

Showcasing research from Professor Li Wang's group at Dalian Maritime University, China and Professor Xin Tu's group at the University of Liverpool, UK

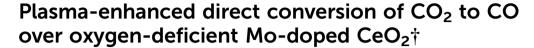
Plasma-enhanced direct conversion of CO_2 to CO over oxygen-deficient Mo-doped CeO_2

Plasma-catalytic direct splitting of CO_2 to CO over oxygen-deficient Mo-doped CeO_2 at ambient conditions was achieved. Developing new catalytic technologies involving plasma opens the door to unlocking the potential of using captured CO_2 to make valuable chemicals under mild conditions.

ChemComm

COMMUNICATION

View Article Online



Cite this: Chem. Commun., 2020, 56 14801

Received 28th September 2020, Accepted 6th November 2020

DOI: 10.1039/d0cc06514e

rsc.li/chemcomm

Li Wang, ** Xiaomin Du, ** Yanhui Yi, ** Hongyang Wang, ** Masaud Gul, ** Yimin Zhu^a and Xin Tu[®]*

Plasma CO₂ splitting to CO over oxygen-deficient Mo-doped CeO₂ under mild conditions was investigated for the first time, showing ~20 times higher CO₂ conversion compared to pure CeO₂, which can be attributed to the increased oxygen vacancies (Vo) and the formation of Ce3+-Vo-Mo on the catalyst surface. Importantly, Vo sites showed excellent catalytic stability.

Converting CO2 to value-added fuels and chemicals has been considered as a promising route in CO2 utilization. Significant efforts have been devoted to the chemical transformation of CO₂, including thermal catalysis, photocatalysis, electrocatalysis, 4,5 and plasma catalysis.^{6,7} Direct splitting of CO₂ to CO without using any reductant is attractive for CO₂ conversion, as CO is an important chemical feedstock for the synthesis of a range of chemicals and fuels. However, this reaction has to overcome a strong thermodynamic barrier (CO₂ \rightarrow CO + 1/2O₂, ΔH_{298K} = 280 kJ mol⁻¹ = 2.9 eV molecule⁻¹) to break the C=O bond, since CO₂ is very stable. Ultrahigh temperatures (2000 K) are often required to activate CO₂ (Fig. S1, ESI†).

In recent years, using non-thermal plasmas (NTPs) for the activation of inert molecules with strong chemical bonds (e.g., CO2, CH4 and N2) under mild conditions has attracted significant interest, including CO₂ reforming with CH₄ to oxygenates, ^{8,9} CO₂ hydrogenation to methanol, 10 and ammonia synthesis. 11 NTP is rich in energetic electrons with a typical energy of 1-10 eV, which is sufficient to activate reactants into chemically reactive species, enabling thermodynamically unfavorable reactions (e.g. CO2 splitting) to proceed at ambient conditions.

Up until now, studies on plasma CO2 splitting to CO mainly focused on the optimization of operating parameters, 12-16 and

only a few catalysts (e.g., Ni/SiO₂, NiO/TiO₂ and Rh/TiO₂) have been evaluated (Table S1, ESI†).17-20 Recently, surface oxygen vacancies (V_O) have been suggested to be the active sites in plasma-catalytic CO2 splitting to CO. Mei et al. reported that higher CO2 conversion was achieved when coupling plasma with BaTiO₃, which can be explained by the formation of more Vo sites on the surfaces of BaTiO₃ compared with TiO₂.²⁰ Chen et al. found the Vo on Ni/TiO2 contributed to the enhanced CO2 dissociation. 18 In fact, the coupling of catalysts and plasma is a promising strategy to improve CO2 conversion and energy efficiency. However, the knowledge in selection of appropriate catalysts for highly efficient CO2 splitting to CO using NTP was still very limited until now.

Herein, CO₂ splitting to CO over M-doped CeO₂ catalysts (M = Fe, Co, Ni, Cu, Cr, V, Mn or Mo) has been carried out in a dielectric barrier discharge (DBD) reactor (Fig. S2-S5, ESI†). CeO₂ not only serves as a support to anchor and disperse the metal oxide particles but also generates Vo active sites through the interaction with metal oxides. Significant differences were observed among the M-doped CeO2 catalysts in terms of CO2 conversion, and the Mo-doped CeO2 exhibited the best activity in CO2 conversion (Fig. S3, ESI†). Therefore, Mo-doped CeO2 has been selected for further studies.

