommended rates of k((CH3),COO + SO,) = 4.2 X
107" exp®7®D em® 57! and kyn;((CH5),CO0) = 1.0 x 107
exp( 739297 =1, A range of other syn- and anti-CI will be formed
as co-products for many of the alkenes studied here. Using syn
and anti-CH;CHOO as surrogates, under the experimental condi-
tions employed here, 88% of syn-CI will be scavenged by 2000 ppbv
SO,, and 97% of anti-CI will be scavenged. Elsamra et al.’’
determined k(CH,00 + acetone) = 3.0 (£1.0) x 10~ " em® s7*
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and k(CH,0O0 + acetaldehyde) = 1.2 (£0.3) x 10~ cm® s™ ', at
298 K. Products of the reaction are believed to be the carbonyl +
acid (e.g. CH,00 + CH;CHO — CH3;COOH + HCHO or HCOOH +
CH;CHO), formed via decomposition of a secondary ozonide.® At
200 ppbv of the carbonyl, this would lead to a sink for CH,OO of
the order of 1-10 s™', <1% in SO, scavenger experiments. Other
potential SCI sinks, such as self-reaction are negligible under our
experimental setup.

Total SCIyields were calculated for ten alkene-ozone systems
in this work (C,-Cy). Fig. 1 shows an example plot of ASO, vs.
AO; for an ozonolysis experiment with 2,4-dimethyl-pent-2-ene.
Uncertainties are +2¢ and represent the combined systematic
(estimated measurement uncertainty) and precision components.
Fig. S1 (ESIt) shows total SCI plots for each of the ten alkenes
studied. Table 1 gives the total SCI yields corrected for additional
SCI losses, ie. f, (see Tables S2 and S3, ESIt this correction
generally increased the yields by ~5%) calculated for each alkene,
and values previously reported in the literature where available.

For alkenes for which total SCI yields have been measured
previously, there is good agreement between the values measured
here and those reported in the literature. The ethene-ozone
system is the most studied, with reported SCI yields ranging
from 0.35-0.54, from a range of different techniques - see New-
land et al;** Alam et al®® for further references. The value of
0.43 (£0.02) derived here lies towards the lower end of this range.
For propene only two values exist in the literature. The value of
0.28 (+0.02) derived here is in good agreement with the value of
0.25 (£0.02) from Hatakeyama et al>® from determination of
H,SO, production relative to ozone loss in chamber experiments,
and considerably lower than the value of 0.44 from Horie and
Moortgat,*" derived from analysis of carbonyl products from the
propene-ozone reaction. For 2-methylpropene, Hatakeyama
et al®® derived a value of 0.17 (£0.03), using the method
described above, compared to our value of 0.21 (£0.04).
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Fig. 1 Total SCI yield (¢sci-min) in 2,4-dimethyl pent-2-ene ozonolysis,
derived from the removal of SO, (ASO,, relative to the removal of ozone
(AO3) (egn (E1)). Dashed line: linear regression of measurements. Data is
not corrected for additional loss processes — see text for details. Vertical
and horizontal error bars represent precision uncertainties.
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Table 1 Total SCI yields from the ten alkenes studied in this work. Uncertainties are +20, and represent the combined systematic (estimated

measurement uncertainty) and precision components

Alkene SCI yield* Literature values Method
Ethene (C,) 0.43 (£0.02) 0.35-0.54 (see Newland et al;*' Alam et al.*® for refs)
Propene (Cj) 0.34 (4+0.01) 0.25 gio.oz)28 AH,50,/A03
0.44* Carbonyl product yields
2-Methylpropene (C,) 0.24 (£0.03) 0.17 (£0.03)*® AH,S0,/A0;
2-Methyl-but-1-ene (Cs) 0.33 (£0.01)
1-Heptene (C5) 0.61 (£0.03)
2-Methyl-but-2-ene (Cs) 0.28 (£0.01)
2,3-Dimethyl-but-2-ene (Ce) 0.31 (£0.04) 0.10-0.65 (see Newland et al.*' for refs)
2,4-Dimethyl-pent-2-ene (C;) 0.41 (£0.01)
2,3,4-Trimethyl-pent-2-ene (Cg) 0.49 (£0.01)
Myrcene (Cyo) 0.46 (£0.03) 0.35" Theoretical calculations

“ Uncertainties are +20 and represent the combined systematic (estimated measurement uncertainty) and precision components.

