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Core level spectroscopies locate hydrogen in the
proton transfer pathway — identifying quasi-
symmetrical hydrogen bonds in the solid statef
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Short, strong hydrogen bonds (SSHBs) have been a source of interest and considerable speculation over
recent years, culminating with those where hydrogen resides around the midpoint between the donor
and acceptor atoms, leading to quasi-covalent nature. We demonstrate that X-ray photoelectron
spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy provide deep
insight into the electronic structure of the short OHN hydrogen bond of 3,5-pyridinedicarboxylic acid,
revealing for the first time distinctive spectroscopic identifiers for these quasi-symmetrical hydrogen
bonds. An intermediate nitrogen (core level) chemical shift occurs for the almost centrally located
hydrogen compared to protonated (ionic) and non-ionic analogues, and it reveals the absence of two-
site disorder. This type of bonding is also evident through broadening of the nitrogen 1s photoemission
and 1s — 1rn* peaks in XPS and NEXAFS, respectively, arising from the femtosecond lifetimes of
hydrogen in the potential wells slightly offset to either side of the centre. The line-shape of the core
level excitations are thus related to the population occupancies, reflecting the temperature-dependent
shape of the hydrogen potential energy well. Both XPS and NEXAFS provide a distinctive identifier for
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these quasi-symmetrical hydrogen bonds, paving the way for detailed studies into their prevalence and
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Introduction

The ability and flexibility of hydrogen in non-covalent electrostatic
interactions is without comparison: hydrogen bonds (X-H:--Y)"
are fundamentally important molecular interactions that influ-
ence structure and reactivity in many chemical and biological
systems,” a key example being base pair formation between
nucleotides in DNA, while proton transfer from the donor to
acceptor atoms (“X---H-Y') leads to an ionic system. Such
hydrogen bonding and proton transfer are the two most com-
monly observed scenarios for an interaction involving hydrogen.
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potentially unique physical and chemical properties.

They can be rationalised in terms of a double well potential along
the axis between the constituent hydrogen donor and acceptor
groups (Fig. 1). In a hydrogen bond, hydrogen remains located in
the deeper donor potential well, while proton transfer is associated
with its location in the acceptor potential (Fig. 1). In either case,
the energetic barrier to the other potential well is high. Two-site
disorder can occur when both potential wells are sufficiently deep
to enable localisation but the barrier between the two wells is low
enough to allow partial occupancies of hydrogen at both donor
and acceptor sites (Fig. 1). Perhaps most interesting is the potential
for hydrogen to populate different points along the donor-acceptor
axis in low-barrier systems, creating a continuum of states between
hydrogen bonded (X-H:--Y) and complete proton transfer
("X---H-Y"). This typically arises when the donor-acceptor
distance becomes particularly short (ca. 2.5 A) with close
matching of pK, values of the participating functional groups.
Then the atomic potentials of donor and acceptor strongly
overlap, leading to lowering of the potential barrier (Fig. 1)
and the formation of ‘so-called’ short, strong hydrogen bonds
(SSHBs). The interaction with acceptor atom Y can become so
strong that the donor bond X-H becomes abnormally elongated
and the bond to the acceptor H- - -Y is short enough to afford a
significant level of covalency.”® In some cases the potential
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Fig. 1 Schematic of hydrogen potential energy wells for the range of
hydrogen bonding interactions and Brensted proton transfer between an
oxygen donor and nitrogen acceptor.

barrier becomes so low that hydrogen resides in what is essen-
tially a single potential well between the donor and the acceptor
atoms®’® - i.e. quasi-central location of hydrogen between donor
and acceptor (X---H---Y, Fig. 1)”'®™ in 3-centre, 4-electron,
quasi-covalent bonds,>"*"”

