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Vibrational mode frequency correction of liquid
water in density functional theory molecular
dynamics simulations with van der Waals
correction†

Kai Zhong,ab Chun-Chieh Yu, b Mayank Dodia,b Mischa Bonn, b

Yuki Nagata *b and Tatsuhiko Ohto*c

The frequencies and spectral lineshapes of the stretch and bending modes of water provide invaluable

information on the microscopic structures of water in aqueous solutions and at the water/solid

interfaces. Density functional theory molecular dynamics (DFT-MD) simulation has been used not only

for predicting the properties of water but also for interpreting the vibrational spectra of water. Since the

accuracy of the DFT-MD simulations relies on the choice of the exchange–correlation functionals

and dispersion correction schemes employed, the predicted vibrational spectra at different levels of DFT

theory differ significantly, prohibiting precise comparison of simulated spectra with experimental data.

Here, we simulate the vibrational density of states for liquid heavy water based on various DFT-MD

trajectories. We find that DFT-MD simulations tend to predict excessive inhomogeneous broadening for

the stretch mode of water. Furthermore, we develop a frequency correction scheme for the stretch and

bending modes of liquid water, which substantially improves the prediction of the vibrational spectra.

1. Introduction

The molecular structure of water is simple, yet the ensemble of
water molecules leads to unique properties of liquid water,
such as the higher density in the liquid phase than in the solid
phase and large surface tension of water. These unique proper-
ties arise from the complex hydrogen-bond (H-bond) network
of water. Understanding the relationship between the local
conformation of water and H-bond strength is essential for
clarifying the properties of various aqueous systems.

Information on the H-bond of water has been gained
through vibrational spectroscopy such as infrared (IR) and
Raman spectroscopy.1,2 Typically, the IR spectrum of liquid
water consists of three major bands; the O–H stretch mode,
H–O–H bending mode, and librational modes of water. The O–H
stretch and H–O–H bending modes have been widely used as

reporters of the H-bond strength.3–6 When the H-bond of water
becomes stronger, the frequency of the O–H stretch mode is
lowered4 and the frequency of the H–O–H bending mode is
elevated.7 As such, frequency shifts of the O–H stretch mode in
aqueous solutions reflect how the solute–water interactions alter
the strength and structure of the H-bond network of water.7–10

The target of the vibrational spectroscopy of water can be further
expanded, when the vibrational technique is combined with a
surface-specific technique.11–13 As such, vibrational spectroscopy
becomes a valuable technique for probing the microscopic
structure of interfacial water.

There are, however, several challenges associated with inter-
preting the vibrational spectra of water. First of all, the vibra-
tional bands of the water spectra are often broad and
featureless, making it difficult to assign specific features to
the molecular conformations. Secondly, for more complex,
composite aqueous solutions, it is often not clear which inter-
action is leading to which feature of the vibrational spectra.
Simulating vibrational spectra based on the trajectories
sampled by molecular dynamics (MD) simulation is a direct
and powerful route to interpret the vibrational spectra, because
it allows us to identify the contribution of water molecules in
the bulk and near the solute molecules.5,14–18

When a solute–water interaction is complicated, developing
accurate force field models for computing the vibrational
spectra is not straightforward. In contrast with MD simulations
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using force field models, a density functional theory (DFT)-MD
simulation computes the forces acting on the atoms based on
DFT, which allows us to simulate complex solute–water inter-
actions without using force field models.19–28 However, the
predictive powers of DFT-MD simulations regarding the water
properties rely heavily on the choice of the exchange–correlation
(XC) functionals and van der Waals (vdW) corrections.29–35

Likewise, the peak frequencies in the vibrational spectra of
liquid water are strongly affected by the XC functionals and vdW
corrections.36–38

To correct the peak frequency, one can use the dataset of
scaling factors that are available for many XC functionals.39–41

These datasets, however, do not work well for water vibrational
spectroscopy, as these datasets are often created to correct for
gas-phase frequencies. Furthermore, the scaling factors are
generally parametrized for a set of small molecules, which
may provide inaccurate numerical values for the liquid water
peak frequencies. As such, generating the correction scheme
for the vibrational frequency of water is urgently required for
achieving reliable interpretation of the vibrational spectra of
water, based on the DFT-MD simulation with available XC
functionals and vdW corrections. Note that, although the
vibrational spectra will be affected by several factors including
nuclear quantum effects,42,43 the scheme for correcting the
frequency being presented here include these effects only
implicitly; the correction factor provides a practical approach
to estimate the frequency of liquid water, while accurate high-
level simulation requires nuclear quantum simulation, high-
level XC functional, and accurate basis sets, resulting in a
computationally expensive simulation.

