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Optimizing photon upconversion by decoupling
excimer formation and triplet triplet annihilation
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Perylene is a promising annihilator candidate for triplet—triplet annihilation photon upconversion, which
has been successfully used in solar cells and in photocatalysis. Perylene can, however, form excimers,

reducing the energy conversion efficiency and hindering further development of TTA-UC systems. Alkyl

substitution of perylene can suppress excimer formation, but decelerate triplet energy transfer and
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triplet—triplet annihilation at the same time. Our results show that mono-substitution with small alkyl
groups selectively blocks excimer formation without severly compromising the TTA-UC efficiency. The
experimental results are complemented by DFT calculations, which demonstrate that excimer formation

is suppressed by steric repulsion. The results demonstrate how the chemical structure can be modified to
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Introduction

Triplet-triplet annihilation photon upconversion (TTA-UC) can
help light harvesting materials to overcome their bandgap
limitation and thus achieve higher solar energy conversion
efficiencies beyond the Shockley-Queisser limit."” The mechanism
has recently been successfully incorporated in solar cells,*** photo-
catalysts,">*® optical devices,"*>* and light imaging.*>" It requires
two functional species, a sensitizer and an annihilator. The
sensitizer absorbs a photon and transfers the energy to an
annihilator through triplet energy transfer.>> Two annihilator
molecules in their triplet excited states undergo triplet-triplet
annihilation®® upon close contact, promoting one molecule to
its excited singlet state from where emission of a high energy
photon occurs. Perylene is among the most promising annihilator
candidates due to its high stability, commercial availability, and
excellent photo-physical properties.** TTA-UC systems based on
perylene as the annihilator hold the photon upconversion quantum
yield record and have now been used in solar cells, photo-redox
catalysis and bio-imaging.'®**~”
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block unwanted intermolecular excited state relaxation pathways with minimal effect on the preferred ones.

The drawback of perylene is its tendency to form excited
dimers (excimers). Excimer formation in TTA-UC reduces the
overall energy conversion efficiency, both due to the lower
energy of the emitted photons and due to the significant rate
constant of non-radiative decay from excimers.*® Dover et al.
have shown the conversion between monomers and excimers
through triplet pair and free diffusion during both singlet
fission and TTA-UC.?*° We have further suggested that another
main reason for the surprisingly large amount of excimer
emission in perylene based photon upconversion is due to
a preassembly step on the triplet energy surface, already
before the upconversion event.”® Alkyl substitution offers the
opportunity to manipulate the stacking interactions of perylene
with minimal impact on the excited levels of the individual
molecules. Indeed, perylene derivatives like tetra-tert-butyl-
perylene show low excimer formation in TTA-UC, since the
molecular aggregation is sterically hindered.*"*> However, the
steric bulk also reduces mobility and molecular contact, and
thus can inhibit triplet energy transfer’>** and TTA. It is
therefore of great importance to control the pi-pi interactions
in perylene in order to limit excimer formation without
compromising photon upconversion performance.

Here, a series of alkyl substituted perylene derivatives are
used to investigate the interplay between upconversion perfor-
mance and excimer formation blockade. Static and dynamic
upconversion experiments show that an ethyl group is
sufficient to block excimer formation. This result is corroborated
by calculations, which show that steric hindrance prevents
coupling on the excimer landscape. The results presented here
shed light on molecular design of TTA-UC annihilators and help
to optimize annihilator molecules for TTA-UC.
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Results
Spectroscopic characterization of annihilators

To assess the effect of increasing steric hindrance on excimer
formation and upconversion efficiency, four perylene deriva-
tives were used: perylene (pery), 1-ethyl-perylene (et-pery), 3-tert-
butyl-perylene (¢-bu-pery) and 2,5,8,11-tetra-tert-butylperylene
(t-t-bu-pery), which are available from our previous work (Fig. 1a).**
The absorption and emission spectra of these molecules in tetra-
hydrofuran (THF) are shown in Fig. 1b revealing only minor changes
to the energy of the singlet excited state. The Stokes shifts of
pery, et-pery, t-bu-pery and t-t-bu-pery are 103 cm ™', 736 cm ™!,
938 cm ™! and 849 cm™’, respectively. The increased Stokes
shift after alkyl substitution indicates that the difference in
polarizability between the ground and excited states increases
when alkylated.*> All four annihilators demonstrate fluores-
cence quantum yields near unity, and a fluorescence lifetime of
3.8 ns, indicating that the excited states configuration is not
affected much by the substitution (Fig. S1, ESIt).

