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Interference of a resonance state with itself: a
route to control its dynamical behaviour

A. Garcia-Vela

It is demonstrated both numerically and mathematically that the dynamical behavior of an isolated
resonance state, which comprises the resonance decay lifetime and the asymptotic fragment state
distribution produced upon resonance decay, can be extensively controlled by means of quantum
interference induced by a laser field in the weak-field regime. The control scheme applied is designed
to induce interference between amplitudes excited at two different energies of the resonance line
shape, namely the resonance energy and an additional energy. This scheme exploits the resonance
property of possessing a nonzero energy width, which makes it possible that a resonance state may
interfere with itself, and thus allows interference between the amplitudes excited at the two energies of
the resonance width. The application of this scheme opens the possibility of a universal control of both
the duration and the fragment product distribution outcome of any resonance-mediated molecular

rsc.li/pcecp process.

1 Introduction

Control of molecular processes is a goal that has been actively
pursued in the last few decades. A variety of control strategies
have been designed and applied, under both strong-field and
weak-field (one-photon) conditions.'™*° Strong-field control has
been successful in achieving control targets in many molecular
processes.®'*'” The possible disadvantage is that strong fields
may produce undesired multiphoton ionization leading to
the fragmentation of the molecular system. On the other
hand, nondestructive weak-field control is typically based on
quantum interference processes,">>®>'>'%13 which, when
properly applied, may lead to effects which are in practice very
similar to those achieved with strong fields. Thus, pursuing
the design of practical weak-field control schemes, albeit
challenging, is of great interest.

A variety of molecular processes (among them photodissocia-
tion and reactive and non-reactive collisional processes) are
governed by resonance states (either isolated or overlapping
ones).>*** A strategy used to control those processes under
weak-field conditions has been to modify the decay behaviour
of the resonances involved by inducing quantum interference
between them. In this sense, inducing interference between
overlapping resonances excited within a superposition state
has been successfully used to delay significantly radiationless
transitions and intramolecular vibrational redistribution processes
in different molecules.?”** Vibrational cooling was achieved by
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inducing resonance coalescence with a laser field.”® Also in a
framework of overlapping resonances, it has been shown that by
means of interference between the resonances, it is possible to
strongly enhance the lifetime of individual resonances within a
superposition,'*>*%¢ as well as to modify the fragment state
distribution produced upon resonance decay.*****” Control over
the resonance decay lifetime and over the fragment distribution
provides control over both, the duration and the outcome, respec-
tively, of the resonance-mediated molecular process of interest. In
this latter case the control scheme applied was a simple but
efficient one using a laser field that consisted of two pulses delayed
in time, each pulse exciting a different energy at which several
resonances overlap. Excitation of the two different energies is what
induces interference between the overlapping resonances.

The possibility of modifying a resonance decay behaviour
through interference between overlapping resonances has been
thus widely demonstrated, and it allows for control of resonance-
mediated molecular processes where such overlapping reso-
nances are present. In addition to the processes mediated by
overlapping resonances there are, however, other molecular
processes mediated by isolated resonance states. The question
thus arises whether it is possible to design similar control
schemes that can be applied to these isolated-resonance pro-
cesses. If so, control of resonance-mediated molecular processes
would become universal, for any molecular system featuring
either isolated or overlapping resonances. To the best of the
author knowledge, such a control over isolated resonances has
not yet been demonstrated.

Resonance states are intriguing quantum objects with very
interesting properties. A well-known property of a resonance
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state is that it possesses a nonzero energy width. Such a property
makes it possible that an isolated resonance state can interfere
with itself, which can be exploited in order to modify its decay
behaviour, similar to that performed with overlapping reso-
nances. In this work it is shown numerically and demonstrated
formally that interference of an isolated resonance state with
itself can be induced by applying a laser field. By controlling
this interference, both the resonance lifetime and the asymp-
totic fragment state distribution produced upon resonance
decay can be modified, allowing the control of any (isolated)
resonance-mediated molecular process of interest.

