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Energetics of paramagnetic oxide clusters: the
Fe(III) oxyhydroxy Keggin ion†

C. André Ohlin

The energetics of the different spin states of the five Baker–Figgis isomers of the iron(III) Keggin ion,

[Fe(O4)(Fe(OH)2(OH2))12]7+, have been investigated using density functional theory in order to demonstrate

how the energy landscape of medium-to-large discrete paramagnetic transition metal oxide clusters with

large numbers of antiferromagnetically coupled centres can be resolved. Antiferromagnetic coupling

causes the energies to span a surprisingly large range of 30 kcal mol�1, as determined by calculating the

energies of all 664 unique spin configurations based on determination of the antiferromagnetic coupling

constants by density functional theory. A program which simplifies the resolution of the energetics of

this type of system is also provided.

Introduction

Paramagnetic systems are challenging to model computation-
ally. Although multiconfigurational wave function methods can
give good results in the computations of relative spin state
energies, they are computationally expensive and density func-
tional theory is often the only realistic method for investigating
the properties of medium and large transition metal clusters.1

In addition to method-specific issues the potentially large number
of coupled spins in transition metal compounds further compli-
cates the investigation of the energetics of clusters containing
paramagnetic centres.

In this study a methodical approach to resolving the energy
landscape of systems composed of multiple antiferromagneti-
cally coupled centres is described and investigated. This is
particularly pertinent to the investigation of transition metal
oxide clusters with antiferromagnetically coupled centres, which
include catalysts and molecular magnets incorporating first-row
metals such as manganese, iron and cobalt, which are at the
centre of applied inorganic research today. As an example of
such a discrete transition metal cluster target system containing
multiple antiferromagnetically coupled centres the hypothetical
iron(III) oxyhydroxy Keggin ion has been chosen, for the reasons
outlined below.

Ferrihydrite is a metastable ferric mineral which serves as
a precursor to the rock and soil minerals haematite and
goethite.2 While the details of the poorly crystalline structure
are still under debate, it forms through the condensation of
mono- and oligomeric ferric (hydr)oxo species. How this occurs

is not clear, and because the Keggin motif appears to be
present, albeit not as a discrete unit, in ferrihydrite, the discrete
oxyhydroxy iron(III) Keggin ion has been suggested to form in
solution and act as a building block.

This iron(III) Keggin ion, [Fe(O4)(Fe(OH)2(OH2))12]7+ (Fe13)
(Fig. 1), has in fact long been predicted as the Keggin ions are
important species in the aqueous chemistry of Al(III).3 However,
while the d motif is incorporated as part of larger structures in
the models of the important but metastable iron mineral
ferrihydrite,4,5 until recently no discrete iron(III) Keggin ion
had been isolated.

However, in 2015 Sadeghi et al. isolated the first example of
an iron(III)-oxo Keggin ion, a-[Bi6FeO4(FeO(OH)(Cl3CCOO))12]+,
from a solution at pH ca. 1.4, and recrystallised it from tetry-
hydrofuran.6 This was quickly followed by the isolation of two
more iron(III) Keggin ions, a-[Bi6FeO4(FeO(OH)(CF3COO))12]+ and the
closely related a-[Bi6FeO4(FeO(OH)(CF3COO))10(FeO(OH)(H2O))2]3

+,
which were found to be stable at pH 1–3.7 The authors attributed
the isolation of these clusters in large parts to the protective effect
of the Bi3+ ion, which prevents the clusters from aggregating.
In the absence of bismuth it was suggested, based on SAXS
data, that dimerisation, and isomerisation to the d isomer, of
the clusters occurred through a lacunary intermediate.6

Bandeira et al.8 determined the electronic spin coupling
constants for the two fully carboxylated cluster species using
the approach by Ruiz et al.,9,10 and compared the results to
experimentally and computationally determined coupling con-
stants for the related a-[FeO4(FeF2(OCH)3)12]5� ion.11,12 Three
antiferromagnetic coupling interactions were considered based
on a view of the a Keggin ion as four triads, each consisting of
three Fe(III) octahedrals, organised around a central tetrahedral
Fe(III) centre: intratriad, intertriad and tetrahedral-to-octahedral
coupling. They found in all cases that intertriad coupling is
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relatively weak (ca.�10 to�6 cm�1), whereas intertriad coupling
ranged from �90 cm�1 for the CF3COO-species to �20 cm�1 for
the CH3O-capped species. Tetrahedral-to-octahedral coupling
was fairly constant at around �40 to �30 cm�1. Experimental
determination of coupling constants for the methanoate complex
using a model only incorporating intratriad and tetrahedral-to-
octahedral coupling yielded values of �30 and �43 cm�1,
respectively.12