Comprehensive catalyst characterization was carried out to understand the physicochemical properties of Mo-doped CeO₂. As shown in Fig. 1, the X-ray diffraction (XRD) pattern of CeO₂ exhibits characteristic peaks of a cubic fluorite phase (JCPDS, 34-0394). For Mo-doped CeO₂, small peaks of α -MoO₃ (JCPDS, 05-0508) and Mo₄O₁₁ (JCPDS, 05-0337) are observed, revealing the coexistence of Mo(v1) and Mo(v) species. Notably, the characteristic peaks of CeO2 downshift compared to pure CeO2, which suggests that Mo doping leads to the expansion of the CeO₂ unit cell. Usually, inserting Mo ions into CeO₂ induces shrinkage of the CeO2 unit cell since the radius of Mo ions is much smaller than that of Ce ions, resulting in upshifting of CeO₂ peaks, rather than downshifting. Thus, Mo ions do not insert into the CeO2 unit cell, and there might be other reasons responsible for this downshift. X-ray photoelectron spectroscopy

a College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, 116026, P. R. China. E-mail: liwang@dlmu.edu.cn

^b State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China

^c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK. E-mail: xin.tu@liv.ac.uk

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/

Communication ChemComm

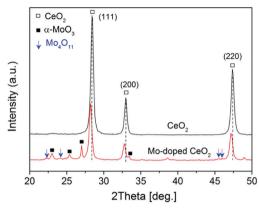


Fig. 1 XRD patterns of CeO₂ and as-prepared Mo-doped CeO₂.

(XPS) was employed to analyze surface properties of Mo-doped CeO₂. The deconvoluted Ce 3d XPS spectra are presented in Fig. 2(a). The peaks labeled as v, v", v"' and u, u", u"' are assigned to $3d_{5/2}$ and $3d_{3/2}$ electrons of Ce^{4+} , respectively, while the peaks of v', u' and v_o , u_o correspond to $3d_{5/2}$ and $3d_{3/2}$ electrons of Ce³⁺, respectively. ²¹ Clearly, Ce³⁺ exists in CeO₂ and Mo-doped CeO2, suggesting the formation of VO in both samples. More importantly, the proportion of Ce³⁺ in Mo-doped CeO₂ is 40.2%, higher than that in CeO₂ (30.0%) (Fig. S6 and S7, ESI†). This finding suggests that Mo doping induces partial transformation of Ce4+ to Ce3+ and creates more VO on Modoped CeO₂. As reconfirmed by the O 1s XPS spectra in Fig. 2(b) and Fig. S6 (ESI \dagger), a higher surface V_{O} (30.4%) is achieved in the Mo-doped CeO₂ in comparison to pure CeO₂ (21.0%). Furthermore, the transformation of Ce⁴⁺ to Ce³⁺ leads to the expansion of the CeO₂ unit cell since the ion radius of Ce³⁺ (1.23 Å) is higher than that of Ce^{4+} (0.97 Å), ²² which explains the reason for the downshifting of CeO₂ peaks in Fig. 1. More interestingly, the

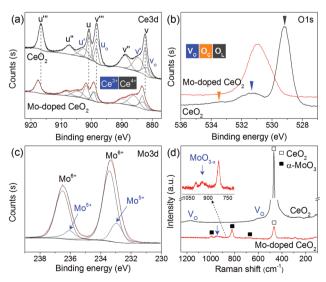


Fig. 2 XPS and Raman spectra of CeO_2 and as-prepared Mo-doped CeO_2 (a) Ce 3d, (b) O 1s, (c) Mo 3d and (d) Raman spectra (V_O , O_C and O_L represent oxygen vacancy, chemisorbed oxygen species and oxygen lattice, respectively).