Significant variations in physicochemical properties can result
with full proton transfer such as solubility, bioavailability and
colour.’®?! These are of interest in practical applications, as they
allow tuneability to product requirements. Very importantly,
identification of the extent of proton transfer underpins the
regulatory definitions of pharmaceutical salts and co-crystals."*?>
Specific behaviour has also been associated with the intermediate
scenarios, such as stabilisation of photoactive proteins®® and
transition states in enzymatic reactions with low-barrier hydrogen
bonds,"”*** and stabilisation of hydrogen around the midpoint
in the solid state for single wells through femtosecond low-frequency
lattice vibrations.”'*™"?
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Despite the potential ramifications for alteration of physi-
cochemical properties and the regulatory requirements, there is
no single, unequivocal experimental basis for identifying a low
barrier or single well hydrogen bond and quasi-centred hydrogen.
Experimentally accessible indicators include the short donor-
acceptor distance via X-ray diffraction, closely matched pK, values,
"H NMR chemical shifts to high frequency, low isotope fractiona-
tion factors, and unusual primary isotope shifts,>***® although
these exhibit a spectrum of values that overlaps with those of
ordinary hydrogen bonds.>® Neutron diffraction can accurately
locate hydrogen positions, including situations where when
hydrogen is quasi-centred, but it still requires particular care
and expertise in recognising and examining electron density
maps/displacement ellipsoids, while not auto-refining the hydrogen
onto the donor or acceptor. Additionally, crystallography and NMR
spectroscopy provide a time-average of the dynamic hydrogen
population and are not suited to provide information about any
proton migration dynamics within these bonds.

We have previously shown that the core level spectroscopies,
X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorp-
tion fine-structure (NEXAFS) spectroscopy distinguish incisively
between hydrogen bonding and Brensted proton transfer in organic
systems,””>° with their strong sensitivity to the local environment
and bonding around the probed atoms. The movement of a proton
between donor and acceptor leads to a strong chemical shift in
the core level photoemission from the acceptor moiety - the XPS
chemical shift of the acceptor depends strongly on the distance
of the proton (hydrogen).** Localised, 2-site disorder is also easily
recognisable from the presence two distinct photoemission signals,
with the population occupancies reflected by the area under the
peaks. With knowledge of core level binding energy shifts from
XPS, deeper insight into local bonding can be obtained by probing
unoccupied molecular orbitals energies with NEXAFS spectroscopy,
including the influence of hydrogen bonding;****”*' moreover,
the ultrafast timescale of these spectroscopic techniques**™** makes
them ideal for probing dynamic processes. XPS and NEXAFS are
therefore ideally placed to also probe short hydrogen bonding,
providing information not only on the location of hydrogen along
the proton transfer axis, but also the presence (or absence) of any
population occupancies or dynamic processes.

In the following, we will describe how XPS and NEXAFS
involving the 1s core level of nitrogen acceptors in pyridine-
dicarboxylic acid (PDCA) systems (Fig. 2) reliably characterises
the varying positions in the proton transfer pathway. Using
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Fig. 2 Chemical structures of 3,5-PDCA, with its quasi-centred hydrogen
bond, and its non-ionic (2,6-PDCA) and ionic protonated (2,3-PDCA)
analogues.
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Table 1 Bond lengths and intermolecular distances for 2,6-, 3,5- and
2,3-PDCA at RT!04546

d(NH)/A d(OH)/A d(NO)/A d(NH)-d(OH) d(NH)/d(NO)
2,6-py®  4.575 0.774 5.335 3.08 0.858
3,5py  1.308 1.218 2.525 0.090 0.518
2,3py  1.036 1.845 2.725 —0.809 0.380

“ List of crystal structures and CSD refcodes in the ESI. Diffraction data
collection at 283-303 K with a neutron source, apart from 2,6-PDCA
with XRD. A hydrogen bonded carboxylic acid dimer is formed for
2,6-PDCA, rather than an OHN intermolecular hydrogen bond, so the
NH and NO values for 2,6-PDCA are the closest intermolecular dis-
tances for the atoms.