2 Methodology

Any molecular process mediated by an isolated resonance state
might be chosen to illustrate how the present control scheme
works, and vibrational predissociation of the Ne-Br,(B)
complex is the specific choice in this study. This system
features different types of resonances, and due to its relatively
small size it can be described quantum mechanically, which is
required to treat interference phenomena appropriately, and
for this reason it is used in this study as a prototype system.
Upon laser excitation, Ne-Br,(X,v” = 0) + hv — Ne-Br,(B,v',n’),
an intermolecular van der Waals resonance n’ of Ne-Br,(B,V’) is
populated. The labels v and v’ denote the vibrational states of
Br, in the X and B electronic states, respectively, while n’ labels
the energy position of the resonance, with n’ = 0 corresponding
to the ground one. The resonance excited decays to the frag-
mentation continuum through vibrational predissociation,
Ne-Br,(B,v',n') — Ne + Bry(B,v; < v'). This process has been
studied in detail both experimentally*®*° and theoretically.*>*!

Laser field excitation of Ne-Br,(B,V/,n’) and the subsequent
predissociation was simulated with a full three-dimensional
wave packet method described in detail elsewhere.!**°
A Chebychev propagator, which is both accurate and efficient
for the present purposes, was used. In order to assess the
quality of the model applied, it is noted that the lifetime
calculated with the present theoretical model for the decay of
the -Br,(B,v’ = 16) ground intermolecular resonance has been
found to be 69 ps,** while the corresponding lifetime estimated
experimentally is 68 + 3 ps.*® This good agreement with the
experimental lifetime implies that both the three-dimensional
wave packet method and the potential surfaces used in the
present simulations are realistic enough in order to describe
this resonance decay process.

In the simulations the wave packet is represented in
Jacobian coordinates (R,r,0), where R is the distance between the
Ne atom and the Br, center of mass, r is the Br-Br internuclear
distance, and 0 is the angle between the vectors associated with R
and r. In this representation the rovibrational eigenstates associated
with the Br,(B,v,j) fragment are ;{E,J)(r}Pj(cos 0), where () is the
vibrational eigenfunctions of Br,(B) with associated energies
E, ;and P;(cos () is a Legendre polynomial, with v and j being
the Br, vibrational and rotational quantum numbers, respec-
tively. The energy-resolved Br,(B,v,j) fragment state population
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is computed along time by projecting out the wave packet onto
the corresponding states

2
PV,/'(E, l) = Ck,,:/'

t
J (1) Py (cos O @(Re, 1,0, 1) )
0

(1)

where C is a constant factor, R, is a suitably large distance of the
dissociation coordinate R, E is the total energy of the system
(which in the present simulations corresponds to the resonance
energy E = E,), and k,; is given by

kv,j = [Zu(E - Ev,i)]l/z’ (2)

with u being the Ne-Br, reduced mass. The population in each
vibrational state of Br,(B,v) is now calculated as

Py(E, 1) = Py(E,1). (3)
J

3 Results and discussion

Specifically, the simulations focus on the excitation of the
Ne-Br,(B,v' = 21,n’ = 4) intermolecular resonance (n’ = 4 meaning
the fourth excited resonance). The excitation spectrum associated
with this resonance is shown in Fig. 1. This profile displays the
Lorentzian shape characteristic of an isolated resonance state.
The peak of the spectrum is located at the resonance energy
E = —38.90 cm™ !, and its full width at half maximum is about
FWHM = 0.4 cm™ .

The goal is to modify the decay behaviour of the
Ne-Br,(B,v' = 21,n’ = 4) resonance, that is, its decay lifetime
and the energy-resolved (at the energy £ = —38.90 cm ')
asymptotic Br,(B,v; < v') fragment vibrational state distribution

”
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Fig. 1 Lorentzian line shape of the Ne—Br,(B,V' = 21, n’ = 4) intermole-
cular resonance (red line). The two energies £, = —38.9 cm™ (the

resonance energy) and £, = —38.5 cm™ (relative to the Ne + Bro(B,V' = 21,
J' = 0) dissociation threshold) excited by the laser field are indicated in the
figure. The spectral profile of the pulses used in the g(t) (( = 1, 3) fields
to excite the E, and E,, energies (with amplitudes A; = A,, green lines, and
Az = 3A, blue line) is also shown.
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(ve=v' —1,v' — 2,v' — 3,...) produced upon resonance decay.
To this purpose, the control strategy adopted is similar to that
used with overlapping resonances,'>*>3” namely to excite two
different energies E, and E}, of the spectrum of Fig. 1 in order to
induce interference between them. These two energies are
excited by two pulses delayed in time. As previously shown,
by varying the delay time between the pulses the interference is
controlled, and the enhancement of the resonance lifetime can
be optimized.'>***® Modification of the asymptotic fragment
distribution only requires a sufficiently long delay time between
the pulses, without optimization.