In this work, we calculated the vibrational density of states
(VDOS) spectra for bulk heavy water (D2O) with various DFT
methods and vdW methods. We find that the O–D stretch
frequency is highly sensitive to the XC functionals and vdW
correction schemes. In particular, DFT-MD simulations tend to
predict a broader peak than the experimental data, indicating
that DFT-MD describes an excessive inhomogeneous environ-
ment of bulk water. On the other hand, the D–O–D bending
frequency is rather insensitive to the choice of DFT methods.
Furthermore, we developed a frequency correction scheme to
reproduce the stretch and bending peaks for water. These
correction factors are employed to evaluate the heterogeneity
of the O–D stretch mode of heavy water.

2. Simulation procedures
2.1 MD Trajectories

2.1.A. Born–Oppenheimer MD. We used the DFT-MD
trajectories, which were generated in our previous papers.32–34

The BOMD simulations employed the QUICKSTEP method44

implemented in the CP2K program.45 We used the PBE,46 BLYP,47,48

and revPBE49 GGA exchange–correlation (XC) functionals, M06-L50

and B97M-rV51 meta-GGA XC functionals, and B3LYP,47,52–54

revPBE0,49,55 and HSE0656,57 hybrid-GGA XC functionals for
systematic investigation of the DFT methods. For the hybrid-GGA

DFT-MD simulations, we utilized the auxiliary density matrix
method (ADMM),58 which reduces the computational cost for
hybrid-GGA calculations. To include the dispersion energy
missing in DFT scheme, we utilized Grimme’s empirical D2,59

D3(0),60 D3(BJ),61 and D3m(BJ)62 vdW corrections, as well as
the non-local (DRSLL63,64 and rVV1065,66) vdW corrections. The
revPBE0-D3(0) simulations were performed with and without
the ADMM.

We used the mixed Gaussian and plane wave approach
as implemented in the CP2K code. For the Gaussian part,
the TZV2P basis set which is constructed using triple-zeta
valence Gaussian basis with two sets of polarization functions
was used for all BOMD simulations. We set the plane wave
density cutoff of 320 Ry. Only for the M06-L-D3(0), we used a
cutoff of 1200 Ry, because the M06-L functional requires a finer
integration grid.43 Norm-conserving Goedecker–Teter–Hutter
pseudopotentials67,68 were used to describe the core electrons.
To accelerate the MD simulations, D2O was used instead of
H2O, and the time step was set to 0.5 fs. We simulated 160 D2O
molecules in the 16.63 Å � 16.63 Å � 44.10 Å cell in a slab
configuration at 300 K in the NVT ensemble. The canonical
sampling through velocity rescaling method69 was employed as
the thermostat. The cutoff radius of the vdW interactions was
set to 10 Å.

We ran 10 independent simulations from previously gener-
ated configurations from the simulation at the revPBE-D3(0)
level of theory.32 From each simulation, a 16 ps MD trajectory
was generated after 5 ps equilibration run. The length of the
trajectories were total Z500 ps for BLYP, BLYP-D2, BLYP-D3(0),
BLYP-D3(BJ), PBE, PBE-D2, PBE-D3(0), PBE-D3(BJ), revPBE-
D3(0) and revPBE-D3(BJ) GGA functionals, Z150 ps for PBE-
D3m(BJ), PBE-DRSLL, PBE-rVV10, optB88-DRSLL, revPBE-D2,
revPBE-DRSLL, revPBE-rVV10 GGA functionals, M06-L-D3(0),
B97M-rV meta-GGA functionals, B3LYP-D3(0), HSE06-D3(0),
revPBE0-D3(0) hybrid-GGA functionals, and 160 ps for
revPBE-D3(0) hybrid functionals without ADMM.