The three cases of iron(III) bismuth halocarboxylate clusters
that have been isolated all exist as the Keggin a isomer,6,7 but
there are five potential Baker–Figgis Keggin isomers,13,14 – a, b,
g, d and e –, which are related by the p/3 rotation of a triad of
metal sites as one progresses from the a isomer, in which no
edge-sharing sites exist, to the e isomer in which no corner-
sharing sites exist (see Fig. 1 and Fig. S1, ESI†).

Whereas Al(III) is generally found as the e isomer in solution,
isomers with fewer edge sharing centres, such as the a-isomer,
are generally favoured owing to decreased Coloumbic repulsion
between the metal centres relative to the edge-sharing isomers,
such as e, which is particularly important for species with high
charges and large radii.15 For example, the heteropolyacid
Keggin ions, PM12OO40

3�, of Mo(VI) and W(VI) are found as
the a isomer, in agreement with computational prediction for
the phosphotungstate ion.16 On the other hand, edge-sharing is
favoured for small species such as Al(III). Given the larger
Shannon radius of high-spin Fe(III) (78.5 pm) vs. Al(III) (67.5 pm),17

isomers with fewer edge-sharing sites, such as a or b, should be
favoured for iron(III).

The goal of the present study is to be able to generate the
complete space of energies due to spin configuration and
geometrical isomerism. It would be a monumental task to
calculate this directly – by estimate there are 85, 119, 177, 209

and 74 unique spin configurations for the Keggin a, b, g, d and e
isomers, respectively – so instead the coupling constants for
each type of antiferromagnetic coupling in each isomer are first
determined, and then used to predict the energies for all
unique spin configurations.

In this study the energies of a large number of spin configura-
tions for all five Baker–Figgis isomers of the Fe13 Keggin isomers
have been calculated using the broken symmetry method by
Noodleman et al.18 as developed by Ruiz et al.9 with the goal to
determine what isomer and spin configuration are the lowest
energy ones and, by extension, which is the most likely hypothe-
tical species in solution. This is also important from a theoretical
perspective, as this is required information when computationally
investigating the energetics of the condensation of monomeric
and oligomeric iron clusters (see e.g. Das et al.19).

Methods

Computations were carried out using unrestricted density
functional theory (DFT) with combinations of the exchange
correlation (XC) functionals PBE0,20 B3LYP,21 M06,22 PBE,23,24

or BP86,25,26 with the basis sets def2-svp and def2-tzvp,27

together with implicit solvation through the SMD model by
Marenich et al.,28 for M06, or the polarizable continuum model
(PCM) by Tomasi et al.29 for all other XC functionals as
implemented in G16 rev. B.01 with molecular symmetry turned
off, but otherwise with the default settings.30 Initial guesses
were generated by dividing each molecule into 14 fragments, 13
of which correspond to an iron centre, with defined spins. The
iron centres were organised so that {1,2,3}, {4,5,6}, {7,8,9} and
{10,11,12} form triads and iron centre 13 is the tetrahedral iron

Fig. 1 The five Baker–Figgis–Keggin isomers. Top, from left: a, b and g. Bottom, from left: d and e. Rotated triads are shown in dark purple. Rotation of
triads leads to edge-sharing instead of corner-sharing triads.
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unit at at the centre of the Keggin ion. All structures were
optimised at the same level of theory as energies are reported
for. The basis set combination def2-tzvp + svp uses def2-tzvp for
the iron centres and def2-svp for all other atoms.

The method by Ruiz et al. for the evaluation of coupling
constants in polynuclear clusters,9,10 which is based on the
Noodleman et al.18 concept of broken symmetry analysis, was
used. The concept of broken symmetry refers to the breaking of
symmetry by introducing anti-parallel spins, rather than all
spins being parallel, which would be the highest symmetry state.

In brief, the difference in energy, DE, between the highest
spin multiplicity configuration of the cluster, where all spins
are parallel (ESmax

), and the energy of an arbitrary broken
symmetry spin configuration i, EBSi

, in which some spins are
anti-parallel, is given by eqn (1), which is reproduced here as
formulated by Bencini.31 Here Si and Sj are the spins (�5/2 for
high-spin iron(III)) of atomic centres i and j, which couple by
constant Jij. Jij is zero if there is no antiferromagnetic coupling
between the centres. lij is also zero if the spins are parallel,
but is exactly one if they are not. Thus, only interacting spins
which are antiferromagnetically coupled contribute to the
energy difference between the Smax state and the broken
symmetry state.

