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This manuscript presents a strategy for controlling the transformation of excitonic states through the design

of circuits made up of coupled organic dye molecules. Specifically, we show how unitary transformation
matrices can be mapped to the Hamiltonians of physical systems of dye molecules with specified geometric

and chemical properties. The evolution of these systems over specific time scales encodes the action of
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the unitary transformation. We identify bounds on the complexity of the transformations that can be
represented by these circuits and on the optoelectronic properties of the dye molecules that comprise
them. We formalize this strategy and apply it to determine the excitonic circuits of the four universal

quantum logic gates: NOT, Hadamard, n/8 and CNOT. We discuss the properties of these circuits and
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1 Introduction

The elementary component of a quantum computer — a qubit -
is a two-state quantum system. A qubit can be constructed from
many different physical systems, including a pair of coupled
organic dye molecules sharing a single electronic excitation
(i.e., an exciton). Using this kind of qubit it is therefore possible, at
least in principle, to develop quantum computing blackelements
that operate via the excited state dynamics of specifically designed
excitonic circuits comprised of multiple dye molecules in precise
geometric arrangements. In this manuscript, we introduce a
general strategy for designing excitonic circuits for quantum
computation. We apply this strategy to identify fundamental
bounds on the computational complexity that these circuits can
support and identify the physical requirements for performing
universal quantum logic gate operations on one- and two-qubit
systems. This study therefore sets the groundwork for enabling
the development of programmable dye-based quantum com-
puting blackelements.

Excitonic circuits are constructed by arranging the positions
and orientations of dye molecules. The evolution of excitons
within a circuit is determined by the intermolecular electronic
coupling network and the electronic properties of the dyes. The
electronic coupling between dye molecules is programmed
by their intermolecular spacing and orientation." Supermole-
cular support structures, such as proteins,® metal-organic
frameworks,* and DNA nanostructures,®® can be used to situate
dye molecules with coupling networks that are designed to
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how their performance is expected to be influenced by the presence of environmental noise.

control certain aspects of exciton dynamics. The resulting
dynamical control can be used to implement the state trans-
formations required for quantum computation.

Quantum computing offers several key advantages over
traditional classical computing and is poised to make a trans-
formative impact on certain areas of the information sciences,
such as cryptography and molecular simulation.”® However,
despite enormous potential for broad technological impact,
quantum computing presents unique implementation challenges
that have thus far limited it to only a few physical systems.’
This includes optical cavities,'®*" trapped ions,'*** molecular
1516 superconductors,'”'® quantum dots and solid
122 From the standpoint of quantum com-
puting, each of these qubit systems have their own strengths
and limitations. Practical application of any specific system will
require exploiting its strengths while mitigating its limitations.
Characterizing the strengths and limitations of new potential
qubit systems, such as those made from excitonic circuits, is an
important step in the development of quantum information
technologies.

A limitation that affects nearly all qubit systems is the
requirement for low operating temperatures. This requirement
is intrinsic to the physics of some systems, such as super-
conducting and trapped atom qubits. Low temperature is also
used to reduce the effects of environmental noise, which can
destroy the delicate phase information required for quantum
computation. Unfortunately, achieving and maintaining the
low temperatures that are required for these systems is both
expensive and impractical. Qubit systems with the ability to
maintain and share their phase information in noisy thermal
environments could significantly improve the scalability of
quantum computing technologies.>***

spins, 19,20

state color centers.
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The dye molecules that comprise excitonic circuits are highly
sensitive to environmental noise and exhibit coherence times
that are generally much shorter than existing qubit systems. On
the other hand, the dye molecules can be strongly coupled so as
to enable rapid transfer and evolution of phase information.
Viable quantum computing in excitonic circuits will require
balancing short coherence times with the ability to produce
strong intermolecular electronic couplings. Theoretical models,
such as we present here, play an important role in developing an
understanding of this balance, its potential implicationsblack,
as well as its physical limitations.

We are not the first to propose a molecular system as a
platform for quantum computation. Previous studies have
explored the use of ultracold diatomic molecules,** >’ and poly-
atomic molecules,”**> as quantum computing elements. For
the latter, universal gates have been designed and the feasibility
of their physical implementation has also been addressed.*
Despite these previous studies, and our own contribution
here, many challenges still remain to be solved before such
molecular systems can be utilized for quantum computing.

The focus of this paper is to explore the opportunities and
limitations in engineering quantum dynamics in excitonic
molecular systems. We show that these dynamics can be
programmed and exploited to realize a broad range of quantum
operations, including, in particular, a universal set of quantum
logic gates.>*> Promisingly, coherent dynamics in excitonic
molecular systems are seen to survive moderate levels of
environmental noise, suggesting they may be candidates for a
new class of quantum materials with information processing
applications.

We present a general strategy for programming the dynamics
of excitons in the design of excitonic circuits. Importantly, this
programming enables the implementation of unitary transfor-
mations, such as those that form the basis for quantum infor-
mation processing. To accomplish this implementation we map
qubit states onto the electronic excitation states of coupled dye
molecules. For example, the basis states of a two qubit system,
i.e.,{|00),]01),]10),|11)}, can be mapped onto a basis of localized
single molecule excitations in an excitonic circuit made of four
molecules. By representing qubit states as electronic excitations,
rather than rotational or vibrational excitations, our approach
differs from those that have been proposed previously.

An excitonic representation of a qubit system naturally
supports quantum properties such as superposition, i.e., through
excitonic delocalization, and can encode coherence and entangle-
ment in multi-qubit systems. It is important to note that the
mapping we present here, i.e., whereby each state of a system of
qubits is represented by the state of a single exciton in a system
of multiple dye molecules, encodes entanglement inefficiently,
leading to significant system size scaling problems. However,
this scaling problem arises due to the difficulty of representing
multi-particle entanglement using a single particle and is there-
fore a consequence of the limited mapping we propose. As such,
more sophisticated mappings that allow multiple excitons can
significantly reduce (or altogether eliminate) this issue. However,
while a multi-exciton mapping solves the scaling problem,
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it introduces physical effects, such as exciton-exciton interactions,
that significantly complicate theoretical formulation. These
complications represent significant future challenges that must
be overcome to enable quantum computing through exciton
circuits. The work we present here demonstrates how the geo-
metric arrangements of excitonic dyes can be used to encode
a quantum transformation, a key first step towards enabling
quantum logic operations in excitonic systems.

In the following section we present the details of this
strategy and its application to the set of universal quantum
logic gates. Then, in Section 3, we simulate the performance of
these gates under varying environmental conditions.

2 Mapping unitary transformations
onto excitonic circuits
2.1 The Frenkel exciton model

It is convenient to describe the excited state of a N-molecule
system in a reduced basis of single molecule excitations. If one
then assumes that each molecule can only access one ground
and one excited state, then the basis can be represented with
that of the Frenkel exciton model.**?” Specifically, the generic
Hamiltonian of the Frenkel model is given by,

A~ N u
H=>alil+ > vyl l, (1)
i=1

i#j

where |i) is the basis state where molecule i is in the excited
state (with all other molecules in the ground state), ¢; is the
energy of this basis state, and Vj is the electronic coupling
between the states |i) and |j).

This simple and computationally efficient model has been
widely used in the study of excited multi-chromophoric
systems.**™*° Although the Frenkel model omits the influences
of higher order excitations, many-body effects, nuclear relaxa-
tion, and the specific details of molecular electronic structure,
it has been found to be remarkably accurate for reproducing
the results of experimental and higher level theory when
appropriately parametrized for organic conjugated molecules.
We thus employ the Frenkel model in this study, acknowl-
edging that the systems we describe below can be modeled
using a higher level theory in subsequent studies, if necessary.

We assume that the configurations of dye molecules in
the system are defined by their center of mass positions and
orientations. For the purpose of illustration, we assume that
the coupling between dye molecules is given by the point dipole
approximation,

U g = 3 ) (7 - Fy)
" 4neg r

i

where Ji; is the transition dipole moment of excitation |7), f; =7, — 7;
is the displacement vector between the dyes, & = ry/ry is
the corresponding displacement unit vector and &, is the
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Fig. 1 Coordinates for defining the relative arrangements of dye molecule
pairs.

vacuum permitivity. Alternatively, V; can be expressed as a
function of molecular orientational coordinates as,

1 lmillpy] cos 0 = 3(|uy| cos (/’i)<"“f} cos (/’j) @)
3 )

i

i = Fﬁo r
where 0 is the twist angle between the dipole moments of the
pair of dyes, and ¢; denotes the angle between p; and the vector 7,
as illustrated in Fig. 1. Once again, this coupling can be quantified
with a less approximate expression if higher accuracy is needed.

Despite its simplicity, the Frenkel exciton model encodes all
of the information of the system dynamics required for the scope
of this paper. As we will see in the following sections, the form of
the Frenkel Hamiltonian allows us to easily map unitary qubit
operations onto excitonic circuit geometries. As has been shown
in previous studies,’”*! the details of the molecular structure
of the dyes, such as the disorder of the molecular system, can be
encoded in the elements of the Hamiltonian. The parameters of
the Frenkel Hamiltonian can also be determined from classical
all-atom molecular dynamics together with semiempirical elec-
tronic structure calculations.***"

2.2 Engineering exciton dynamics

Molecular excitonic systems with tunable geometry
a unique opportunity to design systems that realize
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quantum transformations. This approach is illustrated in Fig. 2
for schematic quantum circuits. In particular, closed system
quantum dynamics generate a family of unitary transformations,

. i .
{U (1) = eth'}, from the system Hamiltonian, H. A system

Hamiltonian, ¥, can be represented by a target unitary trans-
formation, Utarget, through the relationship,

H,=-hln Utarget (4)

1
7
where 7 gives the transformation time at which f]target is realized.
The family of Hamiltonians, {#, }, are scalar multiples that differ
only in the transformation time.