Photon upconversion with different annihilators

In order to construct TTA-UC systems with these perylene
derivatives, we used Platinum tetra-benzo-tetra-phenyl-porphyrin
(PtTBTP) as a triplet sensitizer. PtTBTP has a high phosphores-
cence quantum yield, long triplet lifetime, and a triplet energy
that matches the one of perylene.*® The potential photon energy
increase of the PtTBTP/perylene couple is 0.75 to 0.83 eV, as
determined by the difference of the Eq, energies (Fig. S2, ESIt)."
Photon upconversion using PtTBTP in combination with the
presented perylene derivatives was performed using a light-
emitting diode (LED) as excitation source (617 nm; Fig. 1c). For
all perylene derivatives, strong emission can be observed in the
range 450 nm to 540 nm, which is assigned to perylene
fluorescence due to TTA-UC. Excimer emission at 565 nm from
perylene is also present.”® The quantum yield of excimer
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emission increases with perylene concentration, indicating a
process for perylene excimer formation that involves diffusion.
No excimer emission was, however, observed for the three
perylene derivatives with steric side groups over a wide range
of annihilator concentrations (Fig. 1d). We can thus conclude
that even such small substituents as an ethyl group are enough
to block excimer formation in perylene derivatives. Photon-
upconversion emission of the four annihilators show linear and
quadratic dependence on the excitation intensity (Fig. S3, ESIT),
as a typical feature of TTA-UC. The light intensity threshold of
quadratic to linear dependence increases after alkyl substitution,
reducing the TTA-UC efficiency at low excitation intensity.

Energetics of annihilator dimers

It has recently been suggested that a reason for strong excimer
emission in perylene based TTA-UC is the formation of
excimers on the triplet surfaces before the annihilation
event.”® The relationship between excimer formation and mole-
cular structure can be explored from an energetic point of view
(Note S1.6, ESIT). To this end, we analysed the potential energy
surface for the interaction between a pair of perylene molecules
within the framework of time-dependent density functional
theory (TD-DFT).**>> We relaxed the structure of the molecular
dimers on the ground state (S,) potential energy surface (PES).
Subsequently, we mapped out the PES as a function of the
lateral displacement of the two monomers (Fig. 2a and b). The z
offset distances for pery and et-pery are about 3.32 and 3.48 A,
respectively. The first excited singlet (S;) and triplet (T;) energy
surfaces of the dimer were then created by adding the respec-
tive excitation energies to the ground state energy.

In the ground state of the pery dimer, the two monomers are
shifted relative to each other, similar to the situation in a
graphene bilayer.”® The singlet and triplet excimers on the
other hand, are characterized by perfect lateral alignment of
the two monomers. The energies of the two configurations

a b) 1 T c) 1 — % ' .
(@) (b) (© @ ] S
g.g 1] (] Monomer |
o
t-t-bu-pery 101 o908 -0o_;
Q /*\ o Monomer
920 \ 14 I
t-bu-pery Abs lem  lem Dy [%]
O 101 000 -0
o
O Q 14 o Monomer |
et-pery
o Monomer_ |
Q O 10 o 0 0 O
O.Q 1- o © 2 oExgmer I
Rety 300 400 500 600 400 500 600 700 800 10° 10 10°
A [nm] A [nm] C [M]

Fig. 1

(a) Molecular structure of pery, et-pery, t-bu-pery, and t-t-bu-pery; (b) absorption/emission spectra of 10 uM pery, et-pery, t-bu-pery, and

t-t-bu-pery in THF when excited at 400 nm; (c) upconverted emission spectra from solutions of 10 uM PtTBTP and 1 mM perylene derivatives upon
excitation at 617 nm in THF.3® The absolute photon upconversion quantum yields at different concentrations of annihilators.
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(a) Calculated energy surfaces of the confined systems of pery and et-pery dimers. The energy minimum geometry on the SoSg energy surface is

labelled with a yellow cross, and the energy minimum geometry on the T;So and S;Sp energy surfaces is labelled with a red cross; (b) bi-molecular
coordination of pery and et-pery dimer on xy plane; (c) energy diagram of pery and et-pery dimer at relaxation.

differ by 0.48 eV, —0.10 eV, and —0.35 €V on the Sy, Ty, and S;
surfaces, respectively. These energy differences correlates with
low energy excimer emission (Fig. 2c).