DE ¼ ESmax � EBSi ¼
X

io j

Jij � 2 � Si � Sj

�� ��þ Sj

� �� �
� lij (1)

Eqn (1) thus expresses the energy change as a function of a
linear equation of the form. which is dependent on the anti-
ferromagnetic coupling constants and corresponding prefactors.
By looking at a range of broken symmetry states, a set of linear
equations is obtained which can be solved by fitting to yield the

corresponding antiferromagnetic coupling constants. In the
present case sets of linear equations were generated for each
isomer using the Python software J_generator.py, which is
supplied as a code in the ESI,† and fitting was carried out using
gnuplot 5.0 (pathlevel 5).32 Usage of the J_generator.py software
is briefly described in the ESI,† together with a description of
how it can be modified for other systems.

The coupling constants can in turn be used to predict the
energies of all possible spin configurations, and the lowest
predicted spin configurations can be identified, and then
computationally optimised to confirm the predictions. The
general workflow is as follows:

(1) Define the coupling matrix and generate all possible
expressions for DE as a function of the coupling constant.

(2) Select computational targets based on the maximum
variation in dependence on different coupling constants, and
optimise geometries using DFT.

(3) Fit coupling constants based on computed DFT energies.
(4) For all possible spin configurations, calculate DE.
(5) Computationally optimise the targets which are predicted

to have the lowest energies to confirm predictions.
In this study four types of antiferromagnetic coupling paths

between iron(III) centres and corresponding coupling constants
J are considered: intratriad coupling ( J1a), intertriad coupling
between corner-sharing triads ( J1b), intertriad coupling
between edge-sharing triads ( J1d), and coupling between the
central tetrahedral iron centre and all other iron centres ( J2).
Schematic views of coupling in the different isomers and the
corresponding coupling matrices are given in the ESI.†

Examples of the antiferromagnetic coupling paths for the
different Keggin isomers are given in Fig. 2.

Fig. 2 Schematic view of the coupling paths in the a (top left), b (top middle), g (top right), d (bottom left) and e (bottom right) isomers. Intratriad J1a

couplings are shown as black lines, intertriad J1b couplings for corner-sharing triads are shown as red lines, and intertriad J1d couplings for edge-sharing
triads are shown as blue lines. Fe(III) centres 1–12 all couple to centre 13 via J2, which is not shown. The figure is reproduced in a larger format in the ESI.†

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Ja

nu
ar

y 
20

20
. D

ow
nl

oa
de

d 
on

 4
/2

6/
20

24
 6

:1
1:

26
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9cp05795a


4046 | Phys. Chem. Chem. Phys., 2020, 22, 4043--4050 This journal is©the Owner Societies 2020

Results and discussion

The relative energies of the different isomers in the highest
spin state (Smax) – where the spins of all iron centres are parallel
to one another – were computed with different exchange correla-
tion (XC) functionals using the def2-tzvp basis set for Fe, and the
def2-svp basis set for all other atoms. Two XC functionals, PBE0
and B3LYP, were chosen as well-established hybrid functionals,
PBE was chosen as an example of a pure DFT functional, and
M06 was chosen as an example of a popular parametrised
functional. All four XC functionals gave very similar qualitative
trends, although in particular the magnitude by which the e
isomer was disfavoured varied (Fig. 3 and Table S1, ESI†). For
B3LYP, M06 and PBE, the lowest energy isomer was d, whereas
PBE0 favours the g isomer by 0.2 kcal mol�1 over the d isomer.
The closeness in energies of the different isomers and the large
number of potential sources of error, such as explicit solvent
interactions and the effect of counterions, mean that there is
little real difference in energy between several of the isomers.

Ten broken symmetry spin configurations were generated
for the a isomer, the prefactors were determined according to
eqn (1) and the structures were optimised at a few different
levels of theory. Trends were consistent across levels of theory,
although energies for def2-tzvp+svp were generally some-
what smaller in magnitude than energies computed at either
def2-svp or def2-tzvp (see Fig. S9 and Tables S8 and S9, ESI†).
Using these data, antiferromagnetic coupling constants were
determined (Fig. 4 and Table S11, ESI†).