The two energies chosen to induce interference are the
resonance energy E, = —38.90 cm™ ' and E, = —38.50 cm ™,
both indicated in Fig. 1. The control scheme applies a pump
laser field that combines three Gaussian-shaped pulses with
the form

es(t) = Ale_(‘_“)zm’2 cos[w(t — t1) + ¢4]
+ Aze’(HZ)Z/Z‘r2 cos[wy(t — ) + ¢s]

+ A3e7(t7"3)2/2”3 cos[ws(t — t3) + @3], (4)

where the first pulse of ¢;(t), centered at ¢,, excites the energy E,
(and a narrow bandwidth around it), with an associated photon
frequency w;. The two additional pulses centered at ¢, and t;
excite the second energy E, (associated with the photon
frequency w,) that will interfere with E,. The second pulse of
&3(t), delayed by Aty, = ¢, — t; from the first one, is used to
induce the interference that makes it possible to enhance the
resonance lifetime. The third pulse, delayed by At;; = ¢ — ¢
from the first one, allows inducing the interference that modi-
fies the asymptotic Bry(B,v; < V') fragment distribution. The
combination of three pulses of &;(¢) is the simplest laser field
that allows control of both the resonance decay lifetime and the
fragment state distribution produced.

Regarding the specific parameters used in &3(¢) in the
simulations, for simplicity it is assumed that ¢; = ¢, = ¢3 = 0.
The amplitudes of the pulses are 4; = 4, = 1.0 x 10~ ° a.u., and
Az = 344, which correspond to a maximum pulse intensity of
about 3.5 x 10* W em 2 and 3.2 x 10> W cm™ >, respectively,
within the weak-field regime. In practice t; is fixed at a value
t; =0, and ¢, and ¢; are varied. Thus, the delay time between the
pulses becomes Aty, = t, — t; = t, and Aty3 = t3 — t; = t3. The
temporal width of all the pulses (related to o) is the same, and
corresponds to a full width at half maximum of FWHM = 200 ps.
The spectral profiles of these pulses are shown in Fig. 1 for the
two energies E, and Ep. They are rather narrow and do not
overlap in the energy domain. In addition to the simulations
applying the 83(9 gield, simulations using a single-pulse field
e(t) = Are 27 cog[w(t — ) + ¢4] to excite only the E,
resonance energy were carried out in order to obtain the
resonance lifetime and the Br,(By; < v') distribution in the
absence of interference. The same values given above were used
for the parameters Ay, t, 0, @4, and ¢;.

Control of the resonance lifetime is achieved by applying
the two first pulses of ¢;(¢) with different delay times At;, in the
range —500 ps < At;, < 500 ps. For each value of At;, the
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resonance survival probability I,,—4(£) = [{(W,v—4(¢)| P(£))|* is com-
puted, where ,,-4(¢) is the resonance wave function and &(¢)
is the wave packet created by the two first pulses of &;(¢). Now
the corresponding lifetime, 7, is obtained by fitting I,,_4(¢) to
the function®®

loa(t) = AJ’_’OOC(z) lexp(=(;— ) /2], (5)

where C(¢) is the cross-correlation function of &;(¢) and A is an
amplitude scaling parameter.

The I,,-4(t) curves obtained for several values of At, are
displayed in Fig. 2(a), along with the survival probability com-
puted when only the resonance energy E, is excited with the
single-pulse field &(¢). In Fig. 2(b) a typical fit obtained using
eqn (5) is also shown. As expected, the single-energy I,,-4(¢) curve
displays no structure, since interference is not possible.

—150 ps
(a) —50 ps ——
60 ps
110 ps
200 ps
single pulse
>
=
3
5]
-
o]
o
o}
460 ~306 260 -1 o O 100 200 300 400
t (ps)
survival probability ——
(b) /N fit —
>
A=
3
]
=
@]
-
(o8
.300 200 -.100 o 760 200 300
t (ps)
Fig. 2 (a) Resonance survival probability /,/_4(t) computed when &s(t) is

applied with different delay times At;,, from At;, = —150 ps to Atyp =
200 ps, between the pulses exciting the E, and E, energies. The corres-
ponding /,/-4(t) curve obtained when the single-pulse field ¢(t) is applied
to excite only the E, energy is also displayed. (b) /,,7-4(t) curve calculated for
the delay time At;, = 40 ps (red line), along with the corresponding fit
(green line) obtained by using eqgn (5).
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The lifetime obtained for this curve with eqn (5) is tgng =
16.0 ps. The two-pulse curves, however, display a pronounced
structure of peaks or undulations, which are the signature of
quantum interference between the amplitudes excited to the
energies E, and Ep. Actually the different peaks of each curve
are separated by the same constant amount of time, which is
proportional to the inverse of the energy separation Ey, — E,, as
expected from an interference event.

Interference between the amplitudes at E, and E;, requires
their simultaneous excitation, and therefore some temporal
overlap between the two first pulses of g5(¢).">*® Thus, the basis
of the control scheme applied is the variation of At;,, because it
modifies the temporal overlap between the two first pulses
of &;(¢). Varying this overlap implies the variation of the relative
amplitudes that are excited to both E, and Ey, and therefore
their mechanism of interference. When interference between
the amplitudes at E, and E;, is modified, the shape of the I,,_4(¢)
curve changes as well, as shown in Fig. 2(a), which leads to the
variation of the associated resonance lifetime.

By applying eqn (5) the resonance lifetime is calculated for
the different values of At;,, and the results are plotted in Fig. 3.
The figure shows that for very large delay times |At;,| = 500 ps
the lifetime found is 7 = 16.0 ps, the same value obtained when
the single-pulse field &(¢) is applied. For large |At;,| there is no
temporal overlap between the two first pulses of ¢;(¢), and thus
no interference between E, and E,, is possible, leading to the
same 7 obtained with ¢,(¢). However, when |At;,| decreases, the
overlap between the pulses becomes nonzero and interference
between the amplitudes at E, and E|, takes place. The result is a
gradual enhancement of the resonance lifetime, which increases
from 7 = 16.0 ps to © = 31.0 ps at A¢;, = 110 ps, nearly twice the
value obtained in the absence of interference.

In a previous study’” the variation of the resonance lifetime
was analyzed by changing both the laser fields and the delay
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Fig. 3 Lifetime associated with the resonance survival probability /,/_4(t),
calculated when the two energies E, and E, are excited by the two first
pulses of the es(t) field with different delay times Atj,. The resonance
lifetime is significantly enhanced when |Aty,| decreases from 500 ps,
reaching a maximum enhancement at At;, = 110 ps.
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times between the pulses, in a framework of overlapping
resonances, and such analysis provided very useful insight
about how the interference mechanism works. The shape of
the curve of Fig. 3 is similar to those found for overlapping
resonances,'>> indicating that the mechanism of interference
operates similarly in the lifetime enhancement. In this sense,
the value of At;, at which maximum lifetime enhancement is
achieved is determined by the maximization of the intensity of
interference between the amplitudes of E, and E,.*> And the
achievement of maximum interference intensity depends on
reaching enough temporal overlap between the two pulses
(albeit not necessarily the maximum overlap, occurring at
At;, = 0), but such that the mechanism of interference between
the amplitudes excited at E, and E}, is optimized. Such optimi-
zation of the interference is what determines the maximum
enhancement of the resonance lifetime achieved (r = 31.0 ps)
and the value of At;, at which it takes place (At;, = 110 ps in
this case).>>? It is noted, however, that complete optimization
of the laser field (involving going beyond just varying At;,, and
changing the Gaussian shape of the pulses) in order to fully
maximize the resonance lifetime enhancement has not been
pursued, and thus the enhancement currently achieved could
be increased further.

The next goal is to modify the other resonance properties that
determine the outcome of a resonance-mediated molecular
process, namely the energy-resolved asymptotic fragment dis-
tribution. In the present case it corresponds to the Br,(B,v; < V')
fragment distribution produced upon predissociation at the
resonance energy E, = —38.9 em ™. To this end, the third pulse
of &5(¢) is used to excite the E}, energy, similar to that performed
previously with the second pulse. The difference now is that the
first and the third pulse will not overlap in time, and the delay
time At;; between them will be much longer than At;,. The
reason for a longer At;; is to allow enough time for the first
amplitude excited at E, to decay completely and to reach the
asymptotic regime of the fragment distribution produced. Thus,
by exciting amplitude to Ej,, quantum interference is induced
between this and the asymptotic decayed amplitude initially
excited to E, by the first pulse of &5(¢).>**” In the present
simulations a long enough delay time A¢;3 = 1500 ps has been
chosen, and in Fig. 4(a) the temporal profile of the &;(¢) field
applied is displayed, with At;, = 110 ps, A; = 4,, and A3 = 34,.

