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Optimal background treatment in dipolar
spectroscopy†

Luis Fábregas Ibáñez * and Gunnar Jeschke

Treatment of the background in dipolar EPR spectroscopy signals is a critical processing step for the

recovery of the underlying distance distributions. Here we present new mathematical considerations that

show pitfalls of background subtraction and division. In order to overcome these problems we propose

an improved background treatment approach. We show, empirically, that this new method outperforms

the established ones and analyze the established practice of post-correction signal truncation, as well as

the influence of moderate background-fit errors, on accuracy of distance distributions.

1 Introduction

The study of proteins, protein complexes, and synthetic macro-
molecules is facilitated by the lower nanometer range distances
being encoded into the magnetic dipole–dipole interactions
between pairs of paramagnetic centers.1,2 Measurement of
these interactions through pulsed EPR spectroscopy is enabled
by a broad family of time-domain techniques called dipolar
EPR spectroscopy. Four main techniques exist: double electron–
electron resonance (DEER),3–6 also called pulsed electron
double resonance (PELDOR), double-quantum coherence
(DQC)7 measurements, single frequency technique for refocusing
(SIFTER),8 and relaxation induced dipolar modulation enhancement
(RIDME).9,10 All these techniques provide a time-domain signal that
contains a sum of modulations introduced by the dipolar inter-
action, which encodes a distance r by its proportionality to r�3.
Macromolecule backbones and spin-labels can adopt many
conformations leading to a distribution of distances. Through
inversion, it is possible to retrieve the underlying distance
distribution from the dipolar time-domain data,11 thus providing
unique insight into the width of the conformation ensemble of
proteins.12

To achieve this inversion of the time-domain data and
recover the distance distribution, the intra-molecular contribution
is often be isolated from the inter-molecular contributions; the
latter being more commonly referred to as background. All
dipolar experiments contain these contributions. The background
of the DEER experiment has been considered, analyzed and
modelled for many years.3,11,13,14 Recently this issue has received

more attention for RIDME and SIFTER experiments.15,16 In the
following, we do not consider DQC measurements, which are
influenced by inter-molecular interactions, but not in a way
amenable to background treatment. Two approaches have been
established to deal with the background in the analysis of dipolar
spectroscopy data. The first approach relies on a one-step analysis
based on the simultaneous fitting of the background and pair
distribution and is often employed along the multi-Gauss para-
metric models.6,17,18 The other approach relies on a two-step
analysis, where, in order to obtain the pair distance distribution,
the background is fitted on the primary dipolar data, removed,
and then the background corrected data is processed by some
inversion method (such as regularization) to obtain the pair
distribution.13,19 In this work we will focus on the latter approach,
where two methods have been established: background-correction
either by division or subtraction of the background function.
While only the division approach is correct given the structure
of the signal, subtraction has still been widely applied. We
surveyed one hundred different publications in the field of dipolar
spectroscopy to assess how the background correction is realized
for the different experiments of the dipolar spectroscopy family.
The results of this survey in Fig. 1 show that there is no broadly
established approach to background correction since both
approaches seem to be employed in DEER, SIFTER and RIDME,
or not reported at all. The preference for background-division can
be attributed to the widespread use of the DeerAnalysis13

processing software, which solely employs background-division.
In this work, we present a new formalism of background

treatment in dipolar spectroscopy and show that the current
background correction approaches, when coupled to Tikhonov
regularization or any approach based on least-squares fitting,
are sub-optimal as they may lead to introduction of consider-
able errors in the distance distributions. Instead, we propose a
new approach to background handling, which aims to solve the
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problem by a redefinition of the dipolar kernel incorporating
the background function. We also present a statistical bench-
mark analysis similar to previous works20,21 of the different
approaches to background handling as empirical support for of
our theoretical results. Finally, we discuss the current practice
of data truncation after background correction and the influence
of moderate background fit errors on the results.

2 Theory

In pulsed dipolar spectroscopy the echo intensity is modulated
by the dipolar interaction between a pair of spins A and B in the
system, which directly depends on the distance r between both
spins. Due to the presence of many different conformers in the
sample, this modulation does not depend on a single distance
but a distribution P(r) of distances in the sample. This distribution
leads to a particular signal called the dipolar evolution function
D(t), which contains the dipolar modulations. The relation
between the distance distribution and the dipolar evolution
function is described by the kernel K(t,r) which includes a powder
average over all relative orientations y of the interspin vector
with respect to the external magnetic field. The dipolar kernel is
defined as

Kðt; rÞ ¼
ðp=2
0

cos ð3 cos2 y� 1Þm0�hgAgB
4pr3

t

� �
sin y dy (1)

¼
ð1
0

cos ð3z2 � 1ÞoddðrÞt
� �

dz (2)

where odd(r) is the dipolar modulation frequency, m0 the
permittivity of vacuum, h� the reduced Planck constant and
gA/B are the gyromagnetic ratios of spin A and B, respectively.
The dipolar evolution function can then be computed via a
Fredholm integral of the first kind

DðtÞ ¼
ð1
0

Kðt; rÞPðrÞdr: (3)

The detected primary signal contains an inter-cluster contribution:
the so-called form factor F(t) from which, for a given modulation
depth l, the dipolar evolution function can be inferred

F(t) = (1 � l) + lD(t). (4)

The kernel definition can, however, be straightforwardly modified
to directly relate the distance distribution and form factor via (3).
This kernel is defined as

Kl(t,r) = (1 � l) + lK(t,r) (5)

such that ð1
0

Klðt; rÞPðrÞdr (6)

¼ ð1� lÞ
ð1
0

PðrÞdrþ l
ð1
0

Kðt; rÞPðrÞdr (7)

= (1 � l) + lD(t) = F(t) (8)

since the integral of the distance distribution P(r) is normalized
to unity. For the rest of this work, we will employ the kernel
definition in (5) and, for the sake of simplicity, will use the
notation K(t,r) = Kl(t,r).

Inter-molecular interactions contribute to a background
factor B(t), which has been modelled for DEER3–6 as a stretched
exponential function

B(t) = e�(k|t|)d/3

(9)

where k is the decay rate constant of the background and d is
the so-called fractal dimension of the background. Both of
these parameters are typically fitted to the experimental data
in order to identify the background and the form factor. If the
objects are known to be distributed homogeneously in three-
dimensional space, d can be set to 3 and fixed.

For RIDME the background function has been derived by
Keller et al.15 as follows

B(t) = e�Do1/2(at+bt2) (10)

where Do1/2 is the average dipolar frequency between the spin
pair and a and b are coefficients which depend on the inter-
pulse delays of the RIDME experiment and the longitudinal
relaxation time of the spins. It has been shown that, in practice,
the background can be fitted by a generalized stretched exponential
function such as (10).15

The experimental signal consists of the form factor multiplied
by the background. However, the set of electronics, which enable
its detection, as well as pulse imperfections, such as shot-to-shot
variations in the probe and pump pulses, introduce random
fluctuations. These fluctuations result in noise d(t) detected in
the signal V(t), which can be modelled as

V(t) = F(t)B(t) + d(t). (11)

Further on we will assume a stretched-exponential background
model for all dipolar spectroscopy experiments. We are aware
that this may be an approximation of unknown quality for some

Fig. 1 Results of a survey conducted on 100 online journal articles in the
field of dipolar EPR spectroscopy randomly sampled from the Web of
Science Core Collection by searching for the topics: DEER, PELDOR,
RIDME, SIFTER and PDS. The articles (79 on DEER, 25 on RIDME and 9
on SIFTER) were classified according to how background-correction was
reported and shown as percentages for the individual techniques. The bars
are color-coded corresponding to each dipolar spectroscopy experiment:
DEER (orange), SIFTER (red) and RIDME (blue).
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experiments (e.g. SIFTER) where the background model is still
not completely understood. Nonetheless, as long as the multi-
plicative background model (11) holds with any function B(t),
all further derivations will still hold.

2.1 The inverse problem

When considering discrete measurements, the distance distri-
bution P and form factor F can be described as vectors of length
n and the kernel function as a matrix K of size n � n. Selecting
equal numbers of points in both dimensions is plausible in
order to avoid overfitting or unnecessary loss of information,
although it cannot be strictly proved that it is the optimal
choice. The normalization of P is now given by

P ¼ P0P
P0

1

Dr
(12)

where Dr is the resolution of the distance axis r. The discrete
Fredholm integral (3) now reads

F = KPDr. (13)

For the sake of simplicity we introduce K = KDr such that

F = KP. (14)

The discrete detected signal V reads

V = F3B + d. (15)

where 3 represents the Hadamard multiplication (i.e. element-
wise multiplication), B the background vector and d the noise
vector. Now, inferring the underlying distance distributions
from the experimental form factor formally requires inversion
of the kernel

P = K�1F (16)

but due to extreme ill-conditioning of K, this inverse problem is
ill-posed and the results obtained by (16) are highly unstable
and erratic. To solve the inversion problem in (14), regularization
approaches are required, where an additional penalty is intro-
duced into a least-squares minimization functional to stabilize
the results. In the widely applied Tikhonov regularization, a
smoothness penalty is applied and balanced by a regularization
parameter a. The regularized distance distribution P* is thus
obtained by minimization of the problem

P� ¼ argmin
P

1

2
k KP� F k2 2 þ a2

1

2
k LP k2 2

� �
(17)

where L is a differential operator matrix. This regularization
can be performed unconstrained or under a non-negativity
constraint on the resulting distance distribution. While the
unconstrained case is analytically solvable, the non-negativity
property applies strictly to probability density distributions
and, hence, provides a way of further stabilizing the solution
without making an uncertain assumption.

2.2 Background correction

In order to invert (14) via the regularization approach given in
(17), the most common approach in dipolar spectroscopy data

processing is to remove the background in the experimental
signal V prior to regularization. There are two approaches to
background correction: background division and background
subtraction.

In the background-division approach, the (fitted) back-
ground is divided from the experimental signal (15)

V0 = V{B (18)

where { represents the Hadamard division, i.e. element-wise
division. Hence, the corrected signal now has the form

V0 = F + d{B (19)

where the form factor is obtained as desired, but the term d{B
represents noise, whose amplitude increases exponentially with
time. For strongly decaying background, as it is often observed
in RIDME and cannot always be avoided in DEER, this term
leads to the so-called noise explosion (see Fig. 2). This can be
devastating for measurements containing short distances
(approx. o5 nm), whose oscillations decay fast, but is less of
an issue for longer distances, where the oscillations are more
pronounced at longer times. A common workaround is to
truncate the signal subjectively at the point where the noise
seems to drown the oscillation. Not only is there no optimal
criterion on how to select this truncation time, but the
approach also sacrifices measured data that may still contain
some information. We will address this issue later on.

For the background-subtraction approach, the (fitted) back-
ground is subtracted from the experimental signal (15)

V0 = V � (1 � l)(B � 1) (20)

Fig. 2 Effects of background correction on the dipolar signal. The blue
signals are the results of correcting a strongly decaying background via
either division, leading to noise-explosion, (upper) or subtraction, leading
to oscillation-damping (lower). The background-free signal is given in red
as a reference.
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which now has the form

V0 = FB � (1 � l)(B � 1) + d. (21)

Here the form factor is still damped by the background but no
noise explosion occurs (see Fig. 2). For a strongly decaying
background, this damping of the form factor can still be very
damaging to measurements of long distances (approx. 45 nm)
corresponding to very slowly decaying oscillations which will be
suppressed by the multiplicative background function as well
as for very narrowly distributed distances. Both background
division and subtraction work well if the background decays by
only a small fraction within the total observation time. In other
cases, improved background treatment has the potential to
substantially improve the quality of the computed distance
distributions.

2.3 Impact on constrained Tikhonov regularization

Now, we consider the effects of the two background correction
approaches on the results obtained by non-negative constrained
Tikhonov regularization, where the functional

argmin
P�0

f ðPÞf g ¼ argmin
P�0

1

2
k KP� V0 k2 2 þ a2

1

2
k LP k2 2

� �
(22)

is to be optimized. This yields an optimal strictly non-negative
distance distribution P. In this case there is no closed-form
expression for the solution. However, still considerations can be
made on the convergence and optimality criteria of the numerical
methods employed to reach the solution. For this work we studied
the solution of (22) by treating it as a non-negative least squares
(NNLS) problem22 (e.g. algorithms implemented in MATLAB as
lsqnonneg or as fnnls for the fast non-negative least squares23).
The NNLS problem seeks to solve (22) by finding a P, which
minimizes (22) and fulfills the Karush–Kuhn–Tucker24,25 (KKT)
conditions:

P Z 0 (23)

rf (P) Z 0 (24)

rf (P)TP = 0 (25)

where rf (P) is the gradient of the Tikhonov functional f (P)
in (22)

rf (P) = KTKP + a2LTLP � KTV0. (26)

This problem is equivalent to the corresponding linear com-
plementary problem (LCP), which can be solved by setting the
KKT conditions for quadratic programming.26 The problem
thus reduces to finding a non-negative P, which satisfies

rf ðPÞTP¼! 0: (27)

while still satisfying the rest of the KKT conditions. In any case,
the optimality condition of the NNLS problem is determined by
the gradient rf (P) and so does the evolution of the solution P
during the search. If one considers first the background-free
case, the gradient is given by

rf (P) = KTKP + L(P) � KTF � KTd, (28)

where we have introduced the abbreviation L(P) = a2LTLP. In
the following we will assume an optimal distance distribution
solution P* for the background-free Tikhonov problem (and its
time-domain counterpart F* = KP*) obtained for some optimal
regularization parameter aopt, which minimizes (22), is unique,
and fulfills the KKT conditions (29)–(31) when substituting
P* for P.

The gradient at the optimal solution of the background-free
problem rf (P*) now reads

rf (P*) = KTDF + L(P*) � KTd (29)

where we have introduced the auxiliary time-domain residual
vector

DF = F* � F (30)

which contains the difference between the fitted and experi-
mental noiseless form factors.

Now let’s consider the case of background division, where
the gradient (see Appendix) at the optimal solution of the
background-free case P* reads

rfdiv(P*) = rf (P*) + KT(d � d{B). (31)

If the KKT condition (25) is considered for this gradient
we obtain

rfdiv(P*)TP* = (rf (P*) + KT(d � d{B))TP* a 0 (32)

meaning that (25) cannot be fulfilled by the gradient of the
background-divided case and the solution is perturbed by the
need to compensate for the additional KT(d � d{B) term in
the gradient. Hence, for the case of background correction by
division the exact background-free solution is not obtained as
the term KT(d � d{B) does only vanish for B - 1. Truncation
of the signal may reduce the effect of this term on the solution,
but the reduced amount of points will change the optimal
solution P* even for the background-free case (see later).

Next we consider background subtraction, where the gradient
(see Appendix) at the optimal solution of the background-free case
P* reads

rfsub(P*) = rf (P*) + KT(F � F3B + (1 � l)(B � 1)). (33)

Again, if we consider the KKT condition (25) for this gradient at
the background-free solution we obtain

rfsub(P*)TP* = (rf (P*) + KT(F � F3B(1 � l)(B � 1)))TP* a 0
(34)

meaning that (25) is not fulfilled by the gradient of the
background-subtracted case. Therefore, P* is not the solution
obtained for a background-subtracted signal. In this case, the
solution is perturbed to account for the KT(F � F3B(1 � l)(B � 1))
term in the gradient, which does also only vanish for B - 1.

In conclusion, performing background correction, either by
subtraction or division, will lead to a regularization solution
which will always be a worse approximation of the background-
free solution, and hence of the ground truth. Division is
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particularly damaging for poor signal-to-noise ratio, whereas
subtraction is particularly damaging if the background function
decays faster than the oscillations in the form factor.

2.4 Model-based processing

Having shown that background correction by either division or
subtraction fails to recover the optimal solution, the following
question needs to be answered: Why do we need background
correction? The need for a background removal arises from the
inability of the kernel to transform the distance distribution to
a background-containing form factor

KP = (1 � l) +lD a [(1 � l) + lD]B (35)

which means that during evaluation of the LSQ term of the
Tikhonov functional

8KP � (F3B + d)8 a 8d8. (36)

a large error will arise due to this discrepancy. The background
correction aims to remove this discrepancy, yet at the cost of
introducing other errors terms, as shown.

We want to emphasize that the dipolar kernel K acts as an
operator containing the features and properties of the signal
(as long as the signal can be described as the linear operation
KP = F). Therefore, if the kernel cannot account for a feature in
the signal because the kernel model is inaccurate, then it is
better to modify the model instead of ‘‘correcting’’ the signal.
We propose, thus, a new kernel KB which accounts for the
background in the signal and fulfills

KBP = [(1 � l) +lD]B (37)

The new kernel KB is constructed by simple multiplication of
the background along the time-dimension of the kernel

KB ¼ KnmBn ¼

K11B1 K12B1 ::: K1mB1

K21B2 K22B2 ::: K2mB2

..

. ..
. . .

. ..
.

Kn1Bn Kn2Bn ::: KnmBn

0
BBBBBBB@

1
CCCCCCCA

(38)

where the definition of the kernel K remains the same as in (5).
As shown previously, it is important to analyze how the

gradient of the Tikhonov functional (22) for the NNLS problem
is affected by the introduction of this new kernel. Nonetheless,
instead of considering the optimal solution of the background-
free case P* as before, we will now consider the intermediate
solution of the background-free case Pi* at any given iteration i.
Therefore, when employing the new kernel KB at a given
iteration i, the gradient (see Appendix) is given by

rfB(Pi*) = rf (Pi*) + KT(DFi3B
2 � DFi) + KT(d � d3B) (39)

where we now see that two additional terms appear in the
gradient with respect to the background-free case. The term
KT(d � d3B) behaves similarly to the terms which appeared in
the background division and subtraction cases, where the term
only vanishes for B - 1, but since this term only includes the
difference between the noise and its background-damped

counterpart, its influence will be relatively smaller than the others
encountered this far. However, a new term KT(DFi3B

2 � DFi)
appears also in the gradient (39), which exhibits a much
more interesting behaviour. In contrast to all the other terms
encountered this far, due to its dependence on the time-domain
residual vector DFi, this term will now evolve as the iterations i
proceed. As the number of iterations increases and the fitted
signal becomes better, DFi will decrease and, therefore, reduce the
influence of the term KT(DFi3B

2� DFi), allowing a better approach
to the background-free solution. Still, even at the ideal case
DFi - 0 the remaining term KT(d � d3B) will not allow the
method to reach the background-free solution. This term, though,
does reduce the influence of noise on the gradient due to the
damping, which may potentially lad to even better results than the
background-free case for strong background decays in highly
noisy signals.