The PES of et-pery is less symmetric than in the case of pery
and the lowest energy configurations on the S,, T;, and S;
landscape are almost identical to each other. The distortion of
the molecular geometry caused by the et groups impacts
the ability of the two monomers to move relative to each other
(note that the core of et-pery is slightly twisted). This prevents
them from achieving an alignment that, as in the case of pery,
enables efficient coupling on the excited landscape, and thus
excimer formation. We can conclude that alkyl substitution is
an effective means to disrupt the favourable excimer geometry
of perylene on both singlet and triplet energy surfaces.

Kinetics of photon upconversion

While alkyl substitution prevents excimer formation, it also has
drawbacks. Increasing the molecular size by alkylation reduces
the molecular mobility and thus the bimolecular reaction rates
of triplet energy transfer’> and TTA. The TET rate constant can
be determined by examining the quenching efficiency of the
sensitizer phosphorescence by the annihilator. The relation-
ship between the quenching effect and quencher concentration
follows the Stern-Volmer equation (eqn (1) and (2)).>*

To

? =1+ st[A] =1+ kTET’CQ[A] (1)
krETT0[A]

P = 2

TET 1 —+ kTETTO [A] ( )
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In eqn (1) and (2), 7, is the phosphorescence lifetime of the
sensitizer in absence of an annihilator, 7 is the lifetime of the
sensitizer in presence of an annihilator, Kgy is the Stern-Volmer
constant, krgr is the TET rate constant, and [A] is the concentration
of the annihilator. Fig. 3a displays the sensitizer quenching as the
concentration of annihilator is increased. With increasing alkyl
substitution, the rate of TET is decreasing. It is instructive to
compare the TET quantum yield (@1gr) as a function of annihilator
concentration calculated by eqn (2) (Fig. 3b). To reach a TET
quantum efficiency of 0.99, the concentration of pery, et-pery,
t-bu-pery, and t-t-bu-pery should be 1.0, 2.2, 2.6 and 11.5 mM,
respectively. The relatively low TET efficiency of t-t-bu-pery thus
requires highly concentrated conditions to quench the triplet
sensitizer effectively. This effect is directly related to the bigger
molecular size and the steric hindrance caused by the substitution.
Therefore, as small substitution as possible is preferable in order to
maintain a high TET efficiency.

Alkyl substitution will not only affect the rate of TET, also
the rate of TTA will be affected. The generation of annihilators
in the excited triplet state is on the timescale of a few hundereds of
nanoseconds to a few microseconds, whereas consumption is on
the microsecond timescale. We can then describe the kinetics of
TTA-UC by the following equations (eqn (3) and (4)), which assume
that the annihilators are in the triplet excited state to start with:

I
ot

= —2krraPA]? — kr[PAY] 3)

I['A¥]
ot

— kTTA[SA*]z _ kF [IA*} (4)
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Fig. 3 (a) Stern—-Volmer quenching relationship of PtTBTP sensitizer and
perylene derivatives; (b) simulated triplet energy transfer efficiencies;
(c) time resolved transient absorption decay at the of annihilator Ty —» T,
transition peaks of 10 uM PtTBTP and 1 mM perylene/perylene derivatives
in THF when excited at 617 nm with pulse energies between 0.30 and
0.37 mJ; (d) time-resolved delayed fluorescence decay at 470 nm of 10 uM
PtTBTP and 1 mM perylene/perylene derivatives in THF when excited at
617 nm with pulse energies of 4 pJ.

where [?A¥] and ['A*] are the concentrations of annihilator in
the excited triplet and singlet states, respectively, ¢ is the time
after excitation, krr, is the TTA rate constant, &y is the intrinsic
decay rate constant of the excited triplet annihilator, and kg is
the fluorescence decay rate constant of the excited singlet
annihilator.”>®

