Issue 1, 2020

Thermal stability modulation of the native and chemically-unfolded state of bovine serum albumin by amino acids

Abstract

Cells are crowded with various cosolutes including salts, osmolytes, nucleic acids, peptides and proteins. These cosolutes modulate the protein folding equilibrium in different ways, however, a unifying concept remains elusive. To elucidate the cosolute size-effect, macromolecular crowders are commonly compared to their monomeric building blocks (e.g. dextran vs. glucose or polyethylene glycol with different degrees of polymerization). To the best of our knowledge, such studies do not exist for protein crowders, raising the question of how single amino acids modulate the folding equilibrium. Therefore, we investigate the effect of glycine, alanine, proline and arginine on the stability of a model globular protein bovine serum albumin (BSA) upon thermal and urea-induced unfolding. We use three complementary techniques, fluorescence spectroscopy (as a local site-specific probe), circular dichroism (as a global probe for α-helical structure) and differential scanning calorimetry (to probe the energetics of unfolding). We find that the amino acids modulate BSA stability and unfolding, however, without following a particular trend with either the hydrophobicity scale or the solvent accessible surface area (SASA) of the added amino acids. Our data rather suggest that solvation effects play a role in understanding the cosolute effect.

Graphical abstract: Thermal stability modulation of the native and chemically-unfolded state of bovine serum albumin by amino acids

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2019
Accepted
26 Nov 2019
First published
27 Nov 2019

Phys. Chem. Chem. Phys., 2020,22, 179-188

Thermal stability modulation of the native and chemically-unfolded state of bovine serum albumin by amino acids

S. Pal, P. Pyne, N. Samanta, S. Ebbinghaus and R. K. Mitra, Phys. Chem. Chem. Phys., 2020, 22, 179 DOI: 10.1039/C9CP04887A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements