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Machine learning is a valuable tool in the development of chemical technologies but its applications into

supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine

learning using density functional theory calculations as training data is evaluated when used to predict

equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising

SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs

TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for

selumetinib, and these results were experimentally validated. It was discovered that the larger

homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release

by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively

demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer

simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib.

This work gives specific evidence that a machine learning approach to recognition of small molecules

by macrocycles has merit and reinforces the view that machine learning may prove valuable in the

development of drug delivery systems and supramolecular chemistry more broadly.

Introduction

The applications of machine learning in biology and chemistry
have rapidly expanded in recent years due to the potential
of data science to improve small molecule drug discovery,
identify more efficient synthetic pathways, create proteins with
greater binding affinity to specific substrates, and other
applications.1–5 One application that has not yet been explored
is predicting the molecular recognition of small molecules with
macrocyclic hosts.

Cucurbiturils are a class of symmetric macrocycles that have
applications within drug delivery, biosensing, catalysis, and
energy.6,7 These macrocycles have many advantages over their
non-symmetric counterparts such as cyclodextrins, including
temperature stability and robustness at acidic and basic pH
values,6 such as those that occur naturally in physiology. The
use of cucurbiturils to change the release kinetics or pharma-
cokinetics of drugs has been previously reported for che-
motherapies such as temozolomide.8,9 Cucurbituril acts as a
competitive substrate and binds to the active ingredient. This
binding can reduce the effective concentration and increase the
half life of biologic and hydrophobic small molecule drugs.10

Predicting whether a molecule will bind to any cucurbituril, in
particular cucurbit[7]uril (CB[7]), a priori could be a valuable
tool in developing new chemical or material systems.11

In this work, we show that support vector machines (SVMs)
can be used to provide utility towards predicting 1 : 1 complexa-
tion of small organic molecules with CB[7]. Finding no com-
prehensive, compiled body of data that could be used for
regression, we first created one using much of the published
literature on small molecules that bind to CB[7].6 We also
report the utility of this regression in predicting the binding
of two new small molecule drugs that have received promising
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results in the clinic and verify these predictions with experi-
mental data. Finally, we provide a qualitative example of the
potential use of these predictions in developing cocktail drug
therapies against a pediatric low grade glioma cell model.

Methods and model

A principal challenge for any machine learning application is in
building a sufficiently large training data set that approximates
the entire problem domain with as little bias as possible.12 To
start such an effort, we performed density functional theory
(DFT) calculations on 146 molecules (Fig. S1–S10, ESI,† corres-
ponding to nomenclature in ref. 6). These molecules had 194
total equilibrium binding coefficients to CB[7]; some molecules
had multiple values because they were tested at multiple
different experimental conditions (Table S1, ESI†).6,13,14 Seeing
a lack of negative controls in the literature,6 we also synthesised
and/or tested three molecules that could not bind to CB[7] and
set these undetectable binding events to output values of 0 to
not skew the algorithm with extreme values (Fig. S11, ESI†).
Critical to the binding affinity of molecules with CB[7] are the
size, aromaticity, and charge of the guest. Other, non-intrinsic
parameters such as solution temperature, pH, salt and/or
buffer concentration may also effect the equilibrium binding
constant.6,15 We sought to capture both intrinsic and environ-
mental properties of the binding event as potential predictive
features (Fig. S12, ESI†). Many reports in the literature fail to
disclose critical environmental details such as temperature or
pH, which limited our ability to make a cohesive body of data
covering the environmental properties. The simulated body of
data were unified as we homogenously ran DFT calculations
and extracted identical parameters from the optimised results
(Table S1, ESI†).

With 194 molecular samples consisting of 17 experimental
and structural features, the constructed data set is small
sample-wise with a relatively high-dimensional feature space.
Without heavily sub-setting the feature space and losing poten-
tially integral feature-interaction information, training a model
to find a subspace parameterising the underlying binding
dynamics is difficult without strong inductive biases provided
a priori. We instead looked to kernel methods to provide a more
sample-efficient learning paradigm that can still capture the
dynamics of the feature space through the lens of properly-
defined sample similarity. A mathematical background for
kernel methods is provided (ESI†).