crystalline 3,5-PDCA as our model system, we show for the first
time that core level spectroscopies unequivocally detect a single-
well, quasi-centred hydrogen bond. This will be contrasted with
results for hydrogen residing on the donor atom in 2,6-PDCA
and proton transfer to the acceptor atom in 2,3-PDCA (Fig. 2).
3,5-PDCA has a short intermolecular donor-acceptor distance
(2.52 A, Table 1), with hydrogen residing around the centre.'® This
system provides an ideal case study for XPS/NEXAFS because it
involves a single nitrogen acceptor and an oxygen donor, providing
a simple emission spectrum from both moieties that does not
overlap with emission lines from other species. The strength of
the interaction with the nitrogen acceptor group, and hence the
chemical shift of the nitrogen 1s core level emission line, is expected
to be intermediate between those of a protonated nitrogen acceptor
and a nitrogen acceptor in an ordinary hydrogen bond, in which the
hydrogen remains located close to the donor group. Temperature-
dependent measurements also permit investigation of stabilisation
of the hydrogen position around the centre of the donor-acceptor
bridge'*™ through ultrafast dynamic, slight lattice vibrations.”

Experimental
Starting materials

2,3-Pyridinedicarboxylic acid and 2,6-pyridinedicarboxylic acid
were obtained with >99% purity, and 3,5-pyridinedicarboxylic
acid with > 98% purity (Sigma-Aldrich, UK). Polycrystalline (powder)
samples ~1 mg were used for XPS and NEXAFS measurements.

X-ray photoelectron spectroscopy (XPS)

XP spectra of 2,3-, 3,5-, and 2,6-pyridinedicarboxylic acids (PDCA)
were recorded with a Kratos Axis Ultra instrument employing a
monochromatic Al K, source (1486.69 eV)***” at room tempera-
ture. High resolution spectra were measured within the spectral
range of interest (ca. £20 eV around core level emission peaks)
with a 20 eV pass energy, 0.1 eV steps, and 1000 ms dwell time
per data point. Temperature-dependent measurements for
3,5-pyridinedicarboxylic acid were recorded at Kratos Analytical
(Manchester, UK) with a Kratos Axis Ultra instrument employing
temperature controlled sample holders (Exotherm control program).
The temperature was recorded via a thermocouple at the fork
just before the stub and sample, and in situ measurements were
recorded at 30 °C (303.15 K), —150 °C (123.15 K), and 305 °C
(578.15 K) using liquid N, to cool the sample. High resolution
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spectra were measured within the spectral range of interest
(ca. £20 eV around core level emission peaks) with a 40 eV pass
energy, 0.1 eV steps, 298.5 ms dwell time per data point, and
2 sweeps. Analysis of the data was carried out with Casa XPS
software® using a linear background and GL(30) line shape
except for an asymmetric A(0.2,0.6,0)GL(50) Voigt-like function
for 3,5-PDCA.*® Samples were referenced following the proce-
dure outlined previously,”>*'> to the lowest E; photoemission
C—C at 284.8 eV. Repeated measurements showed no evidence
for radiation damage. Repeatability of the peak positions was
within 0.1 eV.

Near edge X-ray absorption fine structure (NEXAFS)

NEXAFS measurements were performed at the U7a beamline of
the National Synchrotron Light Source (NSLS) at Brookhaven
National Laboratory, NY. Partial electron yield (PEY) spectra for
the nitrogen K-edge were collected at RT via a channeltron
electron multiplier with the samples at the magic angle (54.7°)
relative to the incident beam. An entrance grid bias of —150 V
was used for PEY collection and a monochromator with a
600 | mm~" grating, providing energy resolution of ~0.15 eV.
In situ temperature-dependent measurements were recorded at
301 K (25.85 °C) and 131 K (—142.15 °C) using liquid N, to cool
the sample. After collection, the spectra were normalized by the
simultaneously collected drain current from an in situ gold-coated,
90% transmission grid (I0) placed in the incident X-ray beam to
eliminate the effect of incident beam intensity fluctuations and
beamline optics absorption features. The monochromator energy
scale was calibrated using the 400.6 eV 1st ©* transition of a
titanium nitride grid located in the path of the incident X-ray
beam. Repeated measurements showed no evidence for radiation
damage. Repeatability of the peak positions was within 0.1 eV.