Deng et al.** recently reported a total SCI yield of 0.35 for the

monoterpene myrcene based on theoretical calculations (82%
(CH3),COO0, 15% large anti-SCI, 3% large syn-SCI), compared to
our measured value of 0.46. It may be expected that our experi-
mental yield is an underestimation due to the very fast uni-
molecular reaction of the large anti-SCI formed in this system
(calculated by Deng et al.*’* to be 7600 s~ ') which means that
probably <50% would be scavenged by 2000 ppbv SO,. Based on
the yield of anti-SCI predicted by Deng et al.** (15%), this may
lead to an underestimation of the total SCI yield of ~ 8%. None of
the other alkenes studied here have had total SCI yields reported
previously to the authors’ knowledge.

Fig. 2 shows the total SCI yields measured in this study
plotted against carbon number of the parent alkene. Previous
studies®® have noted that total SCI yields do not appear to
display a strong dependence on alkene size. The systems
studied here suggest a weak dependence on the size of the
parent alkene, with total SCI yield increasing with alkene size.
Propene and 2-methylpropene have total SCI yields of 0.24-
0.34, while the larger trisubstituted alkenes, 2,3,4 trimethyl-
pent-2-ene and myrcene have yields of 0.41-0.49, and the
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Fig. 2 Total SCI yields derived from ten alkene-ozone systems in this
work.
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largest terminal alkene, 1-heptene has a yield of 0.61 (+0.03).
However, as shown later the total SCI yield is the product of a
number of effects and hence any simple relation to alkene size
must be treated with caution.

Primary carbonyl yields

For non-symmetrical, non-cyclic, alkenes, a pair of CI and
carbonyl co-products are formed in the decomposition of the
POZ (Scheme 1). The sum yield of pathways ¢, + o, (i.e. the sum
yield of the two possible primary carbonyls) should be equal to
one. This has been confirmed to be the case in the extensive
experimental dataset of Grosjean and Grosjean** for systems in
which the smaller carbonyl is not also formed from decom-
position of the larger CI. Therefore, by determining the yield of
just one of the carbonyls (ideally the larger one, as it cannot be
formed in CI decomposition) it is possible to determine both
the primary yield of the other carbonyl, and the yield of both CI.
For most CI, syn and anti conformers can also be formed
because of the negligible rotation about the C=—0O bond of
the CI moiety (Vereecken and Francisco, 2012). However, the
two CI of focus in this study, CH,00 and (CHj3),COO, are both
symmetrical.

The relative magnitude of pathways «; and «, is determined
by the fragmentation of the POZ. This appears to be determined
predominantly by the structure around the double bond at which
ozonolysis occurs.>* A fraction, S, of each of the two CI formed is
stabilised, either due to being formed below the energy threshold
for being chemically activated, or via collisional stabilisation. The
yield of each SCI is thus given by the product of «; and S; (eqn (E2);
Scheme 1). The total yield of SCI from a given alkene is then the
sum of the yields of the two specific SCI (eqn (E3)).

¢scrmin = X S (EZ)

$scrtot = %1 X S+ 0 X S, (E3)

The primary carbonyl yields in these experiments were deter-
mined by FTIR measurement of the yield of the primary
carbonyls relative to the loss of ozone (both corrected for
chamber dilution) (eqn (E4)).

Acarbonyl

A0, (E4)

¢carb-l° =

Phys. Chem. Chem. Phys., 2020, 22,13698-13706 | 13701
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Fig. 3 Measured AHCHO vs. AOs (both corrected for dilution) for a hept-
1-ene ozonolysis experiment with and without 2000 ppbv of the SCI
scavenger SO, present. Precision uncertainties are smaller than the pre-
sented data points.

Fig. 3 shows an example of two experiments with 1-heptene, in
the presence and absence of SO,. The measured HCHO is
plotted against ozone consumption (both corrected for chamber
dilution). The HCHO yield of 0.52 (£0.01) in the zero SO,
experiment, represents the primary HCHO. The HCHO yield
is considerably higher in the SO, scavenger experiment
(0.85 (£0.03)), because it is the sum of primary HCHO and
secondary HCHO formed from the reaction of stabilised CH,OO
with SO, (reaction (R1)).