Systems comprised of molecular dyes are promising for these
applications as their Hamiltonians can be tuned by modifying
the spectral properties and geometry of the constituent dyes.
Eqn (1)-(4) taken together prescribe a method for designing
excitonic circuits that implement a given unitary transformation.
Specifically, eqn (1)-(4) define a set of energetic constraints on
the coupling and site energies of the dyes while eqn (2) translates
these to geometric constraints on the dye assembly. A physical
system implementing an unitary transformation, Umget, must
therefore satisfy these geometric constraints.

2.3 Example: universal quantum gates

We now illustrate the use of this approach by considering the
implementation of a universal set of quantum gates in a dye
system. These simple transformations are widely studied as the
building blocks of all quantum algorithms. We will show
that the one-qubit NOT, Hadamard, and n/8 transformation,
and the entangling two-qubit CNOT transformation (shown in
Table 1) can be implemented in excitonic dye systems. Moreover,
we find that excitonic circuits have far more flexibility than
required to realize these transformations, allowing us to design
around practical limitations (e.g. limited dye libraries), optimize
performance in the presence of noisy environments and even
design systems that are easier to prepare and measure with a
given experimental set up.

Each state |i) can be identified in the site basis by the dye
molecule where the excitation is localized. Each of these dyes is
then associated with a state of the qubit register, mapping the
register state to the exciton location. We will then denote
each dye by the qubit state from which it is mapped. For a
one qubit gate, the qubit states |0) and |1) are mapped to the

\
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J

/

Dye Geometry

Fig. 2 Encoding quantum operations into the dynamics of a physical system. A series of unitary operations, such as gates in a quantum circuit, can be
equivalently represented as a Hamiltonian matrix. A physical system of interacting molecules is implied when this matrix is assumed to be a Frenkel
Hamiltonian. If this physical system can be constructed, then its excited state dynamics will encode the result of the quantum computation.
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Table1 The unitary transformations corresponding to the universal quantum logic gates and the corresponding system Hamiltonians as mapped from

eqn (4)
Gate Unitary operator Hamiltonian
NOT 0 1 -1 1
N ~ nh
Unor = Hnot = P
10 TN -1
Hadamard N 1 /1 1 1-v2 1
Unaa = 2( ) ﬂHdd mh
1 -1 2\/21.' 1 11— \/z
/8 R 1 0 . aif—1 0
U e = -
/8 0 ein/4 /8 4t 0 0
CNOT 1 000 00 0 O
. 0100 . il 00 0 0
Ucnor = Henor = >
0 0 1 00 -1 1
00 1 0 00 1 -1

states |A) and |B) of a two dye system (with molecules A and B),
respectively, where |A) corresponds to the state where only dye
A is excited and |B) corresponds to the state where only dye B is
excited. Likewise, for a two qubit gate the qubit states
|00),]01),|10) and |11) map to the states |A),|B),|C) and |D)
of a four dye system. Note that, within this approach, mapping
n qubit states will require the preparation of 2" dye molecules,
thus providing strong practical limitations on the complexity of
quantum computation that can be reasonably represented
with an excitonic circuit. For example, the state of a 10-qubit
operation requires the use of 1024 dye molecules. Despite this
practical limitation, however, the platform that we propose
provides an important initial step towards establishing the feasi-
bility of more sophisticated potential approaches. For example, it
would be possible to significantly reduce the number of required
dye molecules by expanding the framework to include multiple
excitations. Because the preparation and spectroscopic analysis
of singly-excited systems are more straightforward than those
for systems with multiple excitations, the model described in
eqn (1) is more appropriate for an initial study for excitonic
quantum circuits.

The simplest of these transformations is the n/8 phase gate.
This gate increases the relative phase between states |0) and |1)
giving the operation Uy and corresponding Hamiltonian in
Table 1. This Hamiltonian leads to two intuitive constraints on
the dye assembly - one on the coupling and the other one on
the relative excitation energy of the dyes. First, since this gate
does not induce transitions between qubit states, the dyes must
be uncoupled, i.e. Vy; = 0. Second, to allow the two states to
acquire relative phase, the dyes must be non-degenerate with
Aey; = &0 — & # 0. These constraints are satisfied by any
uncoupled dye heterodimer allowing for any pair of nondegerate
dyes and a broad range of possible geometric configurations, as
illustrated in Fig. 3C. Moreover, the transformation time is given
by © = n/(4A&o,).