2.1.B. Car–Parrinello MD (CPMD). For the SCAN meta-GGA
XC functional,70,71 we employed the CPMD methodology
using the Quantum Espresso code.72,73 We simulated 128D2O
molecules in a 12.44 Å � 12.44 Å � 50 Å cell. We employed the
Hamann–Schlüter–Chiang–Vanderbilt pseudopotentials74,75

generated for PBE with a plane-wave cutoff of 85 Ry and a
time step of 2 a.u. (0.0484 fs). The simulation was performed at
300 K in NVT ensemble with the Nosé–Hoover chain
thermostat.76,77 The fictitious mass of electrons was set at
100 a.u.78,79 The 56 ps CPMD trajectory was generated after 5
ps equilibration run.

2.1.C. Classical MD. The POLI2VS model of water is known
to reproduce the IR and Raman spectra of bulk liquid water as
well as the SFG spectra at the water–air interface (see ESI†).80–82

Based on this excellent performance of the POLI2VS model, we
used the POLI2VS model of water as the reference and calcu-
lated the VDOS spectra based on the POLI2VS MD trajectories.
We performed the classical MD simulation with POLI2VS model
for 160 D2O molecules in the 16.63 Å � 16.63 Å � 44.10 Å cell in
a slab configuration at 300 K by using the Nosé–Hoover chain
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thermostat76,77 in NVT ensemble. The time step for integrating
the equations of motion was 0.4 fs. The charge–charge,
charge–dipole and dipole–dipole interactions were evaluated
using Ewald summation, whereas quadrupole interactions were
curtailed at 8.3 Å. We first ran 700 ps MD simulation for
equilibration and then we obtained 1 ns for production run
which was used for analysis.

2.2. VDOS spectra calculation based on MD trajectories

VDOS is computed for the bulk D2O molecules by using the
velocity–velocity autocorrelation:

VDOS oð Þ ¼
ðT
0

dt cosðotÞ cos2 pt
2T

� �X
i

mi vi 0ð Þ � vi tð Þð Þ (1)

where vi(t) denotes the velocity vector of the atom i at time t, mi

is the mass of the atom i, T is the length of the time correlation
function. We set T to 1 ps. The computed spectrum with the
POLI2VS model shows response at frequencies higher than
those observed in the experimental data. The higher frequen-
cies of the POLI2VS model arise from the lack of nuclear
quantum effects.82 Thus, we scaled the frequency axis with a
factor of 0.96 for both the O–D stretch and the D–O–D bending
modes (see ESI†).83

We selected the bulk D2O molecules as a D2O molecule with
the z-coordinate of its oxygen atom |z| o 3 Å, where we set the
origin point of z = 0 as a center of mass of the system. The
region which we used for the VDOS calculation is highlighted
in Fig. 1(a), while the snapshot of the simulation is drawn
in Fig. 1(b).

3. Results
3.1. VDOS Spectra

Fig. 2 displays the calculated VDOS spectra with various com-
binations of the XC functionals and the vdW corrections,
together with the reference POLI2VS data. Fig. 2 demonstrates

Fig. 1 (a) Density profiles of D2O molecules simulated at the M06-L-
D3(0), revPBE and revPBE0-D3(0) (with no ADMM) levels of theory. The
highlighted region indicates the volume used for the calculations. (b)
Snapshot of the DFT-MD trajectory at the revPBE-D3(0) level of theory.

Fig. 2 Simulated VDOS spectra for D2O with different DFT methods. The solid and dotted lines represent the simulated VDOS spectra without frequency
correction and with frequency correction via eqn (2) and (4), respectively. The reference data was obtained from the POLI2VS model.
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that the spectral shapes of the O–D stretch mode are very
sensitive to the choice of the DFT functional, whereas the
D–O–D bending mode is comparatively insensitive. When we
focus on the linewidth of the O–D stretch peak, one can
recognize that the VDOS spectra computed from the DFT-MD
trajectories are generally broader than the reference VDOS
spectra. For example, the VDOS spectra computed from the
revPBE0-D3(0) and SCAN functionals show much broader
FWHMs (299 and 327 cm�1, respectively) than the reference
POLI2VS data (FWHM of 259 cm�1). Since the linewidths of the
spectra arise mainly from inhomogeneous broadening, this
excessive broadening of the O–D stretch peak indicates that
the DFT-MD simulations tend to sample a larger variety of the
H-bond strengths than classical MD simulation.