CH,00 + SO, — HCHO + SO; (R1)
Table 2 shows the primary carbonyl yields determined for each
alkene ozonolysis system studied. o, is the pathway that leads to
the CI being studied here, i.e. CH,OO or (CH3),COO. Fig. S2 (ESIY)
shows plots of the primary carbonyl yields for all experiments.
For alkenes in which HCHO or acetone are expected to be
formed in the decomposition of the larger CI, o; was determined
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based on the measured yield of the larger carbonyl. HCHO is
expected to be a decomposition product of any CI with a methyl
group syn or anti to the carbonyl oxide moiety.*® For syn-CI this
comes via decomposition of a -oxo-alkoxy radical formed via the
vinyl-hydroperoxide mechanism; for anti-CI the methyl radical is
formed in decomposition of a bis-oxy radical, formed via 1,3 ring
closure of the CI, leading to CH;0, and ultimately to HCHO. For
longer alkyl chains, HCHO is not expected to be formed. For
short chain terminal alkenes this is consistent with the extensive
database of ozonolysis experiments by Grosjean and Grosjean™*
(and references therein). These show total primary carbonyl
yields of unity for straight chain terminal alkenes with the
exception of propene (that forms CH;CHOO), for which the
sum carbonyl yield is well in excess of 1 (1.30). Any alkene that
produces (CH;),COO will also have a large secondary HCHO
yield from decomposition of this CI.

CI stabilisation

The stabilisation, S, of a given CI is calculated as the ratio of the
yield, ¢, of the SCI to the yield of the CI (eqn (E5)). ¢¢; is
calculated as described above, based on the primary carbonyl
yields in experiments with no SCI scavenger. ¢gc; for a specific
CI is determined from the difference between the carbonyl
yields in experiments with and without an SCI scavenger. The
calculated stabilisation of CH,00 and (CH3),COO in the alkene
systems studied here are given in Table 3.

S = ¢SC1 — ¢SC[ — (/)carb 2° — d)carb 1°

dcr o dcr (E5)

where carb 2° is the secondary yield of the carbonyl, i.e. from
SCI + SO,, and carb 1° is the primary yield of the carbonyl. For
systems in which the carbonyl of interest (i.e. HCHO/acetone)
could also be formed from decomposition of the larger CI, S is
calculated by rearranging eqn (E3)-(E6).

S = Psci-ior — (%2 X $2)

(E6)
o

Table 2 Carbonyl yields and POZ decomposition branching ratios («) from the ten alkenes studied here. The a, pathway leads to the Cl being studied
here, i.e. CH,OO or (CH3),COO. Carbonyl products were measured by FTIR. Uncertainties are +2¢ and represent the combined systematic (estimated

measurement uncertainty) and precision components

Zero SO, High SO,
Alkene Carb1 yield Carb2“ yield Carb1 yield Carb2 yield oy o
Carb1 = HCHO
Ethene — — 1.31 (£0.07) N.A. 1.00° —
Propene 0.61 (£0.04) 0.38 (£0.06) 0.84 (£0.02) 0.62 (£0.02) 0.62 0.38
2-Methyl-but-1-ene 0.93 (£0.01) 0.40 (40.01) 1.05 (+0.03) 0.50 (40.01) 0.60 0.40
1-Heptene 0.53 (£0.01) 0.42 (40.01) 0.84 (40.03) 0.80 (£0.12) 0.53 0.47
Carb1 = Acetone
2-Methylpropene 0.28 (+0.01) 1.19 (40.04) 0.35 (40.00) 1.26 (40.02) 0.28 0.72
2-Methyl-but-2-ene 0.34 (£0.01) 0.80 (40.07) 0.44 (+0.02) 0.69 (£0.12) 0.34 0.66
2,3-Dimethyl-but-2-ene 1.05 (£0.01) — 1.38 (£0.05) N.A. 1.00° —
2,4-Dimethylpent-2-ene 0.22 (£0.01) 1.04 (40.03) 0.50 (40.02) 0.94 (40.05) 0.22 0.78
2,3,4-Trimethylpent-2-ene 0.44 (£0.01) 0.78 (40.01) 0.59 (+0.07) 0.72 (40.08) 0.22 0.78
Myrcene 0.22 (£0.01) — 0.61 (£0.03) — 0.22 0.78

“ Carb2 = the carbonyl formed from POZ decomposition that is not HCHO/acetone. ” Assumed to be 1 by definition.