Results and discussion

We will first look at the XPS photoemission from the extremes
of the proton transfer pathway, with hydrogen located on the
oxygen donor for 2,6-PDCA and with proton transfer to the nitrogen
acceptor for 2,3-PDCA. The crystal structure of 2,6-PDCA is formed
from neutral, non-ionic molecules (Fig. 3)."> A characteristic
nitrogen 1s XPS photoemission peak at 399.10 eV arises from
the aromatic nitrogen in the pyridine ring for 2,6-PDCA (Fig. 4),
as hydrogen remains on the donor OH. In the following, this
unprotonated aromatic nitrogen will be referred to simply as
C—=N. In contrast, the pyridine nitrogen is protonated in the
zwitterionic 2,3-PDCA crystal structure (Fig. 3),"® and the nitrogen
1s photoemission from the C—=NH" group bears this out through
a strong chemical shift of +2.2 eV to a binding energy of 401.30 eV
(Fig. 4) with proton transfer from the OH to the nitrogen
acceptor.?”’ 3¢

In 3,5-PDCA, the hydrogen is residing almost equidistant from
both the donor oxygen and acceptor nitrogen atoms (Z.e. the OH and
NH distances are similar), in an extremely short intermolecular
OHN hydrogen bond (Table 1 and Fig. 3).'° The nitrogen 1s XP
spectrum reflects this through a slightly asymmetric signal

This journal is © the Owner Societies 2020
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3,5-PDCA
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Fig. 3 Hydrogen bonding present in the crystal structures of 3,5-, 2,6-, and
2,3-PDCA,'%*54¢ showing no proton transfer for 2,6-PDCA, intermediate
hydrogen location between nitrogen and oxygen for 3,5-PDCA, and full
proton transfer for 2,3-PDCA.

centred at a binding energy of approximately 400.15 eV, with the
asymmetric peak maximum offset by 0.4 eV to lower energy. This
binding energy is intermediate to that of the unprotonated (no
proton transfer) and the protonated nitrogen (proton transfer) in
the two reference systems (Fig. 4), with a far greater chemical
shift for 3,5-PDCA than observed for formation of ordinary
hydrogen bonds (ca. <+0.2 eV for the acceptor atom),>**7?
but much less than observed for protonation of nitrogen accep-
tors (ca. +2 eV, Fig. 4).”*> Comparison of the donor-hydrogen
(OH) and acceptor-hydrogen (NH) distances involved in the
intermolecular interaction in 3,5-PDCA from neutron diffraction
(Table 1) shows hydrogen is located almost centrically between
the (original) donor oxygen and acceptor nitrogen atoms,'® with
a slight offset towards oxygen at RT, mirroring the chemical shifts
from XPS.

Notably, there is significant broadening and reduced intensity
(Fig. 4) of the nitrogen 1s signal relative to the non-protonated and
protonated forms, with a 2 eV full-width half-maximum (FWHM)
while the reference systems have narrow emission lines with a
FWHM of 1.2 eV. We note here that all other emission lines from
3,5-pyridinedicarboxylic acid are not broadened, thus ruling out
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Fig. 4 Nitrogen 1s XPS of 3,5-, 2,6-, and 2,3-PDCA showing the charac-
teristic intermediate chemical shift and broadening for the presence of a
quasi-centred hydrogen bond O- - -H- - -N compared to the non-protonated
(non-ionic) and protonated analogues.

surface charging, roughness or particle size variations as causes
for the observed broadening of the nitrogen 1s emission line.
Moreover, we will also see further below that similar broadening
occurs in the N K-edge NEXAFS.

The broadening thus indicates nitrogen is experiencing
more than one type of chemical environment in 3,5-PDCA.
The crystal structure does not indicate inequivalent nitrogen
atoms - there is only one molecule, and thus one nitrogen
atom, in the asymmetric unit.'® More specifically, there was
no indication of hydrogen disorder over two distinct positions
(C=N, COOH and C=NH', COO") in the X-ray and neutron
diffraction analysis."®

