ChemComm

CORRECTION

View Article Online

Cite this: Chem. Commun., 2020, 56, 2211

Correction: Diastereoselective synthesis of 1.3-disubstituted isoindolines and sultams via bronsted acid catalysis

Ye Tao and Scott R. Gilbertson*

DOI: 10.1039/d0cc90020f

Correction for 'Diastereoselective synthesis of 1,3-disubstituted isoindolines and sultams via bronsted acid catalysis' by Ye Tao et al., Chem. Commun., 2018, 54, 11292-11295.

rsc.li/chemcomm

The authors regret that the intermediates identified as 21 and 23, 25, 26, 27, 28 and 29 in Schemes 3-5 and Table 2 are not alkynes as indicated in the original article, but rather cyclized 5-member rings with an exocyclic double bond. The subsequent reaction with triethylsilane then provides the title compounds by diastereoselective reduction. Corrected versions of Table 2 and Schemes 3-5 are shown below. The structures have also been corrected in the ESI of the original article, which is available online.

In addition, a corrected version of the graphical abstract is shown below.

Scheme 3 Synthesis of chiral starting material.

ChemComm

Scheme 4 Pyrrolidine formation.

Scheme 5 Synthesis of sultams.

Table 2 Cyclization with loss of nitrogen group

Entry	SM	product	yield
1	OCH ₃	O S O NH	98%
2	N—OCH ₃	0 NH 30 NH	67%
3		0 5 NH	76%
4		O S O NH	82%
5	F ₃ C	F ₃ C 31 NH	96%
6	F N OCH3	0 % S O NH	90%

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.