We now consider the single-qubit NOT gate, represented by
the unitary operation Unor, in Table 1. This transformation

This journal is © the Owner Societies 2020
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Fig. 3 A schematic of the dye circuits representing the four universal
quantum gates transformations.

swaps qubit states |0) and |1) without modifying their relative
phase. To ensure excitation transfer the two dyes must have
non-zero coupling (i.e. Vo; # 0). In addition, they must also be
degenerate to ensure that the excitation fully transfers between
the states. Thus, any coupled pair of degenerate dyes, e.g., a
homodimer, reproduces a quantum NOT gate (Fig. 3A). Physi-
cally, this exploits the oscillatory energy transfer in a homo-
dimer to coherently swap qubit states, where the NOT
operation is realized at half the Rabi frequency, t = n/(2V},),
when population inversion is maximized.

In a similar way, we can identify a molecular system that
represents the action of a Hadamard gate on an input qubit
state. This gate is represented by the operator, Uy,q (Table 1).
The Hadamard gate transforms an initial state into a super-
position of the qubit states |0) and |1). The system described by
Hyor is illustrated in Fig. 3C. This system corresponds to a
heterodimer coupled by Vo =n/(2v2)r, where the relative
transition energies of the dyes are given by Aey = n/(V21).

We see that Hpad impose an additional constrain on the system
as the ratio of the energy difference, Agy, and the coupling
between the dyes, V,;, must be equal to a constant factor:

Phys. Chem. Chem. Phys., 2020, 22, 3048-3057 | 3051
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Aé&o1/Vo1 = 2. Consequently, the coupling between the dyes in
the heterodimer will be completely specified after we choose a
value for Aey;, and only a reduced set of dye spatial distribu-

tions will evolve with a Hamiltonian Hy,q for such a system.
The CNOT gate is an operator that acts over two qubits: one
control qubit and one target qubit. If the control qubit is set to
zero, then the operator does not act over the target qubit, but if
the control qubit is set to 1, then the CNOT operator acts over
the target as a NOT gate. The CNOT gate is represented by the
4 x 4 evolution operator, Ucnor (Table 1). The control operation
is represented in the upper left quarter of Ucnor, a 2 x 2 identity
matrix, while the NOT operation is represented in the lower right
quarter of Ucnor- The Hamiltonian that corresponds to this

operator is given by Hcnor. Correspondingly, a CNOT gate can
be realized by a coupled homodimer representing the NOT
operation, and two identical uncoupled dyes corresponding to
the identity operation, as illustrated in Fig. 3D.

It is important to note that the circuits we propose effectively
hard code the action of specific quantum unitary operations.
Programmability of these circuits is achieved in their geometric
design, thus limiting the flexibility of this platform as a universal
quantum computer. For instance, a computation that requires
the sequential action of two quantum logic gates on two qubits is
represented by a different excitonic circuit than that of either of
the individual gates operations. Our study provides a framework
for simulating quantum physics and also for designing hard-
coded quantum circuits performing pre-determined operations.

2.4 Selective excitation and measurement schemes

In Section 2.3, we found that unitary transformations impose
remarkably lenient constraints, allowing for a broad range of
possible excitonic circuits. This flexibility can be exploited to
construct systems that are easier to experimentally initialize and
measure. For two-dimensional operations, such as the one-qubit
gates of Section 2.3, selective initialization and measurement of the
two sites can be implemented through a polarization addressing
scheme. In its most straightforward realization, this addressing
approach can be achieved by selecting a configuration where the
two dyes have orthogonal transitional dipole moments. Such a
configuration is still able to support coupling between the two dyes
through the second term of eqn (2). Any desired superposition of
sites can then be excited or probed by selecting the appropriate
polarization of the excitation or measurement pulse. Real
valued superpositions of the two dyes are then addressed by
linear polarizations and complex valued superpositions by
eliptical polarizations.

Four dimensional operations, such as the two qubit CNOT
gate, require a slightly generalized strategy since four possible
states {|00),]01),]10),]11)} must be selectively initialized and
measured. From Hcnot, we know different transition energies
are associated with different states of the control qubit (i.e. first
qubit). As a result, frequency w, addresses the set {|00),|01)},
and frequency w, the set {|10),|11)}. This allows the control
qubit state to be selectively excited and probed by selecting the
frequency of the excitation and probe pulses. Each of these

3052 | Phys. Chem. Chem. Phys., 2020, 22, 3048-3057
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pairs can then be oriented orthogonally to each other, with |00)
orthogonal to |01) and |10) orthogonal to |11) (Fig. 3D). This
arrangement then allows for a polarization addressing of the
target qubit state, analogous to the two-dimensional approach.

These addressing strategies are of course not unique. However,
they demonstrate how the excess degrees of freedom can be
exploited to satisfy additional constraints imposed by experimental
limitations (e.g. orthogonality for polarization addressing). More-
over, these constraints can be softened to satisfy other technical
constraints. For example, polarization addressed dyes can be
placed in non-orthogonal configurations. While this reduces the
specificity of the addressing procedure, it can increase the
coupling between the dyes, mitigating the effect of environmental
noise. In the following section, we explore how dye configurations
can be tuned to optimize this type of trade off.