13702 | Phys. Chem. Chem. Phys., 2020, 22,13698-13706

This journal is © the Owner Societies 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp00897d

Open Access Article. Published on 04 June 2020. Downloaded on 10/23/2025 6:32:00 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Table 3 Stabilisation of CH,OO/(CH3),COO formed in the ten alkene
systems studied. Calculated using either egn (E5) and (E6) — see text for
details. For ethene and 2,3-dimethyl-but-2-ene stabilisation of the Cl is
equal to the total SCI yield shown in Table 2

Alkene Stab. (S) Method
CH,00

Ethene 0.43 (+0.02) ¢
Propene 0.60 (40.10) b
2-Methylpropene 0.61 (+0.12) (E6)
2-Methyl-but-1-ene 0.56 (40.10) (E6)
Hept-1-ene 0.73 (£0.08) (E5)
(CH,),CO0

2-Methylpropene 0.10 (£0.04) (E5)
2-Methyl-but-2-ene 0.16 (£0.04) (E5)
2,3-Dimethyl-but-2-ene 0.31 (£0.03) “
2,4-Dimethylpent-2-ene 0.38 (£0.04) EES)
2,3,4-Trimethylpent-2-ene 0.53 (40.04)

Myrcene 0.53 (£0.04) (E5)

@ symmetrical, therefore total SCI yield (Table 2). ” From model fit to
data (Fig. S2, ESI).

where S, is the stabilisation of CH,00 or (CH3),COO, S, is the
stabilisation of the other CI, calculated using eqn (E5).

Discussion

Fig. 4 shows the observed relationship between the stabilisa-
tion of the CI and the carbon number of the carbonyl co-
product formed in POZ decomposition. There is a clear increase
in stabilisation of both CH,00 and (CH3),COO with increasing
carbon number of the carbonyl co-product. This can be con-
sidered in terms of the distribution of the total energy available
from decomposition of the POZ. If it is assumed that the total
energy liberated in decomposition of the POZ is independent of
the size of the alkene,'® and that the available energy has time
to become distributed equally between the non-hydrogen atoms
(i.e. C and O), then as the size of the carbonyl co-product
increases relative to the CI, so the proportion of the available
energy that is taken by the CI will decrease. This would be
expected to yield a CI population with a lower mean energy
distribution, both increasing the yield of CI that are ‘born cold’,
and also increasing the amount of CI that will be collisionally
stabilised (Fig. 5). While theoretical work has shown that the
energy distribution between CI and carbonyl fragments in POZ
decomposition may be non-statistical,’”*® it might still be
expected that the general relationship will hold.

Based on the discussion above, the data presented in Fig. 4
can be fitted by the general relationship given in eqn (E7).

S=1— (Aci/Awd) X F (E7)

where Ac; is the number of non-hydrogen atoms (i.e. C and O)
in the CI; A, is the total number of non-hydrogen atoms in the
POZ; and F is a factor determined from the total SCI yield of the
symmetrical alkene (i.e. ethene for CH,00 and 2,3-dimethyl-
but-2-ene for (CH;3),COO).

The relationship is plotted in Fig. 4 (red dashed line) for
a SClI yield from ethene of 0.43 (lower limit of 0.39, upper limit
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Fig. 4 Black triangles: variation of the stabilisation (S), of CH,OO and
(CH3),COO with size of carbonyl co-product determined from experi-
ment. Red dashed line: modelled stabilisation using eqn (E7), assumes
SCI yields of 0.43 (+£0.04) and 0.31 (+0.04) for ethene (CH,OO) and
2,3-dimethyl-but-2-ene ((CH3),COO) respectively.

Increasing size of carbonyl co-product

>
- A ~~ B
[

[=

()

(&)

-

c

3

CH,00* ]
___________________ ©
CH,00 z

Relative Frequency

Fig. 5 Schematic showing the effect of increasing the size of the carbonyl
co-product on the nascent mean energy distribution of a population of CI
formed following POZ decomposition. As the mean energy decreases, the
fraction of SCI increases.

of 0.43), and from 2,3-dimethyl-but-2-ene of 0.31 (0.27-0.35). It
is seen that the prescribed relationship fits the observed data
well. While there are certainly likely to be additional factors
influencing the stabilisation of CI, such as specific substituents
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and more complex structures, this work shows that the number
of carbons in the system is a strong determinant of CI stabilisation,
particularly for systems with similar structures.

For CI stabilisation from a given alkene, there is expected to
be three important effects: (i) collisional stabilisation of the
POZ, which will then decompose to yield exclusively stabilised
CI - this has been predicted to be significant (65%) for the
Cy5 sesquiterpene B-caryophyllene®® but to be insignificant for
smaller (<Cys) alkenes;>® (ii) an increased stabilisation of a
given CI with increasing parent alkene size, as shown herein;
and (iii) an increased stabilisation of larger CI, which have
longer lifetimes (due to distributing the initial energy from the
POZ decomposition among a greater number of degrees of
freedom) allowing greater collisional stabilisation.?® This effect
is particularly noticeable for 1-heptene in this dataset, with
stabilisation of the larger CI, hexanal oxide being high (~50%).