Kernel featurisation provides a non-linear representation of
the samples within some inner-product space. Support Vector
Machines (SVMs) are a family of models that can capitalize on
this expressive kernel structure by representing examples as
points in this space and determining an optimal but well-
behaved mapping that best describes the differences between
individual points. Although originally designed for classifica-
tion tasks, SVMs have a natural extension to regression. Given
the mathematical framework developed (ESI†), we explored the
capacity of SVMs to predict the equilibrium binding constants

of published molecules.6 We performed a search over features
to determine the best-performing subset of the feature space in
coordination with grid search over hyperparameters within the
model pipeline, namely g, e, C, |y|, s, and all permutations of
addition or multiplication of each kernelised feature. The
optimal hyperparameters (ESI†) were chosen based on 5-fold
cross-validation with respect to mean absolute error.

The environmental data were largely incomplete due to the
fact that many experiments in the literature do not report at
least one and often several of the environmental parameters
such as temperature or pH. For samples missing this informa-
tion, we assumed temperatures of 298.15 K, and pH values of 7.
We also set other values, such as salt concentration, to zero.
These assumptions resulted in an environmental feature set
that was sparse and largely uniform (Fig. 3, Supplementary data
set, ESI†). Viewing environmental factors as a single feature
vector, we also explored how the addition of environmental
information affected prediction performance.

Results and discussion

A leave-one-out analysis was performed to subset the model
features and choose the optimal model. Each model was
trained on the entire training set less one sample, for all
possible held out samples. The log of the equilibrium constant,
log K, was then predicted by the model for each held-out
sample. The mean absolute error of all held-out runs was
calculated across every combination of the features listed in
Table S1 (ESI†), and the subset with the lowest error score was
chosen to go forward (Fig. S18 and S19, ESI†). While this
combination, (1), (3), (4), and (6) (see Table S1, ESI†), contains
some redundant information, it performed slightly better than
the next best of (3), (4), and (6), and we chose to highlight
its results here (see data processing for more information).
Plots for the combinations of these parameters are shown in
Fig. S13–S16, ESI.† For a predicted set of n members, the score
was defined as the mean absolute deviation:

Score ¼ 1

n

Xn

i¼1
logKi;actual � logKi;predicted

�� ��:

We chose mean absolute error as the scoring function due to
both its intuitive simplicity and, because it equally scales the
residuals, its consistent comparison across any magnitude split
of left out data. We found other error measures behave simi-
larly to this score.

Because the available environmental data lack diversity and
are unnaturally uniform across samples, their usage as an
additional feature often masked the underlying predictive
capacity of the structural features. This process of feature
reduction resulted in an optimal model consisting of 4 features
derived from DFT calculations (1), (3), (4), and (6) only (Fig. S18,
ESI†). These results are intuitive: both the size and electron
distribution of small molecule organics are key in determining
binding to cucurbit[7]uril.6 Environmental parameters including
salt concentration are known to affect the binding of some
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molecules.6 However, the extent of changes is less than the
error of our model, so environmental parameters were not
considered going forward.

Optimised orientation was a large driver of model accuracy
in predicting log K (ESI†). In pursuit of better intuition
regarding model performance, the equivalent SVM classifier
was trained using the same process as above. The confusion
matrix in Fig. S19 (ESI†) is largely diagonal, with a bias towards
over-predicting samples with a low value for log K. Also of
interest was the extent to which the preprocessing methods
provided separation between samples. Fig. S17 (ESI†) shows
non-linear 2D projections of the combined kernels as well as
the pre-kernelised and post-kernelised features for the opti-
mised DFT orientation.16 It is evident from these plots that the
featurisation process creates useful separation between high
and low values of log K.

We next sought to challenge the model and identify its
limits. We first removed any duplicate molecules at different
conditions and set the true log K as the average of all the
reported values. For example, methyl viologen was reported
14 times at different parameters such as temperature or salt
concentration, and so instead of having methyl viologen appear
14 times, it appeared once (ESI†). Interestingly, and perhaps
expectedly, the optimal model in this duplicate-free data set
remained the same. The duplicate-free data set was chosen for
subsequent analysis and the performance, confusion matrix,
and corresponding receiver operating characteristic/area under
the curve (ROC-AUC) plot are reported (Fig. 1, 2 and Fig. S17,
ESI†). These classification results demonstrate the nature of the
model’s performance. Error accumulates primarily at either
extemum of the log K distribution, but large errors are uncom-
mon and performance in the denser parts of the training
distribution is higher. Next, we removed classes of families
and tested the model’s ability to predict any one member of