Next we want to study a way to even further approach the
background-free gradient and its solution. An issue that can
be observed in (39), is that multiplication by KT

B introduces
a second multiplication by B leading to the constant term
KT(d � d3B) and KT(DFi3B

2 � DFi).
To prevent this we propose yet another modification to the

kernel. We design a new kernel K ffiffiffi
B
p to fulfill the condition

KT ffiffiffi
B
p K ffiffiffi

B
p P ¼ KTðF � BÞ (40)

The kernel, which satisfies this, is constructed by multiplica-
tion of the square-root of the background along the time-
dimension of the kernel

K ffiffiffi
B
p ¼ Knm

ffiffiffiffiffiffi
Bn

p
¼

K11

ffiffiffiffiffiffi
B1

p
K12

ffiffiffiffiffiffi
B1

p
::: K1m

ffiffiffiffiffiffi
B1

p

K21

ffiffiffiffiffiffi
B2

p
K22

ffiffiffiffiffiffi
B2

p
::: K2m

ffiffiffiffiffiffi
B2

p

..

. ..
. . .

. ..
.

Kn1

ffiffiffiffiffiffi
Bn

p
Kn2

ffiffiffiffiffiffi
Bn

p
::: Knm

ffiffiffiffiffiffi
Bn

p

0
BBBBBBB@

1
CCCCCCCA
(41)

where again the definition of the kernel K remains the same as
in (5). However, the gradient associated with new kernel reads

rf ffiffiffiBp ðPi
�Þ ¼ KTðFi

� � BÞ � KTðF � B3=2Þ þ KTðd � B1=2Þ þ LðPi
�Þ

(42)

where the problem arises that the terms of the experimental
signal are multiplied by a factor B1/2. This is easily corrected by
a ‘‘partial background correction’’ of the experimental signal

eV ¼ V�
ffiffiffiffi
B
p
¼ F � ðBÞ1=2 þ d � ðBÞ�1=2 (43)

such that introducing this into the previous expressions yields
the expected gradient (see Appendix)

rf ffiffiffiBp ðPi
�Þ ¼ rf ðPi

�Þ þ KTðDFi � B� DFiÞ: (44)

When compared to the gradient rfB(Pi*) in (39), one can see that
with this new kernel definition we can get rid of the constant term
in (39) as designed. The gradient now only contains one addi-
tional term with respect to the background-free case. This term
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KT(DFi3B � DFi) represents an improvement upon the one
in (39) as

8KT(DFi3B � DFi)8 o 8KT(DFi3B
2 � DFi)8 (45)

for any DFi a 0, thus the term KT(DFi3B � DFi) is able to
reach smaller values allowing for a better approximation the
background-free gradient. As before, and now decisively, as it is
the only additional term, its influence decreases as the fit of
the time-domain signal gets better, such that in the ideal case
DFi - 0 the background-free gradient is obtained. Therefore,
the background-free solution Pi* can (in theory) be a solution of
this method. In practice, the condition DFi = 0 is not reached
due to the inversion problem being ill-posed. Nonetheless, the
condition DFi E 0 can still be well enough approached such
that the solution obtained by this method is much closer to the
background-free solution than for the previously established
background correction approaches.

2.5 Finding the optimal regularization parameter

In order to achieve the background-free solution, its optimal
regularization parameter aopt must be found. The search for the
optimal regularization parameter can be performed with the
routine employed in other works20,21 and applications, e.g. in
DeerAnalysis.13 This routine involves the computation of many
(un)constrained distance distribution by means of the pseudo-
inverse and/or solution of the NNLS problem for a set of
different trial regularization parameters. For this set of distri-
butions the corresponding residual and penalty terms of the
Tikhonov functional are computed, which then are evaluated
according to some given selection criterion method, e.g. AIC,27

GCV,28–30 L-curve,13,31 GML.32–34 In this section, we want to
quickly point out a detail which, if left untreated, may become a
pitfall for the new kernel methods.

As discussed, the search for the optimal regularization
parameter begins with the computation of a set of distance
distributions. By employing the kernel definition in (41) according
to (44), all generated distributions will correspond to the best
approximations to the background-free solutions at the different a
values. However, a problem arises when explicitly computing the
residual term of the Tikhonov functional before applying the
selection criterion of choice. In the derivation of the kernel K ffiffiffi

B
p

in (41) and input signal Ṽ in (43), we did not analyze the
expression for the residual, which has the form

k K ffiffiffi
B
p P� eV k2 2 ¼k Ffit � ðBÞ1=2 � F � ðBÞ1=2 � d� ðBÞ1=2Þ k2 2:

(46)

which now contains a square-root background-enhanced noise
term which no longer corresponds to the background-free case.
For the optimization of the Tikhonov problem, this is not a
problem, since the algorithms for solving NNLS problems
employ the gradient and never compute the residual explicitly.
Still, since the explicit computation of the residual is required
for the optimal regularization parameter selection, another
approach must be found. This problem can be easily solved by
employing the kernel KB in (38) instead of K ffiffiffi

B
p along with the

experimental signal V in (15) so that the expected residual term

8KBP � V82
2 = 8Ffit3B � F3B � d82

2. (47)

is obtained, allowing for an optimal search of the optimal
regularization parameter aopt. Again, due to the inverse problem
being ill-posed, the background-free gradient cannot be exactly
reached and by extension one will not find the same optimal
regularization parameter. Sill, as mentioned above, the K ffiffiffi

B
p

kernel method can achieve a very good approximation of the
background-free gradient. It is to be expected that, from all
methods discussed this far, the K ffiffiffi

B
p kernel method finds the

regularization parameter value closest to aopt for the background-
free case.