2.5 Bounds on the complexity of a realizable unitary
operation

Although eqn (2) provides the geometric constraints for repre-
senting a given unitary operation as an excitonic circuit, it is not
guaranteed that these can be physically satisfied. For example, it is
possible that the number of constraints exceeds the number of
degrees of freedom within the geometric design space. In this
subsection we enumerate the degrees of freedom available to
systems of multiple molecules and thus establish fundamental
bounds on the complexity of operation that can be represented by
a circuit with a given number of dye molecules.

In order to implement an N-dimensional unitary transfor-
mation in the single excitation manifold a set of N dyes is
required. The diagonal matrix elements of Umrget impose N — 1
constrains on the Hamiltonian, after accounting for invariance
under the total phase change. These can be satisfied using
the N — 1 relative energy degrees of freedom, ¢; This leaves
N(N — 1) off-diagonal matrix elements that must be satisfied.
However, the logarithm of unitary transformations must be
anti-Hermitian, indicating that the lower triangle of the matrix

1
can be inferred from the upper triangle, leaving §N (N-1)

independent constrains. The freedom of choosing 7 introduces a
free choice of scaling, which removes one additional constraint.

These constraints must be satisfied by tuning the geometric
degrees of freedom of the dye assembly. Each of the N dyes
introduces three degrees of freedom corresponding to the dye
positions, resulting in 3N degrees of freedom. Each of the N
excitations also gives three degrees of freedom corresponding
to the orientation of their transition dipole moment, which
gives an additional 3N. However, invariance under center of
mass translation and total rotation removes a total of 5 of these
degrees of freedom. Overall, such a dye assembly provides
sufficient flexibility to realize an N-dimensional transformation if,

6N742%N(N71). 5)

Clearly eqn (5) is satisfied for all N < 12 leaving at least three
excess degrees of freedom. These excess degrees of freedom
indicate the effective dimensionality of the manifold of

This journal is © the Owner Societies 2020
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possible dye configurations that implement a given transfor-
mation. As we will discuss later, this extra flexibility can be used
to optimize the performance of the system in the presence of
environmental noise and to construct systems that enable
straightforward experimental initialization and measurement.

This analysis bounds the complexity of transformations that
can, in principle, be realized in excitionic systems. However,
it assumes a freedom in selecting the positioning, energies
and transition dipole moments of the dyes that does not exist
in practical applications. Realistically, any given scaffolding
approach may have restrictions on dye placement and may
only be compatible with a restricted subset of dyes. These
practical constraints make the added flexibility of the excess
degrees of freedom essential as they can be used to design
around the limitations of a given experimental approach. In the
remainder of this paper we will show that, at least for simple
transformations, the required constraints leave a great deal of
flexibility of implementation.

3 Excitonic quantum gates in a
phonon bath
3.1 Open system dynamics

Thus far, we have restricted our attention to closed system
dynamics where the state of the quantum system can be repre-
sented as a linear combination of the form ¥ = a,|0) + a4|1).
In this setting, the system is isolated from the surroundings
and retains all of its phase information as it evolves in time.
However, when a system evolves in contact with a bath, environ-
mental noise and the formation of uncontrolled system-bath
entanglement leads to the gradual loss of phase information of
the system. In the presence of this incomplete phase informa-
tion, the state of the quantum system can no longer be repre-
sented by a wavefunction. Instead, the system state must be
represented by a density matrix p.** In this matrix representa-
tion, the diagonal components, p;, give the population of state
|7), playing an equivalent role to the probability amplitudes |a;|*.
The complex-valued off diagonal components, p;, are known
as coherences and describe the phase information between
states |7) and |j).

In the following sections, we will consider the evolution of
the one qubit gates in the presence of a noisy environment.
This will allow us to examine the limitations and requirements
of excitonic quantum information processing and illustrate the
optimization of these quantum circuits. By taking advantage of
the normalization condition, |«|> + |f|> = 1, the density matrix
of a two-level qubit can be conveniently represented by the

density matrix
o.(t) —ioy(t)
;o (6
1 —0.(1)

p(t) =—=

V2\ 6.(1) + iy (1)
where oy, 0, and ¢, are real valued components of a 3D vector ¢
known as the Bloch vector. The properties of the density matrix
constrain this vector to the sphere || < 1, which is referred to
as the Bloch sphere.
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In this compact representation, the evolution of a closed system
reduces to solving the set of differential equations for the Bloch
vector &, known as the Liouville-von Neumann equations. For a
general Hamiltonian of the form H = £,|0) (0| + &;|1) (1] + Vo [0) (1] +
Vo1*|1)(0], these equations of motion are

Oy :%(AS()]O}—FZI[VO]}O'Z)7 (73)
by = %I(Asmax £ 2R [Voilos), (7b)
. 2i
[ :%(I[Vol]ﬁx-i-R[Vo]}G}:), (7C)

where R[V] and Z[Vy,] are the real and imaginary parts of the
coupling Vy; between the dye molecules, respectively. This yields
a unitary evolution that is equivalent to the time-dependent
Schrodinger equation.