that family (Table 1, Fig. 4 and Table S2, ESI†). Given the
limited size of the data set, we expect this algorithm to be
useful in identifying the binding of molecules which a supra-
molecular chemist might expect to bind to cucurbiturils
a priori. For example, molecules with extended aromaticity
are generally hypothesised to have some interactions with
cucurbiturils.15 This analysis shows that in order to capture
binding of molecules such as imidazolium derivatives and
adamantyl compounds, a data set containing these molecules
is required. Imidazolium derivatives performed the best out of
all the groups considered when their family was included in the
training, and their error increases more than 5 times when left
out, suggesting the algorithm is particularly sensitive to train-
ing on these types of molecules. Small arylamines and viologen
derivatives performed better than the average data set regard-
less if the family was kept in or out, suggesting analysis of these
kinds of molecules is robust and the physics of their binding is
well-captured with the remaining data relative to the other
families.

We next performed classical machine learning controls.17

We first tested the performance of environmental parameters
alone, which contain no chemical information about the guest.
We found they had poor predictive capabilities (Fig. 3). We also
tested whether we could predict the log K by counting the
number of carbons in each molecule (Fig. S21, ESI†). Similarly,

Fig. 1 Prediction performance for optimal leave-one-out experiments.
The line of best fit based on predicted points is shown in black, and the line
representing perfect prediction is shown in red (score = 1.6266, R2 =
0.3820).

Fig. 2 Normalised confusion matrix for the optimal SVM model trained as
a classifier.

Table 1 Summary of different subclasses of molecules identified in the
data set that were used to challenge the model

Family of molecules Unique entries

Small arylamines 4
Viologen derivatives 6
Methylene blue derivatives 9
Perfluorinated compounds 13
Amino acids 10
Imidazolium derivatives 8
Adamantyl compounds 12
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we found poor predictive capabilities with this approach. Both
models performed worse than models which considered 3D
structural data. One potential bias in the data that could be
leading to the difference in the controls’ performance is the
slight negative relationship of molecular weights of guests
(Fig. S22, ESI†) to log K. Finally, we generated a random data
set of identical dimension with the same log K outputs and
found this had poor predictive capabilities (Fig. S23, ESI†).
We also randomly reassigned log K values to different input
data and found this reshuffling had, as expected, poor predictive
capabilities (Fig. S24, ESI†).

We then compared whether there were similarities among the
top 10 performing models based on score (of the 127 models
considered when no environmental parameters are included).
All the 10 best models utilised the electric field gradient and a

geometry, while seven also used electrons condensed to atoms. No
other parameters were used in 50% or more of the top 10 models.
While we chose to highlight the results from the top performing
model, the differences between the top 10 are small. This shows
that the identity of the top performing model is less important
than identifying which features consistently improve perfor-
mance. We conclude from these results that these spatial and
electronic data about each molecule improve the predictive
capabilities of the algorithm. Five of these top 10 also had among
the highest 10 R2 values, including the top model based on score.
All of the top 10 models had among the top 25 R2 values.

Within the domain of utility, our results suggest these
models may has some predictive ability towards binding con-
stants of molecules we might suspect a priori have binding to
cucurbiturils. We next used the top model to predict whether
binding can occur between CB[7] and two small molecule
organics recently identified as potentially promising drugs
against pediatric low-grade gliomas: a type II RAF inhibitor
TAK-580 (formerly MLN2480; referred to here as RAF), and a
MEK inhibitor selumetinib (also called AZD6244; referred to
here as MEK).18,19 Sun and colleagues recently reported RAF as
a more promising therapy than type I RAF inhibitors due to its
ability to bind to both fused and truncated v600.18 Banerjee and
colleagues also recently reported a promising phase I clinical
trial of MEK in children with low-grade gliomas.19 We per-
formed DFT geometry optimisations on these two molecules
and applied the SVM model. It was predicted that RAF would be
a good guest to CB[7] with a log K of 4.61, while MEK would
have very poor binding with a log K of 1.18 (Fig. 5C). Similar
values were obtained if duplicate inputs were considered
(Fig. S20, ESI†). Synergistic drug cocktails have more potent
responses than the sum of their individual components.20 A key
challenge in developing drug cocktails is in their delivery
because drugs have different therapeutic windows requiring
different release kinetics.21,22 The ability to independently

Fig. 3 Prediction performance for leave-one-out experiments for envir-
onmental parameters only. The line of best fit based on predicted points is
shown in black, and the line representing perfect prediction is shown in red
(score = 2.1938, R2 = �0.0665).