If the 3,5-PDCA system exhibited hydrogen disorder across
two distinct sites, a non-protonated C—=N and a protonated
C=NH", then the XP spectra would resemble that of 2,6- and
2,3-PDCA superimposed on one another, ie. a double peak
spectrum with maxima at about 399.1 and 401.3 eV, with the
relative area intensities providing the hydrogen occupancies on
the two sites. For example, a 30: 70 distribution of H across the
N and O sites would be reflected by two well-resolved peaks
comprised of a 30% signal at the binding energy for C=NH"
and a 70% signal for C=N (Fig. 5). Such a spectrum is clearly
not observed in Fig. 4 for 3,5-PDCA.
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Fig. 5 Interpolated nitrogen 1s XPS of 2,6- and 2,3-PDCA, illustrating the
expected effect of a 30:70 disordered hydrogen population over the
nitrogen and oxygen sites (i.e. two-site disorder), with 30% protonated
C=NH" and 70% non-protonated C=N.

The absence of 2-site disorder leaves a dynamic process as
an explanation for the observed broadening of the nitrogen 1s
photoemission line, for which XPS is ideally placed to probe, with
the ultrafast nature of the photoemission process (sub-fs).*>™**
Indeed, a previous molecular dynamics (MD) study’ investigated
the location of hydrogen in the short hydrogen bond between
oxygen and nitrogen in 3,5-PDCA. It indicated small magnitude
dynamic migration of the hydrogen around the midpoint between
the donor and the acceptor (Table 2), but never localised on one
side.’® The MD simulations predicted a symmetrical, broadened
single minimum potential energy well for hydrogen (Fig. 1) at the
temperature for which its distance to the acceptor and donor
atoms becomes equivalent. Asymmetric distributions were then
predicted for higher and lower temperatures with a slightly offset
hydrogen position.” The broadened minimum allows the proton
wavefunction to extend, facilitating slight movements to either
side of the midpoint,” even at room temperature. This sharing of
the hydrogen electron density between nitrogen and oxygen is
opposed to its localisation in the deeper potential well of an
ordinary hydrogen bond (Fig. 1).>*

The MD simulations’ indicated rapid movement of the
hydrogen by up to ca. 0.1 A between nitrogen and oxygen on
the order of 100 fs (10~ s), with the quasi-central position
stabilised through low frequency lattice vibrations (and not
excited N-H vibrational precluding conventional vibrational
broadening visible in XPS for simple hydrocarbons®*>?). This
is significantly faster than typical proton hopping/exchange
easily resolvable with XPS, such as with imidazole (around
10~'% 5),**** although still considerably slower than the photo-
emission timescale (~10'° 5).*>** When there are significant
chemical shifts associated with the location of hydrogen in a

Table 2 Changes in intermolecular distances of the NHO bonding in
3,5-PDCA with temperature (neutron diffraction)'®

d(NH)/A dOH)/A d(NO)/A dNH)-d(OH) d(NH)/d(NO)
15K  1.213 1.311 2.523 —0.098 0.481
296 K 1.308 1.218 2.525 0.090 0.518
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dynamic population, the lineshape of XPS can therefore provide
a snapshot of the hydrogen distribution across the accessible
positions in the potential well. We therefore conclude that the
asymmetric broadening towards high binding energy in the
room temperature nitrogen 1s emission line for 3,5-PDCA (Fig. 4)
reflects a situation in which more hydrogens are, on average,
localised marginally closer to the oxygen atom, but still with a
significant population located marginally closer to nitrogen - ie.
reflecting an asymmetric single minimum potential energy well.

A previous temperature-dependent neutron diffraction
study'® indicated the likely dynamic nature of this system, with
observation of very slight hydrogen movement towards the
nitrogen acceptor at lower temperatures (Table 2). The authors
could not rule out the temperature-dependent changes being
related to some experimental error, but concluded there was no
evidence of two-site disorder based on examination of H-atom
displacement ellipsoids, and suggested a single potential well
rather than a low barrier double well based on similar beha-
viour with deuterium (correlating with the MD simulation
results”). We examined the temperature-dependence of the
nitrogen 1s photoemission line of 3,5-PDCA. The results shown
in Fig. 6 show an increasing intensity of the high binding
energy side of the emission line with decreasing temperature,
which is associated with the movement of hydrogen slightly
towards the nitrogen acceptor. Compared to the nitrogen 1s
XPS peak seen at RT (303.15 K, 30 °C; grey, Fig. 6), that at low
temperature (123.15 K, —150 °C) is approaching symmetrical
(black, Fig. 7), indicating that hydrogen prefers to reside almost
equidistant from the oxygen donor and nitrogen acceptor at
this temperature - i.e. approaching a symmetrical single mini-
mum potential energy well with decreasing temperature. In
contrast, heating the sample up to 578.15 K (305 °C), results in
a more asymmetric peak than at RT (Fig. 6) confirming that
higher temperature favours the localisation of hydrogen slightly
closer to the oxygen donor.