The comparison between the FWHM of the VDOS obtained
from DFT-MD simulations and classical MD simulation is
sharply contrasted with the comparison of their respective
simulated IR spectra. Specifically, the reported linewidths of
the IR stretch mode spectra using the revPBE0-D3(0) and SCAN
functionals (FWHMs of 251 cm�1 36 and 246 cm�1,37 respec-
tively) exhibit good agreement with the simulated IR spectra
(FWHM of 257 cm�1 82). These different trends in the VDOS
spectra and IR spectra can be explained as follows. The line-
width of the IR spectrum of neat D2O is determined not only by
the inhomogeneous broadening but also by the intermolecular/
intramolecular vibrational coupling1,5,84 as well as the frequency-
dependent transition dipole moment.85 Thus, the good agree-
ment between the FWHMs in the IR spectra and poor agreement
between the FWHMs in the VDOS data indicates that the FWHM
of the IR spectra is dominated by the inhomogeneous broadening
in the DFT-MD simulations, while in the classical MD simulations,
the FWHM is largely determined by intermolecular/intramolecular
vibrational coupling as well as the frequency-dependent transition
dipole moment.

Among the DFT-MD simulations considered in this study,
the B97M-rV and M06-L-D3(0) levels of theory provide reason-
able linewidths of the O–D stretch mode, in line with ref. 42.
However, we also reported that these methods are inadequate
for describing the water properties and the surface-specific
vibrational spectra of water.34 This means that there is room
for improving the XC functionals and vdW corrections. Finally,
we note that, although a small 1500 cm�1 peak can be seen in
the experimental data, it cannot be properly captured in the
VDOS data, as this peak arises from the combination of bend-
ing and librational motions, and the VDOS calculation cannot
capture such combination band properly. A high-level compu-
tational scheme would be needed to reproduce this combi-
nation band of water.86,87

3.2. Frequency correction factor

To correct the bandwidth as well as the peak position, we
developed a correction scheme for the O–D stretch mode of
D2O. For correcting the frequency, we assumed the expression
as;

ostr,ref = aostr,DFT-MD + b (2)

where ostr,ref is the characteristic frequency of the reference
VDOS spectrum obtained from POLI2VS model and ostr,DFT-MD

is the VDOS spectrum frequency obtained from the DFT-MD
trajectory. We used two parameters, a and b, because the O–D
stretch frequency varies largely and thus a single scale factor is
insufficient to capture the trend of the stretch mode of D2O.88

To obtain the characteristic frequency, we computed the first
moment of the VDOS;

ostr;DFT-MD ¼
Ðo2

o1
oVDOSDFT-MDðoÞdoÐo2

o1
VDOSDFT-MDðoÞdo

(3)

where o1 and o2 are the frequencies at which the VDOS
intensities are 10% of the maximum intensity of the O–D
stretch peak. The data is displayed in Table 1.

To determine two parameters, a and b, one needs to have the
additional relation of ostr,ref with ostr,DFT-MD. This relation can
be obtained from the peak frequency of the free O–D stretch
in the DFT-MD simulated and experimental sum-frequency
generation (SFG) spectra. At the free surface of water, a small
fraction of water molecules finds itself with one non-hydrogen
bonded OH/OD group that sticks into the vapor phase. The
frequency of this free OH/OD group can be determined using
sum-frequency generation spectroscopy. The free O–D stretch
frequency of 2714 cm�1 is obtained from ref. 89, while
the simulated free O–D stretch frequencies using DFT-MD
simulations were obtained from ref. 34. The results are sum-
marized in Table 1.