In Fig. 4(b) the energy-resolved Br,(B,v¢) fragment vibrational
populations in the v¢ = v’ — 1,...,v" — 4 final vibrational state
associated with the E, resonance energy are shown. The differ-
ent populations display a clear modification in the asymptotic
time regime when the third pulse of ¢;(¢) is applied to excite the
E}, energy. Such a modification manifests itself in the form of
undulations that reflect the interference taking place between
the amplitudes excited at both energies. This interference
occurs between the asymptotic amplitude at the E, energy
and the amplitude excited at the E}, energy, which temporarily
populates the continuum fragment states at E,.>®*” The inter-
ference effect is increasingly more intense as the v¢ population
is larger in magnitude, because the larger is the asymptotic
amplitude the more intense will be the interference terms.

This journal is © the Owner Societies 2020
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Fig. 4 (a) Temporal profile (red line) along with its envelope (green line) of
the &3(t) laser field applied to excite the Ne—Br,(B,v' = 21, n’ = 4) resonance,
with At;, = 110 ps in this case, and At;z = 1500 ps. (b) Energy-resolved
Br,(B,v;) fragment vibrational populations in the v = v/ — 1,..., v/ — 4 final
vibrational state produced upon predissociation of Ne-Bry(B,v' = 21,
n’ = 4), associated with the resonance energy E, = —38.9 cm™, when
the e3(t) field of Fig. 4(a) is applied. All the vibrational v¢ populations are
labeled in the figure except v; = v/ — 4, which is very small.

In this sense it is noted that the second pulse of &;(¢) also causes
an interference effect on the vibrational populations of Fig. 4(b)
around At;, = 110 ps, although being much weaker since A, = A;/3.
Once the third pulse is over and the amplitude excited at E}, has
decayed completely, the asymptotic populations converge back to
the values previous to the application of the third pulse. The
implication is that the modifications caused by interference in the
fragment distribution cannot be observed asymptotically in
the same vibronic state (Bry(B,v) in our case) where they are
produced. This, however, does not prevent an effective control of
the fragment distribution and its observation, if the fragments are
detected or moved to other vibronic states of interest (applying a
further laser pulse) while the interference effect takes place.

The above results demonstrate numerically that by inducing
quantum interference between amplitudes at two different energies
by applying a simple laser field like &;(¢) of eqn (4), extensive control
over the decay lifetime and the asymptotic fragment distribution
produced upon decay of an isolated resonance can be achieved in
the weak-field regime. In the following the formal theory under-
lying those results and the present control scheme is developed.
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Let A be the total Hamiltonian of a general molecular
system that supports isolated resonances (Ne-Br,(B,v') would
be an example of such a general system). Following the discus-
sion on the decay of a resonance state of Cohen-Tannoudji
et al.,*® we can write H as H = H, + W, where H, is a zeroth-order
Hamiltonian and W is a coupling. The spectrum of H, consists
of a set of discrete bound states y; (located in the interaction
region) with associated energies E;, and a set of continuum
states ¢g,, (associated with the product fragments in the
asymptotic region) with associated energies E, and m being a
global label for the fragment internal states. When W = 0 the y;
states are true bound states, but when W # 0, y; become
resonances /; that decay to the continuum of ¢, states. These
states fulfill the orthogonality relationship

E):<Xi|(PE,m> =0, (6)

and form a complete basis set in which the state of the system
excited at the energy E can be expressed. Let yz be the
stationary eigenstates of H associated with energy E in the
excited electronic state of the molecular system. Such eigen-
states (which also form a complete basis set) can be expanded
in the set of the y; and ¢g,, states as

(Ol xa) = 51’1"<(PE’,m’|‘PE,m> = Ommd(E" —

E —i E —iE'
l//E(l) — A;\ )Xke iEgt/h +ZJdE,BSE’?n1’¢E’,I71’e Et/h7 (7)

m'

where y; is the closest discrete state to energy E.