For PBE0 and B3LYP, in particular, the uncertainties in
the fitted coupling constants were noticeably smaller if def2-
tzvp+svp was used, than either def2-svp or def2-tzvp. While
this does not provide any information about which method
provides more accurate results, the goal of this work is the
prediction of energies. Low uncertainty is thus a goal in itself. It
should also be noted that while the fitted coupling constants
for B3LYP remain consistent between different basis set com-
binations, for PBE0 the results obtained at either def2-svp or

def2-tzvp were noticeably different from those obtained at
def2-tzvp+svp. Use of M06 with def2-svp was associated with
considerable SCF convergence issues, and was not further
investigated, but the results were otherwise not found to be
basis-set dependent. Fitting using M06-computed data – in
contrast with B3LYP and PBE0, with one exception – yielded
positive J1a coupling constants, which disagrees with the findings
of van Slageren et al.,12 although their coupling model was
different from the one used here. Finally, PBE and BP86 yielded
coupling constants much larger in magnitude than those
obtained using hybrid XCs.

With this in mind, B3LYP/def2-tzvp+svp was chosen for the
rest of the study as a method with potentially good predictive
properties in terms of spin state energies, and has the added
benefit of being very similar to the one used by Banderia et al.,8

making it easier to compare the results obtained in this study
with theirs. This does not, however, presume that the B3LYP/
def2-tzvp+svp results are closer than those at the other levels of
theory to in vitro coupling constants, which are generally not
known with great confidence or precision.

Using the J_generator program, which is given in the ESI,†
sets of linear equations for the calculations of DE were gene-
rated for each isomer for all possible different spin configura-
tions for the chosen coupling model. A selection of these spin
configurations were chosen for each isomer to get a good range
of dependencies of DE on different combinations of J1a, J1b,
J1d and J2, and optimised computationally. The energies
obtained were then used to fit J1a, J1b, J1d and J2 for each isomer
(see Table 1). All the energies, coupling matrices and pre-factors
for the linear equations are reported in the ESI.†

In the original draft of this manuscript only entries denoted
as ‘BS’ in the ESI† were used in the fitting of coupling constants.
Following comments by a referee, additional computations were
carried out, only ca. half of which were used for fitting (indicated
by a * in the relevant table in the ESI†), and the rest of which
were used to check the predictive capability of the method.
All data are provided in the ESI.† Half of the additional spin
configurations were selected using a random number generator,
and the other half were selected manually to provide a good
range of permutations. For the fitting sets, the data were sorted
in terms of energies, and every second computation was
selected, in order to get a wide range of data.

The tetrahedral-to-octahedral coupling constant J2 and the
inter-triad coupling constant J1b vary relatively little between
the isomers, spanning ranges of ca. �32 to �28 cm�1 and �34
to �27 cm�1, respectively. The inter-triad coupling constant
J1d, which is not present for the a and b isomers, varies from
ca. �23 cm�1 for the g isomer to �19 cm�1 for the d and e
isomers. Likewise, the intra-triad coupling constant J1a varies
from ca. �9 cm�1 in the b-isomer to �3 cm�1 in the e isomer.
When using the data for all isomers, J1a, J1b, and J2 are
consistent with the fitted values obtained for each isomer.
However, the fitted value for J1d does not resemble those
obtained for the g, d or e isomers.

In general, the coupling constants are expected to vary
between the isomers since the inter-atomic distances also vary,

Fig. 3 Energies of the different isomers for the highest spin state relative
to the energy of the e isomer at the highest spin state at each level of
theory. PCM (PBE0, B3LYP and PBE) or SMD (M06) was used as an implicit
solvation model. The basis set combination def2-tzvp+svp was used in
all cases.
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but there is no clear correlation between the variation in J1a and
J1d and trends in Fe–Fe distances for different coupling types
(Fig. S7, ESI†), nor is there any correlation between the spread
in distances for a particular coupling type and the uncertainty
in the fit of the corresponding coupling constant. The varia-
bility may also be due to the inaccuracy of the model used
to resolve the antiferromagnetic coupling constants, which
assumes that the energies computed correspond to those free
of spin contamination and that only iron centres possess a net
spin. This is not the case since the framework oxygen atoms
also become spin polarised. Allowing for more types of
coupling to account for this may improve the fitting process,
but will also require a larger set of computations to avoid
the improved fit simply being due to overdetermination, in
particular if the magnitudes of the oxygen-centered coupling
constants are small.