3 Empirical analysis

While large parts of our theory are exact, ill-possedness of the
problem prevents us from strictly proving that our new
approach to background correction is optimal or at least better
than both established approaches for all conceivable cases.
Therefore, in order to test and analyze the performance of
the background-treatment approaches discussed during our
theoretical derivation (see Table 1 for a summary of the results),
we used the synthetic DEER data from the large library generated
by Edwards and Stoll from a crystal structure of T4 lysozyme
(PDB ID 2LZM).35 The library is based on 5622 different distance
distributions generated by MMM36 from which 62 103 noise-free
dipolar evolution functions were generated with different time
steps dt and trace lengths tmax. The distance distributions in the
library cover a range of mean distances approximately in the range
2 nm to nm. Since this library was designed for representing
DEER data, tmax are limited to the range 0.4–6.4 ms and dt to the
range 5–200 ns. However, the combination of modern high-
sensitivity spectrometers with optimized samples, longer dipolar
evolution traces can be achieved. Thus, in order to have more
representative examples of all of the dipolar spectroscopy

Table 1 Summary of the theoretical results for the background-treatment approaches discussed in this work: the experimental signal employed as an
input of the regularization, the kernels employed for the NNLS algorithm and for the optimal regularization parameter search, and the theoretical gradient
of the Tikhonov functional

Approach Input signal V Kernel for NNLS Kernel for aopt Gradient

Free F + d K K rf (P*)
Division F + d{B K K rf (P*) + KT(d � d{B)
Subtraction F3B + d � (1 � l)(B � 1) K K rf (P*) + KT(F � F3B+ (1 � l)(B � 1))
Kernel KB F3B + d KB KB rf (Pi*) + KT(DFi3B

2 � DFi) + KT(d � d3B)
Kernel K ffiffiffi

B
p

F �
ffiffiffiffi
B
p
þ d�

ffiffiffiffi
B
p

K ffiffiffi
B
p KB rf (Pi*) + KT(DFi3B � DFi)
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experiments, the noise-free dipolar evolution functions were
recomputed from the distance distributions according to (14)
with extended tmax in the range 1–16 ms and dt in the range
5–200 ns with a fixed modulation depth of l = 0.50.

The performance of any background-treatment approach is
expected to depend on the background decay rate and fractal
dimension parameters. However, the most important factor to
consider is the relative decay of the background function, as it
determines how strong the damping and the decay of the form
factor will be. In order to reduce the parameter space, we define
the relative background decay as

Z ¼ 1� BðtmaxÞ
Bð0Þ (48)

and study the performance of the proposed methods for
different values of this parameter. To do so, we fixed the fractal
dimension of the background to d = 3 and then generated a set
of background functions with a decay rate k computed to match
the desired set of relative background decays according to

k ¼ ð� lnð1� ZÞÞ3=d
tmax

: (49)

Therefore, while our theoretical analysis is generally applicable
to any kind of background model, our numerical analysis will
be focused on the exponential background function (which is a
good approximation for many experimental situations). In all
cases, the background functions are generated according to
(10) and multiplied to the form factor (e.g. Fig. 3) as described
in the ESI.† The resulting signal is treated by any of the

discussed background treatment approaches and then regularized.
Following the optimization results in previous works20,21 and
current practice in the field, for the regularization, we chose the
Tikhonov penalty, equipped with a second-order differential
operator, and Akaike information criterion (AIC)27 as the
optimal regularization parameter selection method. The regularized
distance distribution is then compared to the underlying ground
truth P0 using three different similarity metrics: the Euclidean
distance (c2) (directly related to the well-known root-mean square
deviation) as well as the Bray–Curtis distance (c1) and the Chebyshev
distance (cN) (see ESI†). The Euclidean distance is given by

D(P,P0) =8P � P082 (50)

where P is the fitted distance distribution and P0 the ground
truth and in the context of our work it is simply proportional to
the root mean square deviation between P and P0 (see ESI†).
The main difference between these norms is their nature: for
cN distances only the largest value contributes, for c1 distances
all values contribute the same and for c2 distances the outliers
contribute the most. Therefore, an analysis based on a combi-
nation of all three types of norms allows for a better interpreta-
tion of the quality of the distance distributions. We found
(see Fig. S1, ESI†) that the choice of metric did not alter our
findings and so, for the sake of clarity, only the results for the
Euclidean distance will be shown.

3.1 Dependence on the relative background decay

In this first test, we randomly selected 8500 different form
factors and incorporated backgrounds of various relative back-
ground decays as described in the previous section. The results
in Fig. 4 show performance of the different background treatment
procedures relative to the performance of the background-free
case. For all levels of noise, all approaches yield worse results with
increasing relative background decay Z as expected. At low noise
levels background-division surpasses background-subtraction in
terms of performance. Still, the subtraction approach yields better
results than division at higher levels of noise, as expected from
our previous theoretical discussion. As expected again from the
theoretical derivation, methods which use the re-defined kernels
yield overall better results. However, due to the spread of results
we do not see major differences between the kernel methods. At
higher noise levels (s = 0.10), we see differences between the KB

and K ffiffiffi
B
p approaches for moderate Z values. At moderate and

larger noise levels we even observe cases where the kernel
methods improve upon the background-free solution.

This phenomenon can also be understood by looking at the
so-called influence or projection matrices H. The influence
matrix maps the influence each experimental time-domain point
Fi has on each fitted time-domain point Fj*. For unconstrained
Tikhonov regularization, it can be expressed in closed form as

H = KK† = K[(KTK + a2LTL)�1KT] (51)

where again K† denotes the pseudo-inverse. We want to note
again that the unconstrained solution of the Tikhonov functional
is physically irrelevant. Still, since there is no way to compute the

Fig. 3 Example form factors for visual reference. A dipolar evolution
function corresponding to an inter-spin distance of 4 nm was converted
to form factors (upper) with background functions of different relative
background decay Z values and (lower) different noise level s values. The
form factors are colour-coded according to the legends given next to
each plot.
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influence matrix for the constrained case we use this as an
approximation for our discussion. The influence matrices H,
HB, and H ffiffiffi

B
p can be computed for the three kernel definitions

K, KB and K ffiffiffi
B
p , respectively. In order to assess the situation

discussed above, where KB performs worse than K ffiffiffi
B
p yet still

better than the background-corrected cases, we compare the
influence matrices for a strong background function (Z E 1) in
Fig. 5. With H, one can see that the influence is strongly focused
along the diagonal, meaning that fitted points are most influ-
enced by the same or nearby time-domain point in the experi-
mental signal. However, including the background function into
the kernel as in KB and K ffiffiffi

B
p leads to diminished influence of the

values at longer dipolar evolution times. Considering a very noisy
signal, such as in Fig. 4 for s = 0.10, this reduced influence of the
later values, where most of the useful oscillations are obscured by
noise, will lead to an overall reduced influence of noise. This effect
is analogous to filtering by truncating the form factor prior to
regularization, the difference being that the filtering obtained in
this situation is smooth and acts as sort of a matched filter.