Let us now focus on one of the isolated resonances of our
general molecular system. By applying a single-pulse field like
&1(¢) to excite the resonance energy E,, a wave packet ¢ (t) is
created

enlt) = jdlf’ ) (0 (1) = ) (1) e 541/

(8)
3 QB e
where a,EE jdE” E,, (1 )A,((E«) and b EE,"m = [dE"C (é*’)( 1)
B;, - Thus, when two pulses are applied to excite the E, and E,

energies to induce interference between them, the following wave
packet is created

(1) = 5Ea(t) + éEb(t)! ©)

with g (¢) and g, (t) being the amplitudes excited around E,
and Ej, respectively. It is assumed that the two pulses are
spectrally narrow enough such that they, and thus &g (¢) and
&g, (1), do not overlap in energy. Now, using eqn (8) we can write,

o(1) = JdE”[C( (1) + 0]y (1)

(10)

E, E —iE),
[ (1) + o (0] e

+ Z JdE/ [ E' m’ ) + bE’ m’( )] (pE’,m’eiiEI[/ﬁ‘

m'
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A resonance wave function y; can also be expressed in terms
of the stationary eigenstates /5 as

1) = [aE" e (0 (11)

Thus, the resonance survival probability I,(¢) is

(1) = i) @)
2

= |Ja"far e [ 0+ 0] e )

’ 2

UdE/ [c V(1) + CB) (1 )] ’2_ ‘a'fE“)(z) +d®) ()

2 , 2
— di(Ea)([)) +d[<Eu)(l)d’-(Eb)*(t) + d,-(Ea)*(t)di(Eb)(t) + di(Eh)(t)
(12)
where (Ve (QY() = 6" — E), d"(1) = [dE'cy" Cpy? (1),
with o = a,b. 5
The term ( E) (t)) of eqn (12) is the survival probability that

would be obtamed if a single resonance energy E, was excited
with the single-pulse field E,(¢) (i.e., the plain curve of Fig. 2(a),
with associated lifetime 4, = 16.0 ps). The three additional
terms of eqn (12) arise from the excitation of amplitude at
energy E;, by the second pulse of ¢;(¢), and its interference with
the resonance amplitude excited at E,. Such terms associated
with the interference are the ones that cause the undulations of
the I,y-4(¢) curves of Fig. 2(a). As mentioned above, the require-
ment for these terms to be nonzero is that the amplitudes

dl-(E"‘) (r) and d,-(Eb) (7) must be generated simultaneously at E, and
Ey, respectively, which implies the temporal overlap to some
extent of the two pulses exciting those energies. When the delay
time At;, between the pulses is varied, the range of temporal

overlap between them is modified, changing the relative d,-<E"‘) (1)

and dl-(Eb)(t) amplitudes excited simultaneously. This causes a
variation of the interference terms of eqn (12) in a controlled
manner, which leads to a change in the shape of Iff) (see
Fig. 2(a)), and thus also in the associated lifetime (as shown in
Fig. 3). In brief, interference induces a new decay mechanism
with a longer lifetime that replaces the intrinsic decay mecha-
nism, in which a transfer of amplitude back and forth between
the two energies takes place.** Eqn (11) reflects the fact that a
resonance state y/; possesses a nonzero energy width. This finite
width is what makes possible interference of the resonance
with itself, when a wave packet @(¢) containing different ener-
gies within this width (essentially E, and Ey,) is created with the
two pulses of the field. This is the key aspect of the present
weak-field control scheme of the isolated resonance behavior.

Regarding the fragment state distribution produced upon
resonance decay, the asymptotic probability associated with the
fragment state ¢z, can be expressed as

2
Pm(E?t ) Cllm‘ q)Eml(p ‘ _C} @Eml(p( )>| ) (13)
where C is a constant and &(¢) is the wave packet created by the

electric field applied. Similarly as with the resonance lifetime,
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the control strategy here is based on inducing interference by
exciting two different energies, namely the resonance energy E,
and the additional energy E,, with two pulses. Thus a @(t) wave
packet like that of eqn (9) and (10) is created. Our goal now is to
modify the energy-resolved asymptotic fragment state distribu-
tion at the resonance energy E., Pp(Eat) = Cl{@gam|®(t))]|*. By
using eqn (10) we can write

<§DE.(,4m‘¢([)> = ZJdE’ |:bE’ m ( )+ bE’ m' ( ):| <(pEa,m|(pE’<m’>eiiE/f/7l

m'