The kinetics of the triplet excited annihilator was measured
by transient absorption. The triplet states were monitored by
their T, to T, transitions (Fig. S4, ESIt). Fig. 3c displays the time
resolved transient absorption decays of the T, to T, transition
of the annihilators, and Fig. 3d displays the time resolved
upconverted emission of the annihilators. The bimolecular
TTA rate constants were obtained by fitting these decay curves
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using eqn (3) and (4).>>>” TTA can only occur within the closely
bound triplet pair, which is formed when two annihilators in
their excited triplet state meet.”®®* The effective interaction
radius follows the Einstein-Smoluchowski relation (Note S1.7,
ESI¥), and can be calculated from eqn (5).5>%

krra = 4TDNRprp (5)

where D is the molecular diffusion coefficient (eqn (S3), ESIT),
and N is the Avogadro constant, Rrrs is the effective TTA
reaction radius. A large molecular size due to alkyl substitution
reduces the mobility of annihilator molecules and also restricts
the formation of an effective triplet pair by steric hindrance.
Table 1 lists the calculated TTA-UC parameters of all four
annihilators. The TTA rate constants and effective radii
decrease with size of the alkyl substituents. Substitution with
big alkyl groups is then unfavourable for TTA kinetics for the
above two reasons.

Given the negative effect of large steric substituents on the
rate of TTA, the TTA efficiency can be compensated by the
reduced intrinsic decay of the triplet annihilator. In a typical
TTA-UC process, TTA is competing with the intrinsic decay of
triplet annihilators, and the TTA quantum yield (®1r,) follows

eqn (6)

) ©

DrTA = NTTA (m

where 7rry is the possibility of TTA forming a singlet excited state
according to spin statistics. Since the maximum upconversion
quantum yields are at the same level, we assume the same spin
statistical parameters for the four annihilators. The quantum
yield of TTA is then determined by the competition between
TTA and the intrinsic decay of excited triplet annihilators. Pre-
vious reports have pointed out that the radiative decay rate
constant of petylene is less than 100 s~*.** However, perylene
has a high inclination to aggregate and decay non-radiatively,
which increases the effective &r.®> We noticed that the intrinsic
rate of decay decreases in the alkylated derivatives as compared
to perylene, leading to an improved performance of alkylated
perylene as TTA-UC annihilators.

Conclusions

Here, we have examined the TTA-UC performance of perylene
and alkyl-perylene derivatives. The comparison revealed that
mono-substitution with small alkyl group is sufficient in
order to prevent excimer emission, while maintaining high
performance. Furthermore, we demonstrate computationally

Table 1 Dynamic parameters of perylene and perylene derivatives for TTA-UC, observed and calculated from Fig. 3 and Fig. S4 (ESI)

Molecule Ksy/M ™! frpr/M st . (T4-T,)/nm & (Ty-T,)M ' em™! frra/M 1 st /st D/m?* st RrralA
pery 9.06 x 10*  2.77 x 10° 485 13 400 8.40 x 10° 3.55 x 10° 1.72 x 1077 6.62
et-pery 4.43 x 10 1.26 x 10° 497 11369 5.58 x 10° 135 x 10°  1.56 x 10°°  4.57
t-bu-pery 3.70 x 10*  1.05 x 10° 501 11995 5.82 x 10° 1.79 x 10° 1.44 x 1077 5.17
t-t-bu-pery  8.61 x 10>  2.44 x 10° 486 14939 1.15 x 10° 542 x 10> 1.02 x 1077 1.52
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how alkyl substitution prevents excimer formation on both
singlet and triplet surfaces. Considering that the excess steric
effect reduces the TTA-UC efficiency by restricting triplet-triplet
energy transfer, a proper level of steric hindrance benefits
TTA-UC systems. Furthermore, from the efficiency of annihilation
it is also clear that triplet pair formation is much less sensitive to
geometrical constraints than excimer formation. This compara-
tive study thus leads to design rules for TTA-UC systems with high
efficiency and contributes to the development of solar energy
conversion.
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