binding energies of Ce 3d shift significantly towards higher values after Mo doping, revealing that the electron density of the surface CeO2 species is lower in Mo-doped CeO2 compared with pure CeO₂, which might be induced by the electron transfer from Ce to Mo, due to the higher electronegativity of Mo. These results suggest different properties of Vo sites in the form of Ce³⁺-V_O in CeO₂ and Ce³⁺-V_O-Mo in Mo-doped CeO₂, as well as the strong interaction between Mo and CeO2, which agrees with the results of H₂-temperature programmed reduction (H₂-TPR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) (Fig. S8-S11, ESI†). Fig. 2(c) shows the deconvoluted Mo 3d spectra, in which the Mo-doped CeO2 sample exhibits typical doublet peaks of Mo⁶⁺ with an energy gap of ca. 3.1 eV, indicating the formation of MoO₃ in Mo-doped CeO₂.²³ The two smaller peaks observed, however, are identified to be $3d_{3/2}$ and $3d_{5/2}$ electrons of Mo(v), demonstrating the formation of the non-stoichiometric MoO_{3-x} , which is consistent with the Mo_4O_{11} species confirmed by the XRD analysis (Fig. 1). Fig. 2(d) shows the Raman spectra of CeO₂ and Mo-doped CeO₂. For pure CeO₂, the intense band at 465 cm⁻¹ is well-indexed to the typical F2g modes of a cubic CeO₂ fluorite structure, and the weak bands at 262, 597 and 1171 cm⁻¹ are assigned to Vo, reconfirming the XPS results in Fig. 2(a and b).²³ For Mo-doped CeO₂, the emerging Raman bands at 673, 824 and 997 cm⁻¹ are assigned to MoO₃ crystallites. 24 However, the band at 955 cm⁻¹ is associated with Mo suboxides $(MoO_{3-x})^{24,25}$ These results indicate that the valence state of Mo in suboxides is Mo5+. Moreover, the presence of Mo5+ and Ce3+ indicates that more Vo sites are created through the strong interaction between Mo and CeO2, as well as the calcining atmosphere with deficient oxygen and rich energetic Ar species, which agrees with the results reported by Chen et al. 18

Fig. 3 shows the effect of different operating conditions on CO₂ conversion. Clearly, no reaction occurred without plasma (catalyst only, 400 °C). The conversion of CO₂ was 3.8% in the plasma reaction without a catalyst (plasma only). In the plasma reaction coupled with pure CeO₂, the CO₂ conversion dropped to 1.2%, which suggests that pure CeO₂ is unfavorable for CO₂ splitting to CO despite CeO₂ being O-deficient. Using Mo-doped

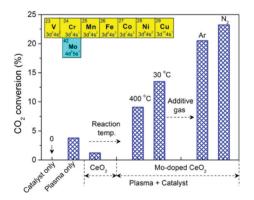


Fig. 3 Effect of reaction temperature and additive gas on CO $_2$ conversion (CO $_2$ flow rate 40 ml min $^{-1}$, SEI 20 kJ L $^{-1}$, molar ratio 4:1 and 30 °C for CO $_2$ /Ar and CO $_2$ /N $_2$; catalyst only 400 °C).

ChemComm Communication

CeO₂ instead of CeO₂, however, results in a significant increase of CO₂ conversion by a factor of 9 at 400 °C. In addition, the Mo-doped CeO2 showed stable CO2 conversion for at least 10 h (Fig. S12, ESI†). Interestingly, the reaction performance can be further improved by using a lower reaction temperature (30 °C) and an additive gas (Ar or N2). This promotional effect was more pronounced when adding N2. The highest CO2 conversion of 23.2% and energy efficiency of 14.3% were achieved in the plasma splitting of CO2 with N2 addition over Mo-doped CeO2 at 30 °C (Table S1, ESI†), while the corresponding formation rate of CO and O₂ was 24.9 mmol h⁻¹ and 12.4 mmol h⁻¹, respectively (Table S2, ESI†). The optimal energy efficiency achieved in this study is comparable to that reported in previous works (Table S1, ESI†).