Fig. 4 The score describes the mean difference between predicted log K and actual log K when each class of families is kept or left out. Dashed red line
is the average score of the model utilising all the data.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ne
 2

02
0.

 D
ow

nl
oa

de
d 

on
 5

/3
1/

20
25

 3
:2

2:
49

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9cp05800a


14980 | Phys. Chem. Chem. Phys., 2020, 22, 14976--14982 This journal is©the Owner Societies 2020

modulate release kinetics is an invaluable tool in the develop-
ment of combination drugs. Different binding constants with
macrocycles such as CB[7] is one promising approach to
independently modulate these kinetics. This prediction that
two promising drugs (Fig. S25, ESI†) against pediatric low grade
gliomas is a potentially promising ‘hit’ in combination drug
delivery.

We experimentally validated whether these predictions on
the strong and poor CB[7] binding of RAF and MEK were
accurate. Upon addition of CB[7] to an aqueous solution of
RAF (1 : 1 molar ratio), the drug’s aromatic 1H NMR peaks
remained sharp and well resolved. The proton signals of
CB[7] split into two sets of equivalent peaks (Fig. 5A). These
two observations strongly suggest that RAF and CB[7] bind
favorably and statically.15 Isothermal titration calorimetry (ITC)
revealed that KCB[7] = 3.5 � 106 M�1 (Fig. S29, ESI†). We also
sought to identify precisely where RAF was binding with CB[7].
No information on 1H or 13C NMR peak assignments could be
found on RAF from the manufacturer or in the literature, and
so further characterisations were carried out utilising 1D and
2D NMR techniques (ESI,† Section S3: Binding analyses via
NMR). Our results show that CB[7] binds statically at the
trifluoromethyl-substituted ring in a 1 : 1 fashion (Fig. S29,
ESI†). Surprised by this result, we sought to understand why
CB[7] preferentially bound to the bulkier trifluoromethyl-
substituted ring if there was an alternative pyrimidine with
a positively charged amine.6 Deuterated hydrochloric acid
solution (0.1 M) was titrated into a solution of RAF alone

(Fig. S30, ESI†). The aromatic peak meta to the primary amine
shifted after a reduction to pH r 2. This suggests that the
primary amine is, in fact, uncharged, which may be a reason
why CB[7] does not bind at the pyrimidine ring. We then
investigated whether RAF could bind to CB[8] (Fig. S31, ESI†).
The aromatic peaks of the drug do not remain well resolved as
in the case with CB[7], but rather they broaden and disappear.
This suggests that RAF does interact with CB[8] with low affinity
and in a highly dynamic manner. Thus, CB[8] is not a good
carrier for RAF, while CB[7] is an excellent one.

We then validated whether the SVM prediction for MEK was
correct. MEK was added to an aqueous solution of excess CB[7]
to determine whether any interactions were occurring (Fig. S32,
ESI†). In depth analysis is described in the ESI.† These data
demonstrated that the drug does not bind to CB[7], confirming
that the SVM predicted poor binding of MEK with CB[7]. We
then screened its binding to CB[8] (Fig. S33, ESI†). The shift
and retention of sharp peaks in the 1H NMR spectra suggested
that the MEK inhibitor binds more strongly and statically to
CB[8] than RAF. The downfield shifts of protons c, g, and h
suggested that the extended imidazole ring is located near but
outside the CB[8] cavity. The upfield shift of protons a and b
suggested that the ethylene glycol unit is inside the CB[8] cavity.
The minimal changes in protons d, e, and f were consistent
with the hypothesis that the bromo-substituted ring was not
inside or near the CB[8] cavity. It is well known that CB[8] can
thread poly(ethylene glycol) chains.6 The thermodynamically
favorable interactions between ethylene glycol repeat units and
CB[8] may explain why CB[8] preferentially binds to the ethy-
lene glycol unit of MEK. After addition of CB[8] in ratios greater
than 1 : 1, little change occurs in the spectra, which suggested
MEK and CB[8] bind in a 1 : 1 fashion. These data show that two
different drugs with different therapeutic windows bind to
different CB macrocycles. MEK shows no binding with CB[7],
yet RAF and CB[7] bind strongly in a 1 : 1 fashion. Conversely,
MEK binds to CB[8] more statically than RAF. Combining these
two drugs into one therapy could give rise to a paradigm that
provides a unique opportunity to selectively tune the release or
residence time of one drug independently of the other by
simply tuning the concentrations of CB[7] and CB[8] in the
system.