Using the relationships shown here it is possible to calculate
the stabilisation of a given CI produced from an alkene that
also produces either CH,00 or (CHj3),COO if the total SCI yield
and the POZ decomposition branching ratio («) are known.
However, there are still relatively few alkenes for which total SCI
yields have been measured. Further useful information to
inform structure activity relationships used in atmospheric
models would cover: (i) the dependence of « on alkene structure;
(ii) trends in the total SCI yields from symmetrical alkenes of
increasing size and complexity, to provide values on which to
pin the relationships observed herein; (iii) the effect of the size
of the CI itself on stabilisation. In addition, information on the
relative yields and stabilisation of (E)/(Z) CI is required to fully
represent the impact of alkene ozonolysis on atmospheric com-
position. In addition to further experimental studies, a detailed
theoretical study would provide strong corroborating evidence
both for the relationship derived in this work, and the further
work suggested here.

Atmospheric implications

This work suggests that small CI produced from large alkenes
found in the atmosphere, e.g. isoprene, monoterpenes, sesqui-
terpenes, etc., will predominantly be formed stabilised. For
CH,00, the SCI of which reacts almost entirely with water
vapour in the boundary layer, this will result in a high yield of
the products of the CH,00 + H,0/(H,0), reaction, and low radical
(OH and HO,) yields (although it has been suggested that radical
yields from CH,00 decomposition are low anyway’“*?). This
finding is particularly important for isoprene, the most abundantly
emitted alkene to the atmosphere.”® Nguyen et al.** suggested that
the total SCI yield (~0.6)*** measured from isoprene ozonolysis
is almost entirely stabilised CH,OO (rather than the C,-CI). The
main products of the reaction of CH,OO with water vapour are
thought to be hydroxy-methylhydroperoxide (HMHP) and formic
acid (HCOOH),>* but recent flow tube experiments™ suggest a
roughly equal split between HMHP and formaldehyde (HCHO)
from the CH,00 + (H,0), reaction, with direct HCOOH formation
<5%. The dominant fate of HMHP in the atmosphere is unclear,
with a relatively long lifetime against reaction with OH of about
1 day.>® OH reaction was shown to yield HCOOH and HCHO in a
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ratio of 0.88.%° For (CH;),COO, and other small syn-CI, for which
reaction with water vapour is a negligible sink under boundary
layer conditions,> a higher stabilisation will lead to an increased
atmospheric concentration of these SCI. Under typical boundary
layer conditions these SCI will participate in bimolecular reactions
(e.g with SO, and organic acids), contribute to aerosol formation,
or undergo unimolecular decomposition.

Conclusions

Ozonolysis experiments were performed at the EUPHORE atmo-
spheric simulation chamber on a range of alkenes that produce
either the CH,00 or (CH;3),COO Criegee intermediates. Total
stabilised Criegee intermediate (SCI) yields were determined
from the temporal decay of the SCI scavenger SO,. Speciated CI
yields were determined based on FTIR measurements of primary
carbonyl products. Speciated SCI yields were determined from
comparison of carbonyl yields in the presence/absence of the SCI
scavenger SO,. From this information, the stabilisation of
CH,00 and (CHj3),COO from each alkene was determined.
The stabilisation is shown to increase with increasing carbon
number of the carbonyl co-product formed in the decomposition
of the primary ozonide. Stabilisation of CH,OO increases from a
minimum of ~0.4 from ethene, to 0.71 from 1-heptene. Stabi-
lisation of (CH;3),COO increases from <0.1 from isobutene, to
0.50 from the monoterpene myrcene. An empirical relationship
based on the energy distribution through the molecule on
dissociation of the POZ fits the observed data well. This trend
has implications for predicted tropospheric concentrations of
SCI, with current models generally using SCI yields based on the
total yield from the relevant symmetrical alkene-ozone system.
From this work it is shown that stabilisation of small CI from
many atmospherically relevant alkenes, such as isoprene and
monoterpenes, is likely to be considerably higher than currently
predicted. This would increase the importance of bimolecular
reactions, and reduce radical yields from CI decomposition.

Data availability

Experimental data will be available in the Eurochamp database,
www.eurochamp.org, from the H2020 EUROCHAMP2020 project,
GA no. 730997.
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