Using the fitted antiferromagnetic coupling constants the
complete range of energies for all unique spin configurations
could be generated with the J_generator software, either relative
to the Smax state for each isomer (Fig. S11 and 12, ESI†) – in
order to gauge how much the energy of each isomer varies – or
relative to the Smax state of the a isomer in order to determine
the lowest energy isomer and spin configurations (Fig. 5).

The predicted energies of each isomer relative to the Smax

state of each isomer varies by ca. 25–27 kcal mole�1 for the a, b
and g isomers, 20 kcal mole�1 for the d isomer and by less than
16 kcal mole�1 for the e isomer. These ranges are simply a
consequence of a larger magnitude of the J1b constant relative
to the J1d constant; the former corresponds to a type of coupling
which is more important for isomers with more corner-sharing
triads (found in a–d isomers), and the latter is present for edge-
sharing triads (found in g–e isomers).

Fig. 4 Fitted antiferromagnetic coupling constants for the a isomer for different combinations of basis sets and exchange correlation functionals. Note
that the vertical axis shows J. Only the BS data set was used here.

Table 1 Fitted coupling constants in cm�1 for the different Fe13-isomers at B3LYP/def2-tzvp+svpa. Spin states used in the fitting are indicated by * in the
tables in the ESI

Isomer J1a � s J1b � s J1d � s J2 � s

a �6.64316 � 1.154 �33.8603 � 1.186 — �30.6934 � 1.083
b �8.99948 � 3.445 �25.7675 � 4.675 — �30.0717 � 3.295
g �6.27393 � 1.026 �29.4497 � 0.9103 �23.3231 � 4.839 �31.6417 � 0.4647
d �4.92424 � 0.7783 �29.7590 � 0.9269 �18.8791 � 1.995 �29.5641 � 0.5541
e �3.14517 � 0.5585 — �19.3922 � 1.115 �27.5094 � 0.4107
All isomers �6.62805 � 1.006 �31.3688 � 1.175 �12.3721 � 2.97 �29.3623 � 0.7858

a def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. 1 cm�1 corresponds to ca. 2.86 � 10�3 kcal mol�1.
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The predicted lowest energy spin configurations relative to
the energy of the Smax state of the e isomer – the highest energy
species – are given in Table 2. The a, b and g isomers are the
predicted lowest energy ones, and the difference between the
computed lowest state configurations for the a, b and g isomers
is less than 0.8 kcal mol�1, which is likely beyond the precision
of this method. The predicted energies are very close to the
observed ones, but as the actual energies of these spin config-
urations were used in the fitting of the coupling constants, this
serves primarily to indicate that the chosen model is reasonable.

Furthermore, the predicted energies are based only on the
fitted coupling constants – if these are under- or overestimated
the predicted trends will change. As shown (see Fig. 4 and Table
S11, ESI†), the magnitude of the coupling constants varies with

the chosen method. It would thus be imprudent to state with
certainty which isomer and spin state are the most stable ones.
What the current study shows is that there are a fairly limited
range of candidates for the lowest energy configuration, and
that some isomers and spin configurations are disfavoured.
This latter point will be discussed later.

The results presented thus far have centred on computa-
tions at the B3LYP/def2-tzvp+svp level of theory. However, as
shown in Fig. 3, while the levels of theory investigated in this
study yield similar qualitative trends for the relative stability of the
different Keggin isomers in their highest spin states, there are
quantitative differences. These also extend to the determination
of the spin coupling constants. The lowest energy spin configu-
ration for each isomer, as predicted by B3LYP/def2-tzvp+svp, was

Fig. 5 Predicted energies at B3LYP/def2-tzvp+svp of the different broken symmetry states of the a–e isomers, relative to the highest spin state of the e
isomer. The spin multiplicity of the b–e isomers is offset by 1, 2, 3 and 4, respectively.

Table 2 Energies of the spin configuration lowest in each isomer, optimised and computed with different exchange–correlation functionals at def2-
tzvp+svp and expressed relative to the energy of the e isomer in the highest spin state at each level of theory. The lowest energy spin configuration and
isomer for each level of theory has been underlined

Isomer Inverted spin centresb Multiplicity

DEa (kcal mol�1)