In an open system, interaction with a noisy environment
substantially modifies the system dynamics. Generally, these
dynamics can be quite complicated, potentially showing sub-
stantial non-Markovian character that depends intricately on
the structure and statistics of the environment. In this study,
we aim to consider a simple model for the influence of the bath
that relies minimally on the details of the local environment. As
such, we will restrict our attention to simple phenomenological
Markovian master equations of the Lindblad type.** In this model
two major effects are included for a system of dye molecules
coupled to a phonon bath. The dephasing, with rate y, describes
random fluctuations in the energy levels of the dye molecules due
to environmental noise. This leads to the loss of coherent phase
information, manifest in a decay in the off-diagonal components
of p, or coherences. In addition, dissipation, with rate I" describes
the loss of excitation energy to the phonon bath as the system
relaxes to the lower energy eigenstate. Including these dephasing
and dissipation effects in eqn (7), we arrive at an expression for
the Bloch equations in an open system:

] 1
6y = %(AS()]O"V + ZI[Vol}JZ) — E(F + 2‘,’)0“{, (Sa)
—i 1
6, = = (Baio, + 2R[Vallo) =3I+ 29)a, (8b)
2i 1
G, :%(I[Vm]o’x-i-R[Vo]]Gy) +F<§—03). (SC)

The quantity T, = 2/(I" + 2y) is often referred to as the total
dephasing time while T, = I'! is called the dissipation or
relaxation time. As in the case of the Frenkel exciton model
described in Section 2.1, this simple model is used with the
acknowledgement that more sophisticated approaches to these
dynamics may be required to treat specific systems in future work.

In the following section, we will use eqn (8) to model the
dynamics of the NOT and Hadamard gates in order to illustrate
the effects of environmental noise on the desired unitary
transformation. For simplicity, we will restrict our attention
to dyes with linear (as opposed to circular) transition
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dipole moments. This leads to a real valued coupling between
the dyes Vo1 = R[Vm].

3.2 Gate performance in an environment

The dynamics of the NOT and Hadamard quantum gates under
the effect of phonon bath can be derived by solving the system of
equations in eqn (8), using the appropriate Hamiltonian in
Table 1. The relative populations of the states of the two-level
qubit system in the site basis, as well as the coherences at a a
given time, ¢, can be extracted from the density matrix in eqn (6).
As an example, we examine the population dynamics of the NOT
gate. Fig. 4A shows the population dynamics of the state |1)
under the effect of different dephasing rates. In the isolated case,
the required state inversion of the input qubit (taking the qubit
from |0) to |1) and from |1) to |0)), is implemented by Rabi
oscillations with a period 27. This first maximum corresponds to
the time it takes the system to perform a single gate operation,
before returning again to its initial state, at ¢ = 27. The oscillatory
nature of the dynamics indicates that for a given configuration
the NOT gate transformation is in fact realized at many times,
specifically at any 7, = nt, where n is any odd integer. The
oscillations in Fig. 4A are seen to decrease rapidly with increas-
ing dephasing rate y, since the coherence is mostly lost when the
dephasing time, 1/y, is ~1/3 of 7.

The performance of a quantum gate can be quantified
according to the schematic in Fig. 4B. In a closed system, a
perfect NOT gate would interconvert 100% of the initial qubit
between |0) and |1). However, dephasing (here shown for y ~ 1)
reduces the amplitude of the Rabi oscillations, decreasing the
amount of the excitation transferred to the desired state. At
longer times, dephasing fully damps the oscillations leaving an
equal (incoherent) mixture of |0) and |1) states. We therefore
want to measure the state of the system at the minimum time it
requires to perform the desired operation, 7, and the efficiency
must be determined at ¢ = t (dotted red line in Fig. 4B).

Following this idea, we define a fidelity measure for a
two state excitonic circuit that quantifies the probability of

1.0

0.8

0.6

|1)

0.4

0.2

0.0

0
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measuring the correct outcome after the transformation is
applied. This quantity includes the deviation of the state of
the open system from that of the closed quantum system at
time ¢ = 7 and the ability to perform the polarization addressing
scheme proposed in Section 2.4. Describing the state of the
system at a given time by the density matrix, p, in eqn (6), the
fidelity of the circuit can be defined by

Fid = [Tt {popen (Do) }| X sin” 05 (9)

where popen and peiosea are the density matrices describing the
open and closed quantum systems, respectively. The trace
expression in eqn (9) quantifies the deviation of the open
systems dynamics from the ideal closed system case. In general,
the absolute value of this trace takes a value between 0 and 1.
Most notably, if pciosed = Popen, as is the case for a system well
isolated from environmental noise, the result is that of a pure
state density matrix Tr{pgosea} = 1.*> The last term, sin®0y,
describes the ability of the polarization addressing scheme to
distinguish between a pair of dyes when the system is measured.
This gives a vanishing fidelity for parallel and anti-parallel dyes
(ie. 05 = 0,m) since the two dyes cannot be distinguished by a
polarized pulse in these configurations.

