

Cite this: *Chem. Commun.*, 2020, **56**, 13052

Correction: Pd-Catalyzed oxidative isomerization of propargylic acetates: highly efficient access to α -acetoxyenones *via* alkenyl Csp^2 –O bond-forming reductive elimination from Pd^{IV}

Jun Li, ^a Wenjie Yang, ^a Fachao Yan, ^a Qing Liu, ^a Ping Wang, ^a Yueyun Li, ^a Yi Zhao, ^a Yunhui Dong^{*a} and Hui Liu ^{*ab}

DOI: 10.1039/d0cc90452j

rsc.li/chemcomm

Correction for 'Pd-Catalyzed oxidative isomerization of propargylic acetates: highly efficient access to α -acetoxyenones *via* alkenyl Csp^2 –O bond-forming reductive elimination from Pd^{IV} ' by Jun Li *et al.*, *Chem. Commun.*, 2016, **52**, 10644–10647, DOI: 10.1039/C6CC04463H.

The authors regret that the Supplementary Information was not originally published along with the main article. The Supplementary Information file has now been uploaded and is available online.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China. E-mail: huiliu1030@sdu.edu.cn, dyh651118@126.com

^b College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China