Table 1 The simulated characteristic frequencies for the O–D stretch
mode and peak frequencies for the D–O–D bending mode in the VDOS
spectra as well as the free O–D stretch frequency in the SFG spectra34,89

DFT methods
ostr

(cm�1)
Free O–D
frequency (cm�1)

obend

(cm�1)

BLYP 2458 2688 1204
BLYP-D2 2413 2688 1194
BLYP-D3(0) 2465 2688 1194
BLYP-D3(BJ) 2410 2687 1201
PBE 2411 2725 1201
PBE-D2 2381 2725 1191
PBE-D3(0) 2399 2723 1197
PBE-D3(BJ) 2369 2718 1197
PBE-D3m(BJ) 2375 2718 1197
PBE-DRSLL 2490 2687 1199
PBE-rVV10 2357 2712 1194
revPBE 2569 2740 1204
revPBE-D2 2495 2732 1204
revPBE-D3(0) 2530 2737 1204
revPBE-D3(BJ) 2481 2732 1207
revPBE-DRSLL 2567 2697 1204
revPBE-rVV10 2424 2712 1194
optB88-DRSLL 2417 2692 1194
SCAN 2527 2738 1213
M06-L-D3(0) 2628 2699 1234
B97M-rV 2645 2805 1251
HSE06-D3(0) 2562 2819 1234
B3LYP-D3(0) 2554 2773 1227
revPBE0-D3(0) 2657 2837 1237
revPBE0-D3(0) no ADMM 2686 2847 1237
Reference 2540 2714 1209
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From the relation for the VDOS O–D stretch data and the
free O–D stretch data, we obtained the parameters a and b. The
parameters are listed in Table 2, while the O–D stretch spectra
modified by using eqn (2) are plotted with the broken lines in
Fig. 2. The frequency-corrected VDOS spectra of the O–D stretch
mode show close agreement with the reference data. This
illustrates that the frequency correction scheme is powerful

for predicting the vibrational frequency and lineshape of the
O–D stretch mode.

We further obtained the correction factor c for the D–O–D
bending mode via;

obend,ref = cobend,ref,DFT-MD (4)

where the bending mode peak frequency in the VDOS spectra
with the DFT-MD simulation is obend,ref,DFT-MD and the refer-
ence POLI2VS VDOS spectrum is obend,ref. The obtained para-
meters are also given in Table 1. In contrast with the O–D
stretch mode, the peak frequency and the lineshape of the
simulated D–O–D bending mode spectra are insensitive to
the choice of specific DFT method and conform with the
reference spectra.

These correction factors can be also used to predict the
vibrational spectra of H2O by scaling the vibrational frequency
axis with the factor of 1/0.735 in the D2O spectra.89 In fact, the
vibrational spectra lineshapes of H2O and D2O become quite
similar after the frequency axis is scaled by this factor.90 Finally,
we note that our correction scheme include a red-shift induced
by nuclear quantum effects. For the DFT-MD simulation with
the nuclear quantum effects such as the ring-polymer MD
simulation91 and centroid MD simulation,92 we recommend
using the coefficients, a and c, divided by a factor of 0.96.

3.3. Decomposition of the O–D stretch spectra

By establishing the frequency correction scheme for the
DFT-MD trajectories, we can compare the individual spectra
simulated at different DFT levels. Here, we investigate the level
of heterogeneity of the O–D stretch spectra at different DFT
levels of theory. To do so, we decomposed the spectra based on

Table 2 The correction factors for the O–D stretch mode and D–O–D
bending mode

DFT methods a b (cm�1) c

BLYP 0.757 679 1.004
BLYP-D2 0.633 1013 1.013
BLYP-D3(0) 0.780 617 1.013
BLYP-D3(BJ) 0.628 1027 1.007
PBE 0.554 1204 1.007
PBE-D2 0.506 1335 1.015
PBE-D3(0) 0.537 1252 1.010
PBE-D3(BJ) 0.499 1358 1.010
PBE-D3m(BJ) 0.507 1336 1.010
PBE-DRSLL 0.883 341 1.008
PBE-rVV10 0.490 1385 1.013
revPBE 1.018 �75 1.004
revPBE-D2 0.734 709 1.004
revPBE-D3(0) 0.841 412 1.004
revPBE-D3(BJ) 0.693 821 1.002
revPBE-DRSLL 1.338 �895 1.004
revPBE-rVV10 0.604 1076 1.013
optB88-DRSLL 0.633 1010 1.013
SCAN 0.825 455 0.997
M06-L-D3(0) 0.946 54 0.980
B97M-rV 1.088 �338 0.966
HSE06-D3(0) 0.677 806 0.980
B3LYP-D3(0) 0.791 520 0.985
revPBE0-D3(0) 0.967 �29 0.977
revPBE0-D3(0) no ADMM 1.081 �364 0.977

Fig. 3 Decomposed VDOS spectra (a) at the revPBE0-D3(0) without ADMM level of theory, (b) at the PBE-D3(BJ) level of theory, and (c) at the SCAN
level of theory as well as (d) with the POLI2VS model. (e) Pie chart of averaged ki,DFT for various DFT methods.
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the number of donating and accepting hydrogen bonds (DDAA,
DDA, DAA, DD, DA, AA, and others). The hydrogen bond
formation was judged at time t = 0 in eqn (1) via the geometry
of water dimer; when the O� � �O distance is less than 3.5 Å
and the O� � �O–D angle is less than 30 degrees, the hydrogen
bond is formed.93

A few representative frequency-corrected DFT-MD spectra
with O–D stretch decomposition are shown in Fig. 3(a)–(d). The
computed spectra with other DFT methods are given in the
ESI.† The data show that the O–D stretch mode is dominated by
the contribution of the DDAA species, while the other water
species, such as DDA and DAA, also contribute to the water
spectra. The DDAA species constitute the lowest frequency
component, and the water species with a smaller number of
the hydrogen bond acceptor or donor provide higher frequency
component, as is expected.4 However, one can see a marked
difference of the frequency shift between the DDAA and the
DDA/DAA/DD/DA/AA species. To quantify this, we computed
the quantities of

Doi,DFT = oi,DFT � oDDAA (5)

ki,DFT = (Doi,DFT � Doi,ff)/Doi,sd (6)

where oi,DFT is the center of mass frequency via eqn (3) for
i = DDA, DAA, DD, DA, AA. We set Doi,ff and Doi,sd as
the frequency differences, and the standard deviation for the
POLI2VS data computed from DFT-MD data, respectively. The
average of ki,DFT is shown in the pie chart of Fig. 3(e). This
clearly indicates that one can see the marked variation of the
heterogeneity of O–D stretch spectra. The BLYP and PBE levels
of theory tend to predict homogeneous water than the classical
MD simulations. Among these, the description highly depends
on the functionals. The HSE06-D3(0), B3LYP-D3(0), revPBE-D2,
revPBE-D3(BJ) and BLYP-D2 methods show small deviations
from the reference POLI2VS data.

4. Conclusion

We have computed the VDOS spectra of heavy water for the
DFT-MD trajectories with various DFT methods and compared
them with the reference data. We found that different DFT
methods provide a variety of the O–D stretch mode peak
frequency and linewidth in the VDOS spectra. In particular,
the VDOS spectra of the DFT-MD simulations tend to show a
broader linewidth than the reference POLI2VS VDOS spectrum,
indicating that the DFT-MD simulations excessively sample
the inhomogeneous environments of water stretch mode.
Subsequently, we developed the frequency correction scheme
for the stretch mode and bending mode. Our data shows that
the correction proposed here can improve the prediction and
interpretation of the vibrational spectra of D2O. By further
scaling the frequency axis of the O–D stretch mode to the
O–H stretch mode via a factor of 1/0.735, one can also predict
the O–H stretch spectra reasonably.

The correction scheme was further applied to evaluate the
homogeneity of the O–D stretch spectra. By decomposing the

corrected VDOS into the contributions from differently
hydrogen-bonded water species, we revealed that the HSE06-
D3(0), B3LYP-D3(0), revPBE-D2, revPBE-D3(BJ) and BLYP-D2
levels of theory predict a reasonable homogeneity of water
frequencies with the classical MD simulation.
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