Equipped with this measure of circuit performance, we now
consider the required parameter regime for reliable implemen-
tation of two dimensional unitary transformations. To illustrate
the effect of dissipation and dephasing on the fidelity of a NOT
gate circuit, we use as an example a pair of nearly-orthogonal Cy3
dyes scaffolded in adjacent nucleotide bases:® ry/u ~ 0.27 AD ™,
0; = 4n/9 and ¢ = n/2. The effect is shown in Fig. 5A.

As expected from the dynamics shown in Fig. 4A, the Fidelity
of the gate exponentially decays with increasing dephasing
and dissipation rates before approaching a 50-50 incoherent
mixture of the two states. This yields a fidelity of 0.5 indicating
that the correct answer is obtained with the same probability
as randomly selecting the output. This corresponds to a circuit
that has entirely failed to mimic any unitary transformation.

Fig. 4 Effect of the bath interaction in the dynamics of the excitonic system simulating the NOT gate. (A) Population dynamics of the 1) state for
different dephasing ratios, y x t. The horizontal axis corresponds to time as a fraction of the time it takes to complete the first transformation.
(B) Schematic of the definition used for quantum fidelity. The fidelity measures how much the excitonic open system dynamics differ from those of the

closed system at t = 7 (red dotted line).
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Fig. 5 Fidelity of the NOT gate under environmental noise. (A) Fidelity as a
function of dephasing and dissipation effects as ratios of the computation
time, 7. Above I' + y = 1/1, the system will lose dynamics faster than the
time it takes the first gate transformation to be completed (red dashed
line). (B) Fidelity as a function of the dephasing as y x .

Similarly to the NOT gate, the performance of the Hadamard
gate is determined by the computation time scale 7 relative to the
bath-induced relaxation time. It can be shown that the same
behaviour in Fig. 5 can be observed in a Hadamard circuit.

When (I' + y)r > 1, the system has lost its coherence before
the gate operation is completed for the first time. Consequently,
an excitonic NOT and Hadamard gate will perform well if the
computation time, 7, is less than both the dephasing and
dissipation times, this is, below the limit (I + y)t < 1 (red
dashed line in Fig. 5A).

Using these observations, it is possible to establish specific
bounds on the potential dye systems that can be employed to
map a one-qubit unitary transformations. Because these trans-
formations can only be reliably realized if they are completed
before bath induced relaxation, (I" +y) < 1/t (red dotted line in
Fig. 5) imposes an upper boundary on the allowable computa-
tion time. Furthermore, the transformation time, 7, depends on
the strength of the coupling (e.g. T = n/(2V4,) for the NOT gate).
If the dyes can be placed no closer than some distance rpin, and
the orientation of the dyes is set to maximize the coupling from
eqn (2) (ie., 0; = w/2 and ¢ = 0), the coupling is bounded
by the expression |Voi| < |pal|ps|/4ncormin. Using these
considerations, we propose the following criterion promising
excitonic circuits:

1
n2egr

3 (10)
min

‘(FH)
HAHB

where the choice of ry;, depends on the choice of super-
molecular support structure for the dye pairs. For example,
for a system of dyes embedded in DNA, the individual dyes
cannot be placed closer than a DNA base-pair, so we have
Fmin & 3.4 A. For dye pairs in a polypeptide chain, 7y, is
determined by the peptide size, which is typically 1.32 A.**

3.3 Optimizing circuit geometry

We now consider optimizing the geometry of excitonic circuits to
maximize their Fidelity. Due to the flexibility of the constraints
imposed by the unitary transformations many configurations
can reproduce the same gate. However, these will generally differ
in their computation time and therefore, their sensitivity to
environmental noise. For the NOT gate, this time scale is entirely

This journal is © the Owner Societies 2020
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determined by the coupling between the dyes. For simplicity,
we will restrict our attention to homodimers with identical dyes
since this is the most likely method of achieving degenerate
excited states.

In this case, p5 = ug and the coupling V,; and, consequently,
the fidelity will be a function of only the spatial arrangement
of the molecular system. We describe the exciton geometry via
three parameters: the twist angle, 0; the center-to-center
intermolecular distance, r;, and the angle between the dyes
and the distance vector, ¢, which we assume to be identical for
each dye. In realistic systems, the bath contribution is expected
to be dominated by the dephasing contribution. As such,
we have restricted our attention to purely dephasing baths
(i.e. I = 0) with a fixed slow dephasing rate y x ¢ = 0.8. The
parameter 1 is calculated from the electronic coupling between
a pair of nearly-orthogonal Cy3 dyes at base-pair distance, as in
the previous section. This dephasing rate was selected to more
clearly show the geometry dependence of the fidelity and is
likely to be significantly higher in realistic systems.