XPS 3,5-PDCA — 123.15K

Quasi-centred H — 303.15K

--- 578.15K
=
<
iy
2}
g
=
B
2
=
g
S
Z

405 403 401 399 397 395
Energy / eV

Fig. 6 Nitrogen 1s XPS spectra of 3,5-PDCA with temperature: 123.15 K
(=150 °C, black), 303.15 K (30 °C, grey), and 578.15 K (305 °C, black dashed).
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Turning to the nitrogen K-edge NEXAFS (Fig. 7) of the three
systems, we observe in all spectra a sharp pre-edge resonance
that arises from transitions from the nitrogen 1s core level to
unoccupied valence orbitals with p character (N 1s — 1*). In line
with the XPS results, a slightly asymmetric, broadened nitrogen
1s — 1m* resonance occurs for the pyridine C=N nitrogen
environment of 3,5-PDCA, which is again at an intermediate
energy between those of the non-protonated and protonated
nitrogen analogues (Fig. 7).

The asymmetric lineshape and observed chemical shifts
seen in the NEXAFS data mirror the slight offset towards oxygen
seen with XPS (i.e. signal slightly closer to C=N than C—=NH"
for 3,5-PDCA). This provides evidence that the chemical shifts
in NEXAFS are mainly dominated by the variations in the
nitrogen 1s core level binding energies, rather than variations
in the energies of the n* orbitals. We have previously observed a
similar initial-state domination of NEXASF chemical shifts.*

The timescale of NEXAFS absorption is determined by the
core hole lifetime, in analogy to XPS. NEXAFS can therefore also
act to provide snapshots of all the possible hydrogen position

N NEXAFS

Is — w* 2,6-pyridinedicarboxylic acid

Non-protonated (non-ionic)

3,5-pyridinedicarboxylic acid
Quasi-centred H
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|

H

2,3-pyridinedicarboxylic acid

Protonated (zwitterionic)

L N B B S B e e e B LB E m m
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Energy / eV

Fig. 7 Nitrogen K-edge NEXAFS spectra of 3,5-, 2,6-, and 2,3-PDCA,
showing the characteristic intermediate n* resonance and broadening
for a quasi-centred hydrogen bond compared to the non-protonated
and protonated analogues.
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occupancies (i.e. population) relative to nitrogen. The shape and
asymmetry of the peaks can again be used to trace the slight
migration of the hydrogen around the midpoint and its preferred
location at a particular temperature (as noted with neutron
diffraction, Table 2)'° and reflect the change in potential energy
well from slightly asymmetric towards symmetric predicted by the
MD simulations as the midpoint is approached.” The temperature-
dependent NEXAFS (Fig. 8) is consistent with the conclusions
drawn from XPS, in that the nitrogen n* resonance becomes
more symmetrical at low temperature (131 K, —142.15 °C) as
more hydrogen atoms move slightly closer to the nitrogen
such that the distribution becomes more evenly spread,
i.e. towards a symmetrical, single potential well.