Regarding surface reactions, the improved activity over Modoped CeO2, on one hand, is mainly attributed to the increased formation of Vo (Fig. 2 and Fig. S6, ESI†), since Vo serve as adsorption centers for CO₂ dissociative adsorption, ^{17,26} i.e., $CO_2 + V_O \rightarrow O_L/O_C + CO$. On the other hand, the promoted performance originates from the different properties of Vo in the forms of Ce³⁺-V_O and Ce³⁺-V_O-Mo due to strong interaction between Mo and CeO2 and the higher electronegativity of Mo compared with Ce (Fig. 1, 2 and Fig. S8, ESI†), which leads to a stronger binding strength of CO₂ with the V_O of Ce³⁺-V_O-Mo. As discussed above, Vo is the active site for CO2 activation; thus, the stability of V_O greatly influences the subsequent catalytic cycle. It is well recognized that oxygen can be produced in plasma CO₂ splitting, and the produced O species could poison the catalyst through filling V_O sites to form stable lattice oxygen species, resulting in termination of the catalytic cycle.

Therefore, the spent Mo-doped CeO₂ catalysts were further characterized by XPS, Raman, XRD and H2-TPR (Fig. 4). Interestingly, compared with the fresh catalyst, the spent Mo-doped CeO_2 catalysts show an increased amount of Ce^{3+} and MoO_{3-x} , which can be confirmed by the higher intensities of Ce³⁺ peaks

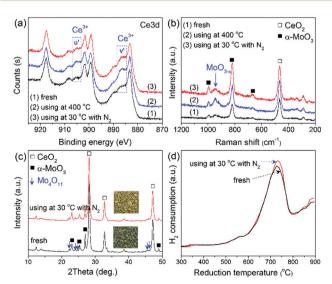


Fig. 4 (a) XPS spectra, (b) Raman spectra, (c) XRD patterns, (d) H₂-TPR profiles of Mo-doped CeO₂ before and after reaction.

and the Raman band at ~ 950 cm⁻¹ in Fig. 4(a and b), respectively. The enhancement effect is more pronounced for the catalyst used at 400 °C. Correspondingly, more Vo sites were created in the high-temperature reaction (Table S3, ESI†). In addition, the color of the catalyst changed from gray/blue (MoO_{3-x}) to yellow (MoO_{3-y}) with x > y after the reaction at 30 °C, while no visible changes were observed on the phase structure of Mo-doped CeO₂ before and after the reaction (30 °C), as shown in Fig. 4(c). These results indicate that some O atoms from CO₂ splitting are adsorbed onto the catalyst, as seen by the slightly increased H₂ consumption in Fig. 4(d). Even so, the Vo concentration of Mo-doped CeO2 used at 30 °C remained at a similar level with that of the fresh sample (Table S3, ESI†). These findings suggest that Vo-rich Modoped CeO2 is stable after the plasma reaction, and hightemperature reactions facilitate the formation and recovery of Vo sites, resulting from accelerating recombinative desorption of adsorbed O atoms.27

In addition to surface reactions, gas-phase reactions also play a crucial role in the plasma-catalytic process. In a pure CO₂ DBD, CO₂ splitting to CO mainly proceeds through the electron impact dissociation of CO_2 ($CO_2 + e \rightarrow CO + O + e$), which can be confirmed by plasma chemical kinetic modeling, 28 as well as the formation of CO bands and O atomic lines detected by optical emission spectra of CO2 DBD (Fig. 5(a)). As shown in Fig. 5(a), the presence of strong N_2 ($C^3\Pi_u \to B^3\Pi_g$, $B^3\Pi_g \to A^3\Sigma_u^+$) molecular bands and Ar atomic lines suggests the formation of excited nitrogen species (N₂*) and metastable Ar species (Ar*).29,30 These species create an additional reaction route for CO_2 dissociation $(N_2^* (or Ar^*) + CO_2 \rightarrow CO + O + N_2 (or Ar)),$ supported by the increased intensity of O atomic lines and CO bands when adding N2 or Ar, which contributes to the enhanced CO₂ conversion. Furthermore, 150 ppm NO_x was detected by Fourier transform infrared (FTIR) in the case of N2 addition (Fig. S13, ESI†), revealing that N2 can be regarded as an alternative scavenger of O species.12 The elimination of partial O species can effectively limit the reverse reaction, i.e., O + CO + $M \rightarrow CO_2 + M$, and thus enhance the CO_2 conversion. This could explain why adding N₂ has a stronger promotion on the CO₂ conversion compared with Ar.