Predictedc PBE0 B3LYP M06

a 1, 4, 9, 11, 13 17 �29.5 � 0.3 �26.30 �29.22 �20.59
b 2, 4, 6, 11, 13 16 �29.8 � 2 �27.57 �28.73 �19.76
g 3, 4, 7, 8, 9, 13 7 �29.9 � 0.45 �28.42 �29.52 �21.41
d 3, 4, 9, 13 27 �27.0 � 0.4 �26.00 �26.90 �24.31
e 13 57 �14.0 � 0.2 �12.20 �14.07 �14.95

a Relative to the energy of the Smax state of the e-isomer. b The iron centres in the Keggin ions are organised into the following triads: {1,2,3},
{4,5,6}, {7,8,9} and {10,11,12}. Centre 13 is a tetrahedral iron centre in the centre of the ion. PCM was used for PBE0 and B3LYP; SMD was used for
M06. c Predicted energies based on fitted coupling constants at B3LYP/def2-tzvp+svp, relative to the e isomer in the Smax spin configuration.
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thus optimised at M06, PBE0 and B3LYP with the def2-tzvp+svp
basis set combination to provide a clearer picture of the difference
between the methods.

The configuration and energies of the lowest spin config-
urations for each isomer are given in Table 2 and in Fig. S13
and S14 (ESI†). The energies of the lowest spin configurations
deviate from the Smax energy trends largely by PBE0 and B3LYP
disfavouring the d isomer, and by B3LYP favouring the a isomer
compared to the case with the Smax spin configuration.

Looking at the spin configurations corresponding to
the lowest energies in Table 2 and comparing them with the
coupling constants in Table 1, the reasons behind why the
different spin configurations are the lowest ones become clear.
For the e isomer the configuration where only the central
tetrahedral iron centre is antiferromagnetically coupled is the
lowest one in energy because of the magnitude of the J2

coupling constant relative to the intratriad J1d and intertriad
J1a coupling. For all the other isomers the lowest energy
configuration is a compromise between maximising either
intertriad J1b or tetrahedral-to-octahedral J2 coupling. For the
a isomer all triads couple through J1b, and so the configuration
of each triad is identical. The b isomer has a somewhat
different configuration, where one triad with all positive spins
couples with three triads with mixed spins, and a central
antiferromagnetic tetrahedral iron centre.

For the g isomer three of the negative spins belong to the
same triad ({7,8,9}), which antiferromagnetically couples to
centres 2, 5, 10 and 11. Centres 3 and 4 belong to different
triads ({1,2,3} and {4,5,6}, respectively) and couple antiferro-
magnetically to centres in the same triad (11 and 12, and 10 and
12, respectively). Spins 1 and 6 would couple through J1d only,
which is weaker than J1b, in particular if the values obtained
through fitting data for the d and e isomers are considered.

In the case of the d isomer only the following centres couple
through J1b: centre 4 with centres 10 and 12, centre 3 with
centres 11 and 12, and centre 9 with centres 10 and 11 (Fig. S5,
ESI†). This is reflected by the negative spins for centres 3, 4 and
9 for the d isomer in Table 2.

The large J2 causes centre 13 to have a negative spin in
all cases.

Conclusions

This study demonstrates how coupling constants, whether compar-
able in magnitude to experimental ones or not, can be used to
generate a potential energy map of all spin configurations for a
system with a limited number of computations, and that this can be
used to inform the computation of the energetics of a system with
good apparent predictive capacity. Considering all potential coupling
configurations for systems with multiple antiferromagnetic coupling
paths can thus be done with reduced computational cost, and
improves the energetic description of the system.

For the iron(III) Keggin cluster which may play a role in the
formation of ferrihydrite, antiferromagnetic coupling breaks
symmetry and stabilises each isomer up to ca. 25 kcal mol�1.

While the e isomer does not appear to be a thermodynamically
favoured isomer, all other isomers achieve spin configurations
of very similar energies, suggesting that a hypothetical solution
of Fe13 may contain all of them in comparable concentrations if
isomerisation barriers are low, or the formation from smaller
building blocks is perfectly reversible. If, on the other hand,
isomerisation barriers are high or if the formation of the Fe13

Keggin ion is irreversible, then a specific isomer and spin
configuration may well dominate. Resolving the Fe13 Keggin
system experimentally may prove to be very challenging indeed,
assuming that the ion exists in nature.

In the present case a likely, but not confirmed, species has been
investigated owing to the potential importance of this species in
the solution chemistry of iron(III) as well as in the formation of
proto-mineral nucleation species, but the approach is equally
applicable to the solution chemistry of other paramagnetically
coupled systems, such as those involving manganese, where the
formation of extended phases from discrete starting materials is
key to the formation of an active water oxidation catalyst.33 Using
an approach as demonstrated here investigating such systems is, if
not trivial from a theoretical point of view, feasible and quite
affordable in terms of computational cost.
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