However, when the background is very pronounced (e.g. Z in the
range 0.8 to 1) this filtering effect can be too strong, suppressing
any influence of values at longer times losing more information
than noise as is the case when using KB, e.g. in Fig. 5, where the
fitted values at longer times are almost not influenced by any
experimental values. This is not the case when using K ffiffiffi

B
p since

the background enters as the square root into the kernel. The
influence of later points is still reduced, reducing the influence of
noise, but experimental values at shorter times still influence the
fit at longer times, thus yielding better results as seen in Fig. 4.

Another interesting perspective from which to analyze this
test is to monitor the various values adopted by the optimal
regularization parameter a chosen by the Akaike information
criterion when employing the different background treatment
methods. In Fig. 6 the optimal regularization parameters
averaged over the 8500 different tests are shown, where it can
be identified that for the low-noise case (s = 0.02) the back-
ground subtraction and division approaches yield too large
regularization parameters relative to the background-free case,

Fig. 4 Relative Euclidean distances obtained from the statistical analysis of 8500 different form factors for different relative background decays and
three different noise standard deviations: low (s = 0.02), medium (s = 0.05) and high (s = 0.1) noise. For each instance the background is treated either by
division (green), subtraction (blue), employing the kernel KB (orange) or kernel K ffiffiffi

B
p (red). All Euclidean distances are evaluated relative to the background-

free case. The coloured dotted lines represent the median values and the shaded areas, the interquartile ranges (IQR) of the data.

Fig. 5 Logarithmic colormaps of the influence matrices for the different kernel definitions exemplified by using kernels of 400 � 400 points, 20 ns time
steps and a = 500. For the background in HB and H ffiffiffi

B
p , an exponential function with k = 0.9 and d = 3 was used corresponding to Z E 1. The logarithmic

intensities are colour-coded as specified by the colorbar.
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leading to broadening and worsening of the results as encountered
in Fig. 4. The best approximation to the background-free case is
achieved by the kernel K ffiffiffi

B
p , which reaches regularization para-

meters closest to the reference value obtained in the background-
free case (as expected from the discussion in Section 2.5).

As the noise level increases, the increase of the regularization
parameter with respect to the background-free case in all
instances adopts larger values to compensate for the larger noise.
Still, use of the kernel K ffiffiffi

B
p keeps leading to the closes values to

the background-free case, preventing further oversmoothing. In
general, the trend observed for the optimal regularization para-
meter for each method correlates well with the results in Fig. 4.

3.2 Optimal truncation

We have seen multiple times, that the noise ‘‘explosion’’ caused
by background division in situations with strong background
decay leads to a considerable worsening of the regularization
results. As mentioned before, in applications of this approach it
is common practice to truncate the background-corrected
signal, i.e. to discard the part of the data trace that is perceived
by the practitioner to add more noise than information. The
main problem with this approach is the fact that there are no
established objective criteria for choosing the position at which
to truncate and, therefore, the whole procedure is subjective
and not reproducible. Still, the results we have shown thus
far for the background-division have considered only the
full-length signal and it is known that truncation of the trace
can yield better results. Hence, in order to provide a fair
comparison with the established approaches, we now consider
the effects of truncating the time trace on the results.

To examine this, we tested, again, a subset of the library at
various background decays. Due to the lack of criteria for
selecting an optimal truncation position, we proceeded with
an exhaustive grid search approach and tested all traces
with the different backgrounds at several relative truncation
positions. That way we err in favour of the previously established
approaches since, in practice, the optimal truncation position will
rarely be found. The computational cost associated with such a

grid search limited the size of the subset of traces to be studied to
550. The results of this study are summarized in Fig. 7 and Fig. S2
(ESI†). In Fig. 7 we selected the optimal relative truncation
position for each Z-value (based on the minimum of the metric
with respect to variation of the truncation position) and
monitored the changes in the relative truncation positions
and optimal metric values for the different relative background
decay values. For the low-noise case (s = 0.02) in Fig. 7, we see
that for all other approaches besides background-division the
optimal solutions are obtained without the need of truncating
the trace (relative truncation positions of B95–100%). For the
background-division case, however, we see that for decreasing
relative background decay the optimal solution requires trun-
cation of up to B60% of the signal. In the metrics, we see that
truncation allows the background-division approach to perform
considerably better than background-subtraction, provided that
an experienced practitioner comes close to guessing the optimal
truncation point. Still, neither of the two approaches (at optimal
truncation) reaches the performance of the kernel methods. As
the noise level increases (s = 0.05), background-division requires
considerable truncation even at lower Z-values. Yet, despite the
additional noise the background-division approach still performs
better than the background-subtraction approach.

In the high-noise case (s = 0.10), background-division
requires truncation of 25–60% of the signal even for not
so strongly decaying backgrounds. However, even at optimal
truncation background-division is (slightly) outperformed by
subtraction. We can also see that the performance of the KB

kernel method (and even the background-free case) may be
improved by truncation of at least 25% of the trace in some
cases, whereas background-subtraction and the K ffiffiffi

B
p kernel

method do not require truncation. This again shows the innate
filtering properties of the K ffiffiffi

B
p kernel. In conclusion, we have

shown that truncation of the form factors (assuming that the
optimal truncation position is known) drastically improves the
results obtained from background-division (again, assuming
the practitioner manages to correctly guess the optimal truncation
point), yet the performance of background division or subtraction

Fig. 6 Mean regularization parameters values employed for the results of Fig. 4 obtained from the statistical analysis of 8500 different form factors for
different relative background decays and three different noise standard deviations: low (s = 0.02), medium (s = 0.05) and high (s = 0.1) noise. These
values are represented relative to the background-free regularization parameter values. For each instance the background is treated either by division
(red), subtraction (violet), employing the kernel KB (orange) or kernel K ffiffiffi

B
p (green). All regularization parameter values were evaluated relative to the values

obtained for the background-free case. The Student’s t 95%-confidence intervals for each curve are provided as respectively coloured shaded areas.
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never reaches the one obtained by the kernel methods even under
optimal truncation conditions.

3.3 Influence of background misfitting

Thus far we have worked under the idealistic assumption that
we know the exact background function B(t), i.e. in absence
of any inaccuracy in the values of the decay rate k of the
exponential function (10). Experimentally, these values are
unknown beforehand and must be fitted from the experimental
signal. This fitting procedure inevitably introduces uncertainty
and possible errors into the parameter values which we then
use to model the background. In this section, we will consider
the effects this misfit can have on the performance of the
different background treatment methods we have discussed
so far.