Interaction between reactive species in the gas phase and catalyst is also crucial in plasma-catalytic reactions.31 Compared to plasma only, packing Mo-doped CeO₂ into the

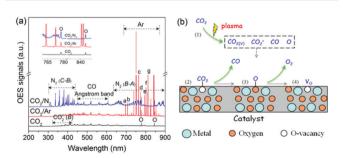


Fig. 5 (a) Emission spectra of CO₂ plasma, (b) possible pathways of plasma-catalytic CO₂ splitting over V_O-rich catalyst.

Communication ChemComm

discharge zone decreased the current (Fig. S14, ESI†), lowering the contribution of the gas-phase reactions. In this case, the CO₂ conversion, however, was still improved, which might be attributed to the interaction between active species and V_O-rich Mo-doped CeO₂, accelerating V_O recovery. Therefore, a possible reaction mechanism is proposed in Fig. 5(b). Firstly, CO₂ is activated to species of CO2+, CO2(v), CO and O radicals as shown in Fig. 5(a) (step 1). Then, the energetic CO2-species are adsorbed on the Vo sites to decrease their internal energy (step 2). After that, the V_O sites have the potential to grasp the O atom of the adsorbed CO_2 molecule, which weakens the C=O bond, producing adsorbed CO and O (step 3). Subsequently, the adsorbed CO desorbs as the final CO product. While the adsorbed O mainly desorbs from Vo sites in the form of O2 through reacting with the active O radicals produced in the gas phase $(O_g + O_{ad} - V_O \rightarrow O_{2,g} + V_O)$, i.e., Eley-Rideal (E-R) mechanism. Meanwhile, Vo sites recover completing the catalytic cycle (step 4). Using isotope trace analysis, we demonstrated the desorption of Nad through an E-R reaction in plasma-catalytic NH₃ decomposition.³¹ Therefore, the desorption of O_{ad} through E-R reaction is also expected. Note that, too strong of a CO₂-V_O bond makes it easy to split the CO2 molecule, but the corresponding desorption of adsorbed O is difficult. By contrast, too weak of a CO₂-V_O bond means it could be hard to split CO₂, although the adsorbed O can easily desorb from the catalyst surface. Therefore, a catalyst with a proper binding strength between Vo sites and CO2 benefits the conversion of CO2 and favors the catalytic cycle.

In conclusion, plasma-catalytic CO2 splitting over M-doped CeO₂ catalysts (M = Fe, Co, Ni, Cu, Cr, V, Mn or Mo) has been investigated. Mo-doped CeO₂ exhibited the best activity; this is attributed to the increased oxygen vacancies created by strong interaction between Mo and CeO2, as well as the calcining atmosphere being oxygen-deficient and rich in Ar metastable species. Furthermore, oxygen vacancies were stable during the reaction, which is ascribed to the interaction between active O produced in the gas phase and the adsorbed O on the oxygen vacancy site, resulting in desorbing as O2 molecules and recovering oxygen vacancy sites. These findings suggest that introducing proper doping on CeO2 offers a potential route to tune properties of oxygen vacancy in CeO₂. Additionally, adding N2 and Ar into the plasma process enhanced the CO2 conversion, especially when adding N₂. This promotional effect is mainly attributed to the new reaction routes induced by the presence of metastable species. We found that N2 can be used as an O scavenger to forward the chemical equilibrium and inhibit the reverse reaction to form CO₂.