‘dE/ E, m’( )+b " ! ( ):| 5,,1,,1/(S(E/ _Ea)e*l'E’t/h

= |:b(Ea m( ) + bE. m( ):| eiiEat/ha
(14)

where eqn (6) was used. The product state distribution at time ¢
long enough finally becomes

PulEact) = Clto, ol @)= |62 0] 454, (002 )

2
+ bE‘;. 211 ( )b(EEdbn1 ‘bEd m ) :|
(15)

Eqn (15) is very similar to eqn (12) because it also consists of a
sum of four terms, three of them being the result of excitation of
amplitude to the second energy Ey, that generates temporarily

the b(Ef‘f,Z,(t) amplitude, and its interference with the asymptotic

amplitude b(Ef‘:,),,(t) previously excited to E,. Such interference is

what causes the long-time undulations displayed in the vibra-
tional populations of Fig. 4(b). Indeed, the first term of eqn (15),
Cloife
the first pulse of &5(¢) (or by the single-pulse field &(¢)). The three
additional terms arising from the excitation to E,, “dress” the
first term, producing the interference-induced modification of
the fragment distribution in a similar way to the survival prob-
ability of eqn (12). The difference with the resonance lifetime
control is that now the two pulses are not required to overlap in
time, because the amplitude excited to E, will remain all the time
in the continuum fragment states after decay.

The mechanism of interference in this case is the following.
After the amplitude excited to E, has decayed to the continuum
fragment states, becoming asymptotic, the third pulse of &5(¢)
pumps amplitude to the Ej, energy. When this latter amplitude
decays, it spreads and redistributes temporarily among all
the ¢g,, continuum states accessible by the resonance state
within its energy width, including those associated with the E,

2
, is generated when only the E, energy is excited by

€nergy, @rq,m. This generates temporarily the amplitude b(EIi’,L(t)
appearing in the last three terms of eqn (15) that produce
the interference effect in the fragment distribution.>®*” The
temporary dispersion of the amplitude excited by the third
pulse among different ¢ ,, asymptotic states within a range of
energy that includes the ¢y ,, fragment states is due to the
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uncertainty principle. Once the third pulse of &;(t) is over and
all the amplitude excited to Ep has decayed completely to the
appropriate ¢z, ., fragment states, producing a distribution at
energy Ey, interference ceases and the asymptotic distribution

2
at E, converges again to P, (E,, tx) = C’bg"j,)n(zoo)‘ . Since the
interference terms of eqn (15) appear as long as the amplitude

¢k, (t) (or equivalently b(EE“’,)M(t)) is created by the third pulse of
&3(t), it becomes clear that this can be done at any asymptotic
time as long as desired, and as many times as desired (using
further successive pulses after the third one in the laser field).

The above general equations, and specifically eqn (12) and
(15), which govern the resonance survival probability and product
fragment distribution, respectively, provide the formal support to
the results of the numerical simulations shown in Fig. 2-4. It is
stressed that in the derivation of these equations no assumption
is made on the nature or type of the molecular system that
originates or supports the isolated resonance under control.
Therefore these equations are valid for any isolated resonance,
regardless of the origin of the system featuring the resonance. The
consequence is that the application of the present control scheme
behind these equations is general and universal to any molecular
system featuring isolated resonance states, thus making possible
the control of both the duration and the outcome of any
resonance-mediated molecular process.

4 Conclusions

In conclusion, this study demonstrates both numerically and
mathematically the possibility to control extensively the dynamical
decay behavior of an isolated resonance state, which involves
the resonance decay lifetime and the asymptotic fragment state
distribution produced upon resonance decay. The weak-field con-
trol scheme applied is based on inducing quantum interference
between amplitudes excited at two different energies of the reso-
nance line shape, namely the resonance energy and an additional
energy. Control is achieved by using a simple laser field consisting
of a combination of three pulses with a delay time between them.
The first pulse excites the resonance energy, the second pulse
excites the second energy in order to control the decay lifetime, and
finally the third pulse excites again the second energy at a much
longer delay time in order to control the asymptotic fragment
distribution. The key aspect of the control scheme is to exploit the
property of the resonance state that involves possessing a nonzero
energy width, which makes it possible that the resonance state may
interfere with itself, and thus allows interference between the
amplitudes excited at the two energies of the resonance width used
in the scheme. The formal equations developed demonstrate that
the application of the scheme is universal to any resonance-
mediated molecular process, in order to control both its duration
and decay outcome.
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