We first consider a pair of dyes comprising a NOT gate
that are displaced perpendicular to their dipole moments (i.e.
¢ = 1/2), which sets the second therm in eqn (2) to zero. Fig. 6A
shows the dependence of the fidelity of the NOT gate on
the spatial terms, r; and 0 Note that the intermolecular
distance is presented as a ratio of the transition dipole moment
magnitude, u, in A D™" units, with x = 12 D corresponding to a
Cy3 homodimer.

Some interesting patterns in the behaviour of the fidelity
should be highlighted from Fig. 6A. We first note two regions
where the fidelity is zero for all intermolecular distances: when
0;;=m/2 and 0, m. In the first case, the dyes are orthogonal to each
other, leading to vanishing coupling for all 7. The dye geometry
is therefore incapable of satisfying the coupling constraints
imposed by the NOT gate transformation. The second case
corresponds to a dimer of parallel or antiparallel dyes. In this
case, the the dyes can not be distinguished by the polarization
addressing scheme. As a result, eqn (9) results in a fidelity of zero
when 0; = 0, =, for all values of r;. Overall, the dependence of
the fidelity on the interchromophore angle, 0;, demonstrates a
trade-off between the cos 0; and sin® 0; terms, with a maximum
fidelity at a critical point close to 0 = n/2, as evident in Fig. 6A.

1.0 1.0 B 1.0
0.8 0.8 0.8
06 0.6 0.6

s »
04 ~04 0.4
0.2 0.2 0.2
0 0.0 O’%.O 10 0.0

0.0 0.5 0.5
0,-] I 0.

0.21e x rylu
w e
o o

g
=)

I

=

Fig. 6 Fidelity of the NOT quantum gate for different spatial distributions
of the dye-pair coordinate system. (A) Fidelity as a function of the
dimensionless ratio of the inter-chromophore distance and transition
dipole magnitude, 0.21e x ry/u, and angle, 6; when both dyes are
orthogonal to the z axis, and (B) as a function of ; and ¢, the angle
between both dyes and the distance vector, ;.
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Fig. 7 Fidelity of the Hadamard quantum gate. Fidelity as a function of the

difference between the individual excitation energies of each dye in the
heterodimer comprising the excitonic system.

10.0

The effect of the interchromophore distance, r;; on the fidelity
is contained in the term 1/r;; in eqn (2). As a result, we see that the
coupling and the fidelity monotonically decrease with increasing
distance between the dyes. In this case, the optimal geometry
simply minimizes distance subject to experimental constraints.

A more complete picture of geometry arrangement emerges
when ¢ is allowed to vary. Fig. 6B presents the behaviour of the
fidelity when 0; and ¢ are varied at a fixed ratio of 0.21e x r;/u=1.29
and the same bath conditions as panel A. In this case, the coupling
contains contributions form the second term in eqn (2), allowing for
Vo1 # 0when 0; = 1/2. As a result, the maximum fidelity can now be
reached with orthogonal dyes as this circumvents the tradeoff
between coupling and measurement specificity inherent to
the ¢ = m/2 case treated above. Similarly to Fig. 6A, a sharp
line can be seen with rapidly decreasing fidelity where the dyes
are uncoupled. Since the coupling depends on both angles, this
is no longer a straight line and instead appears as the curved
line in Fig. 6B given by u-up = 3(ua-fiy)(us-y)-

Optimizing the performance of the Hadamard gate is slightly
more straightforward than the CNOT gate. From tbl:gates we can
note that the coupling of the Hadamard gate is constrained by the
ratio Aey,/Vy; = 2. As a result, T and therefore the fidelity can be
determined by comparing the relative energy between the dye
molecules. It is therefore straightforward to show that, as long as
the required coupling is achievable for a given pair of dyes, it is
optimal to select a dye configuration with angle 0;; = /2 in order to
maximize the selectivity of polarization addressing. Fig. 7 illustrates
the dependence of the fidelity on the difference between the
individual excitation energies of the dyes, A¢y, for a fixed bath
with I' = 0 and y x ¢ = 0.8. We can see that the Fidelity increases
rapidly with the energy difference, as the coupling also increases
proportionally. However, we note that, as described by eqn (10), the
dipole moments and the achievable dye configurations provide a
bound for the maximum coupling that can be implemented in the
dye system. This limits the energy differences of dyes that can be
used, capping the achievable Fidelity of a given circuit.

4 Conclusions

In this manuscript, we have proposed a general strategy for
mapping specific unitary operations onto excitonic cricuits.
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We show that this strategy is limited in complexity to 12 dimen-
sional or smaller quantum systems. However, these systems
exhibit a manifold of possible excitonic circuits that are able to
generate them. We show that these excess degrees of freedom
can be exploited to facilitate experimental initialization and
measurement and to mitigate the effect of environmental noise.
Moreover, we identify a criterion for molecular parameters that
identify dye-scaffolding systems that may be promising for
quantum information applications.
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