First, we examine the effects of misfit of the background
on the expressions derived in Section 2. If we now consider
the case Bfit a B then we see that the gradient (31) of the
background-division case becomes

rfdivðPÞ0 ¼ rf ðPÞ þ KTðF� F � ðB� BfitÞÞ

þ KTðd� Bfit � d� BÞ;
(52)

whereas for the background-subtraction the gradient (33)
becomes

rfsub(P)0 = rf (P) + KT(F � F3B + (1 � l)(Bfit � 1)). (53)

By comparing these gradients to (31) and (33), respectively, one
can see that the gradient for the background-divided case

suffers more from this background misfit than the subtracted
case. Hence, we expect background-division to perform worse
than the other methods for a given misfitted background Bfit.
Now we shall consider the gradients when using the kernels KB

and K ffiffiffi
B
p under misfit of the background. The gradient (39) for

the KB case at an iteration i now reads

rfBðPi
�Þ0 ¼ rf ðPi

�Þ þ KTðDFi � B� DFiÞ þ KTðd� d � BÞ

þ KTðFi
� � ðBfit � BÞ � BfitÞ

(54)

whereas the gradient (44) for the K ffiffiffi
B
p case reads

rf ffiffiffiBp ðPi
�Þ0 ¼ rf ðPi

�Þ þ KTðDFi � B� DFiÞ

þ KTðFi
� � ðBfit � BÞÞ:

(55)

From these results we see that the terms KT(Fi*3(Bfit � B)) and
KT(Fi*3(Bfit � B)3Bfit) introduced by the error in fitting the
background also evolve during the iterations of the fitting.
Basically, as the iterations proceed and the fitted form factor Fi*
improves, the effects of the misfitting will decrease. Considering
these results, we can expect the subtraction approach to be the
most stable towards fitting errors due to the reduced influence on
the gradient. For the kernel-corrected methods the additional
term introduced by the fitting error cannot be removed anymore.
However, for not too large errors the results can be expected to be
better than for the other cases.

To confirm this, we performed two separate tests. First, in
order to assess the typical fitting errors found in dipolar

Fig. 7 Relative Euclidean distance obtained from the statistical analysis of 550 different form factors for different relative background decays and three
different noise standard deviations: low (s = 0.02), medium (s = 0.05) and high (s = 0.1) noise. For each case the trace was truncated at the optimal
position found by a grid-search and the background was treated either by division (green), subtraction (blue), employing the kernel KB (orange) or kernel
K ffiffiffi

B
p (red). All Euclidean distances are evaluated relative to the background-free case. The coloured dotted lines represent the median values and the

shaded areas, the interquartile ranges (IQR) of the data.
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spectroscopy data processing, we considered 20 000 different
form factors from the dataset library with different relative
background decays. The background functions were then fitted
by DeerAnalysis13 using the default settings,‡ i.e. automatic
zero-time and background start determination and using a
background model with fixed fractal dimension d = 3. The
fitted parameters were then compared to the original ones and
thus the relative error was determined. The statistical analysis
in Fig. S3 (ESI†) revealed the range of fitting errors typically
encountered when using DeerAnalysis. In a second analysis, we
tested all four methods again against a subset of the dataset
library for various relative background decays and assuming
different errors in the fitting parameters in a range determined
by the former test. To do so, we changed the values of a decay

rate kfit parameter relative to the original parameter k values
and employed this misfitted background for the calculations.

The results of both tests are summarized in Fig. 8 where we
can see the effects on the background-treatment performance
for the different methods relative to the background-free case
under fitting errors typically found in DeerAnalysis. For small
noise (s = 0.02) we observe that the quality of the results quickly
drops for increasing absolute fitting error for all four
approaches, the effect being more drastic the smaller Z gets.
If compared directly to the cases with higher noise, we see
that the tolerance towards errors improves. This effect can
be explained by considering the influence of noise in the
background-free case. For low-noise, the misfitting of the back-
ground is the primary source of error in the results. Therefore,
any error in the fitting will yield much worse results than the
background-free case. As the noise increases, noise becomes
the primary source of error in the results and the relative

Fig. 8 Influence of errors in fitting of the decay rate parameter kfit of the exponential background function on the regularization results. The mean
Euclidean distances for each method were obtained from a statistical analysis of 700 different form factors at different relative background decays,
different fitting errors and three different noise standard deviations: low (s = 0.02), medium (s = 0.05) and high (s = 0.1). The fitting error kfit/k is given as a
percentage relative to the true value of the parameter k. As a reference, the frequency for encountering each error while fitting with DeerAnalysis are
given as kernel density estimations with bandwidth h = 0.30.

‡ Home-written scripts where used to automate the DeerAnalysis GUI for the
fitting.
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contribution to the error introduced by misfitting the back-
ground will be reduced.

In general, we see that background subtraction is the
least affected method by misfitting as expected from (53).
In comparison, the kernel methods exhibit a diminished
tolerance towards background fitting errors (as expected from
(54) and (55)), while division is the most affected approach.
However, for small fitting errors, the subtraction case gradient
(53) still represents a worse approximation of the background-
free gradient than the kernel method gradients (54) and (55).
Therefore, as long as the fitting error remains relatively small,
these methods will still yield the best results.

Interestingly all approaches exhibit an asymmetric misfit
tolerance behaviour with respect to the error-free case. Fitting
smaller kfit-values (slower decaying background) appear to lead
to smaller errors when compared to larger kfit-values (faster
decaying background). Thus, in the case of uncertainty, under-
fitting of kfit-values seems to be a safer approach in terms of the
regularization results, and should be considered as a rule of
good practice. Additionally, for smaller kfit-values, the kernel
methods seem to outperform the other approaches (especially
at higher noise levels). In conclusion, we have seen that for
the errors encountered most frequently the kernel methods
outperform subtraction (and division) even in the presence of
fitting errors. If fitting errors become too large, in some cases

(e.g. s = 0.02 in Fig. 8) background subtraction may perform as
good or even somewhat better that the kernel methods. How-
ever, the quality of the signal even for the subtraction case is
largely degraded and also, as shown by our statistics obtained
from DeerAnalysis fitting, such cases are rare. Of course, if
traces are too short for the main distances encountered in
the distribution this situation is met, but then the distance
distribution is unreliable with any processing.