The results for both XPS and NEXAFS show how sensitive they
are as probes for the hydrogen location in these donor-acceptor
systems. With the latest generation of XPS and NEXAFS equip-
ment permitting rapid turnaround measurements on a timescale
of minutes, they should be considered complementary techniques
for crystallographic analysis of hydrogen bonding dynamics. The
ultrafast nature of core level spectroscopies is a distinct advantage
over NMR in that line-shape analysis should allow drawing
conclusions about the location and population of sites in the
crystal structure. The value of core level spectroscopies thus lies
particularly in their ability to distinguish unequivocally between
different types of interactions involving hydrogen, effectively
probing different points in the continuum from hydrogen bonded
(X-H---Y) through to proton transfer (“X:--H-Y'). The short,
quasi-centred hydrogen bond can then be envisaged as the
middle of this continuum or proton transfer pathway/reaction
(X---H- - -Y), with XPS able to successfully identify this.

There are also short hydrogen bonds where the acceptor-
hydrogen distance is less than in a more conventional hydrogen
bond, but the hydrogen electron density remains localised on
the donor atom.>*~® This is opposed to a short hydrogen bond
in which the hydrogen is more centrally localised between

NEXAFS 3,5-PDCA — 131K
Quasi-centred H — 301K
3
<
)
B8
3
4
g
o
Z
395 397 399 401 403 405
Energy / eV

Fig. 8 Nitrogen K-edge NEXAFS spectra of 3,5-PDCA with temperature:
131 K (=142.15 °C, black) & 301 K (25.85 °C, grey).
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acceptor and donor and more even sharing of electron density
as observed in the present study. In the latter case, the decision
as to which of the atoms hydrogen is covalently bound to
becomes blurred.'®***® Based on the results reported here we
predict that core level spectroscopies can distinguish these two
cases, because no line broadening would be observed for the
former, and given non-protonated and protonated references
the chemical shift indicates the relative distance of hydrogen
from the donor/acceptor.

Finally, we would like to note once more that classifying
such bonds reliably can have substantial real-world impact,
for example in the pharmaceutical industry, where incorrect
classifications may potentially determine intellectual property
rights and regulatory requirements.'®*>”” In fact, one could
argue that where the electron density in a hydrogen bond
becomes quasi-centred'®''**® it becomes less clear whether
these interactions even fall under the common notion of a
hydrogen bond” - at the very least some nomenclature for easily
referring to this type of symmetric/quasi-centred hydrogen
bond would be beneficial. The ability to experimentally distin-
guish between these different types of bonding should not,
therefore, be underestimated.

Conclusions

The short OHN hydrogen bond in 3,5-PDCA has been probed by
XPS and NEXAFS, which both indicate a chemical shift of the N 1s
core level that is intermediate to the values of non-protonated (N)
and protonated (NH') nitrogen acceptors, ie. no proton
transfer vs. proton transfer. This reflects the fact that hydrogen
bonding to the nitrogen moiety in 3,5-PDCA is characterised by a
single-well hydrogen bond between the donor and acceptor
where hydrogen resides around the centre, with quasi-covalent
nature of the bonding in a near symmetrical hydrogen bond.
The spectroscopic results are demonstrably distinct from what
would be observed for conventional disordered hydrogen
(two-site disorder) across donor and acceptor sites. The broad
single-minimum potential results in a hydrogen population
dynamically distributed just either side of the midpoint. Due
to the ultrafast nature of core level excitation events, the core
level spectroscopies detect this as a distribution of the associated
N 1s chemical shifts, which increases the FWHM of the N 1s
emission line in XPS and of the N 1s — n* transition in NEXAFS.
Indeed, heating and cooling also change the N 1s photoemission
and N 1s — 7* absorption lines, reflecting slight movement of
hydrogen within the quasi-symmetrical hydrogen bond. At low
temperatures, hydrogens reside at the midpoint between the
donor and acceptor atoms with a symmetrical hydrogen potential
energy well, reflected by the XPS line-shape. Increasing asymmetry
is observed at high temperatures, as the range of accessible
positions moves slightly away from the nitrogen acceptor towards
the oxygen donor and the potential energy well becomes asym-
metric. Both XPS and NEXAFS therefore provide an experimental
method for identifying and characterising quasi-centred hydrogen
bonds and probing the ultrafast population dynamics of hydrogen
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positions. The ability to identify systems with this type of bonding
spectroscopically presents an opportunity to not only examine
their prevalence, but also to examining their properties, and
establishing structure-function relationships.
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