We next sought to provide a qualitative example of the
potency of these drugs, and why modulating drugs to have
different release kinetics is an important capability in the
development of combination therapies. RAF/MEK combination
therapies have been found to be efficacious against other
malignancies.23,24 In this work we explore whether such a
combination is potent in a pediatric glioma model. We
screened for combinations of RAF and MEK against a v600e
mutant and identified a synergistic effect at 102 nM concen-
tration of both RAF and MEK together (Fig. S34, ESI†). This
result suggests that by co-delivering RAF and MEK, the total
drug concentration required can be reduced. Further optimisa-
tions may yield further reductions in required concentrations.

Finally, we utilised a simple mass transport model to show-
case how with these binding affinities, CB[7] can be used to

Fig. 5 (A) 1H NMR spectra of RAF alone (bottom) in D2O with 2% DMSO-d6,
and with CB[7] in a 1 : 1 molar ratio (top) in the same solution. Red text and
dashed lines indicate peaks that did not shift. Blue text corresponds to peaks
that did shift. (B) Illustration showing geometrically accurate binding of RAF
with CB[7]. (C) Predicted and experimental log K of RAF and MEK.
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independently tune the release kinetics of one drug without
changing the kinetics of the other (Fig. 6). We modeled a
spherical, non-degradable hydrogel depot 0.375 mL in
volume25 with CB[7] bound within the matrix and 100 mM
loaded drug concentrations (Gtotal). Our lab has recently shown
that divalent crosslinkers can form hydrogels loaded with
CBs,26–28 however the gel modeled here differs from these
previous reports as the CB does not participate in the non-
covalent network (ESI†). This model leads to an initial value
problem, which is dictated by the differential equation (full
derivation in ESI†):

d Gtotalð Þ
dt

¼ �ADcsurf

VR

csurf = f (K,Gtotal,CB[7]total)

where hydrogel radius (R) and volume (V), surface area (A), and
species diffusivity (D) are constants. Experimentally derived
association equilibrium constants (K) were used in the model

for RAF (binding) and MEK (no binding). csurf is the drug
concentration at the hydrogel boundary. The concentration of
loaded CB[7] was varied. Across different concentrations
of CB[7], the release kinetics of RAF changed several orders of
magnitude in timescale (Fig. 6A and Fig. S35, ESI†). By contrast,
changing the concentration of CB[7] did not change the release
kinetics of MEK (Fig. 6B). One limitation of this approach is
that the fast equilibrium assumption fails in the limit of no
CB[7] or no binding to CB[7]. Given that the parameter of
interest is total drug released (Fig. 6) and not the spatial
distribution of drug within the hydrogel depot, and given a
lack of kinetic information, this assumption was tolerated in
this limit. Determining the changes in release profile observed
when the fast equilibrium assumption is relaxed is the basis for
future work. Nonetheless, this numerical result shows that
preferential binding is a valuable tool that can be exploited to
tune kinetics of drugs independently of one another over time
scales of interest for local drug delivery.21

Conclusion

In this work, DFT calculations were used as training data to
predict equilibrium binding constants of small molecule organ-
ics to CB[7] with machine learning. A library was developed and
used in an engineering-approach to identify parameters which
may provide predictive capability. We find that publicly avail-
able data creates a set likely too small for robust, accurate
prediction of binding, though utilising SVMs may confer some
predictive ability. The top algorithm was highlighted and used
to predict the binding of two promising small molecule drugs
in the clinic against pediatric low grade glioma. The algorithm
predicted strong binding for the type II RAF inhibitor, and poor
binding for the MEK inhibitor, which was experimentally
validated. It was also discovered that CB[7] is partial to binding
the RAF inhibitor, and CB[8] is partial to binding the MEK
inhibitor, suggesting an opportunity for tunable release kinetics
by introducing different concentrations of CB[7] or CB[8] into the
system, perhaps in a hydrogel depot. Finally, we qualitatively
demonstrated that these two drugs have different therapeutic
windows and may have utility in concert against low grade gliomas.
Machine learning may prove valuable in the development of drug
delivery materials for combination therapies in the future, as well as
non-biomedical applications that require predicting the binding of
small molecules to macrocycles. As data sets continue to be
generated and refined, the opportunities of data science in supra-
molecular chemistry will continue to grow.
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