4 Conclusions

In this work we have provided a theoretical analysis of the
effects of the most commonly employed background correction
approaches for dipolar EPR spectroscopy. During this analysis
we have identified the problems plaguing these approaches and
proposed two new approaches based on re-definition of the
dipolar kernel by inclusion of the background function. The
analysis also shows that one of these new approaches can
reach, in theory, the true background-free solutions at given
noise level.

To complement our analysis we have presented statistical
studies by treating simulated test signals from a large library.
The numerical results using the exponential background model
confirm the results of our theoretical analysis proving the

Fig. 9 Examples of distance distributions obtained via L2-AIC Tikhonov regularization after treating the background via division (green), subtraction
(blue), employing the kernel KB (orange) or kernel K ffiffiffi

B
p (red). The background-free fits are also given as a violet line. Information on the length (tmax), noise

deviation (s) and relative background decay (Z) of the corresponding form factors are given next to each distribution. Additionally, the corresponding Euclidean
distance between each fit and the underlying distance distribution (grey) are given next to each distribution with the corresponding colour-coding.
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potential of these new approaches as substitutes for the current
background-correction methods. In contrast to the background-
division method, the kernel methods are universally applicable
without the need to truncate the signal and they present a better
tolerance towards errors in the fitting procedures of the back-
ground. In most situations they also perform better than back-
ground subtraction, which anyway is not physically correct.

We understand that an analysis based on similarity metrics
such as the ones employed in this study does not provide
an intuitive understanding of the improvements achieved.
Therefore, in Fig. 9 we present a visual comparison of the
distance distributions obtained with the different methods
with a selection of model distance distributions. Such a
comparison is purely anecdotal by necessity. In Fig. 9 we see
that for mild cases (such as models D, H, and K) in the presence
of a moderate background decay (Z = 0.60) and low noise
(s = 0.02), all methods performs similarly without strong
differences, with the kernel methods still yielding the best results.
When the conditions get somewhat harsher (cases A, C, F, G, I and J)
background-division (without further truncation) yields the worst
results as we have seen throughout this work. The distributions
obtained by background-division are all oversmoothed and many of
the features present on the ground truth are lost. In models E, G, I
and J we see the background-subtracted solution failing to perform
well, while the kernel methods, which in general yield the best
results, still do. An exception can be found in model I, where the KB

kernel method fails and leads to an even worse solution than
subtraction. The K ffiffiffi

B
p kernel method, however, yields the most

similar results to the ground truth for all instances, where the other
methods fail to. This anecdotal analysis illustrates the benefits and
potential of model-based processing approach using these new
kernel definitions.

In conclusion, we have shown that the current approaches
for background-correction are sub-optimal when coupled to
methods based on LSQ-fitting and proposed an improved
approach based on a theoretical description of the background
problem in dipolar spectroscopy and which yields improved
results at no additional computational cost or processing steps.
With this work we expect to have shed some light into the
uncertainty many experimental spectroscopists experience when
faced with the question on how to treat the background in dipolar
signals. Additionally, this work opens up the possibility of new
processing workflows for dipolar spectroscopy e.g. simultaneous
fitting of background along a model-free distance distribution or
other workflows based on re-definition of the kernel. All scripts
employed for this work are available upon request.
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Appendix

In this appendix we provide a more detailed derivation of the
expressions of the different gradients discussed in this work.

First, we consider the background-free case where the gradient
at the optimal solution rf (P*) can be written as

rf (P*) = KTKP* + L(P*) � KTF � KTd (56)

= KTF* � KTF + L(P*) � KTd (57)

= KTDF + L(P*) � KTd (58)

Next, let’s consider the case of background division, where
the gradient is given by

rfdiv(P) = KTKP + a2LTLP � KTF � KT(d{B). (59)

and introducing the optimal solution of the background-free
case P* into the equation yields

rfdiv(P*) = KTKP* + L(P*) � KTF � KT(d{B) (60)

= KTF* + L(P*) � KTF � KT(d{B) � KTd + KTd (61)

= KTDF + L(P*) � KTd � KT(d{B) + KTd (62)

= rf (P*) + KT(d � d{B). (63)

Next we consider background subtraction, where the gradient
reads

rfsub(P) = KTKP + a2LTLP � KT(F3B) � KTd + (1 � l)KT(B � 1)
(64)

and, again, introduction of the background-free case solution
P* yields

rfsub(P*) = KTKP* + L(P*) � KTV (65)

= KTKP* + L(P*) � KT(F3B) � KTd + (1 � l)KT(B � 1) (66)

= KTF* + L(P*) � KTd + (1 � l)KT(B � 1) � KT(F3B) � KTF + KTF
(67)

= KTDF + L(P*) � KTd � KT(F3B) + KTF + (1 � l)KT(B � 1)
(68)

= rf (P*) + KT(F � F3B+ (1 � l)(B � 1)). (69)

Now we consider the case, where we employ the kernel KB.
The gradient at a given iteration i, is given by

rfB(Pi*) = KT
BKBPi* + L(Pi*) � KT

B(F3B) + KT
Bd (70)

= KT
B(Fi*3B) � KT

BF3B + KT
Bd + L(Pi*) (71)

= KT
B(DFi3B) + KT

Bd + L(Pi*) (72)

= KT(DFi3B
2) + KT(d3B) +L(Pi*) (73)

which can be rewritten as

rfB(Pi*) = rf (Pi*) + KT(DFi3B
2 �DFi) + KT(d � d3B) (74)

Analogously, when using the kernel K ffiffiffi
B
p as well as the

partially corrected signal Ṽ, the gradient is given by

rf ffiffiffiBp ðPi
�Þ ¼ KT ffiffiffi

B
p K ffiffiffi

B
p Pi

� � KT ffiffiffi
B
p ðF � B1=2Þ

� KT ffiffiffi
B
p ðd � B�1=2Þ þ LðPi

�Þ
(75)

= KT(Fi*3B) � KT(F3B) � KTd + L(Pi*) (76)
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= KT(DFi3B) � KTd + L(Pi*) (77)

= KT(DFi3B) � KTd + L(Pi*) + KTDFi � KTDFi (78)

which can be rewritten as

rf ffiffiffiBp ðPi
�Þ ¼ rf ðPi

�Þ þ KTðDFi � B� DFiÞ: (79)
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