This work was financially supported by the NSFC (No. 21908016), the Liaoning Natural Science Foundation (No. 2019-MS-023 and 2018011143-301), the key Science and Technology Project List of Ministry of Transport of the People's Republic of China (No. 2018-ZD4-027). X. Tu acknowledges the funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie

grant agreement no. 823745 and the State Key Laboratory of Electrical Insulation and Power Equipment at Xi'an Jiaotong University (No. EIPE19207), China.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Zhang, Chem. Soc. Rev., 2020, 49, 1385.
- 2 S. Xie, Q. Zhang, G. Liu and Y. Wang, Chem. Commun., 2016, 52, 35.
- 3 Y. Lan, Y. Xie, J. Chen, Z. Hu and D. Cui, *Chem. Commun.*, 2019, 55, 8068.
- 4 D. U. Nielsen, X. Hu, K. Daasbjerg and T. Skrydstrup, *Nat. Catal.*, 2018, 1, 244.
- 5 X. Yuan, Y. Luo, B. Zhang, C. Dong, J. Lei, F. Yi, T. Duan, W. Zhu and R. He, *Chem. Commun.*, 2020, **56**, 4212.
- 6 A. George, B. Shen, M. Craven, Y. Wang, D. Kang, C. Wu and X. Tu, Renewable Sustainable Energy Rev., 2021, 135, 109702.
- 7 A. Bogaerts, X. Tu, J. C. Whitehead, G. Centi, L. Lefferts, O. Guaitella, F. A. Jury, H. H. Kim, A. B. Murphy, W. F. Schneider, T. Nozaki, J. C. Hicks, A. Rousseau, F. Thevenet, A. Khacef and M. Carreon, J. Phys. D: Appl. Phys., 2020, 53, 443001.
- 8 D. Li, V. Rohani, F. Fabry, A. P. Ramaswamy, M. Sennour and L. Fulcheri, *Appl. Catal., B*, 2020, **261**, 118228.
- 9 L. Wang, Y. Yi, C. Wu, H. Guo and X. Tu, Angew. Chem., Int. Ed., 2017, 56, 13679.
- 10 L. Wang, Y. Yi, H. Guo and X. Tu, ACS Catal., 2018, 8, 90.
- 11 Y. Wang, M. Craven, X. Yu, J. Ding, P. Bryant, J. Huang and X. Tu, *ACS Catal.*, 2019, 9, 10780.
- 12 R. Snoeckx, S. Heijkers, K. V. Wesenbeeck, S. Lenaerts and A. Bogaerts, Energy Environ. Sci., 2016, 9, 999.
- 13 D. Mei and X. Tu, J. CO₂ Util., 2017, 19, 68.
- 14 D. Mei, X. Zhu, Y. He, J. D. Yan and X. Tu, *Plasma Sources Sci. Technol.*, 2015, 24, 015011.
- 15 K. V. Laer and A. Bogaerts, Plasma Processes Polym., 2017, 14, 1600129.
- 16 D. Ray and C. Subrahmanyam, RSC Adv., 2016, 6, 39492.
- 17 K. Zhang, G. Zhang, X. Liu, A. N. Phan and K. Luo, *Ind. Eng. Chem. Res.*, 2017, 56, 3204.
- 18 G. Chen, V. Georgieva, T. Godfroid, R. Snyders and M. Delplancke-Ogletree, *Appl. Catal., B*, 2016, **190**, 115.
- 19 L. F. Spencer and A. D. Gallimore, Plasma Sources Sci. Technol., 2013, 22, 015019.
- 20 D. Mei, X. Zhu, C. Wu, B. Ashford, P. T. William and X. Tu, Appl. Catal., B, 2016, 182, 525.
- 21 C. Anandan and P. Bera, Appl. Surf. Sci., 2013, 283, 297.
- 22 W. Wang, Q. Zhu, F. Qin, Q. Dai and X. Wang, Chem. Eng. J., 2018, 333, 226.
- 23 K. Murugappan, E. M. Anderson, D. Teschner, T. E. Jones, K. Skorupska and Y. Román-Leshkov, *Nat. Catal.*, 2018, 1, 960.
- 24 B. Liu, L. France, C. Wu, Z. Jiang, V. L. Kuznetsov, H. A. Al-Megren, M. Al-Kinany, S. A. Aldrees, T. Xiao and P. P. Edwards, *Chem. Sci.*, 2015, 6, 5152.
- 25 K. Chen, S. Xie, A. T. Bell and E. Iglesia, J. Catal., 2001, 198, 232.
- 26 L. Liang, X. Li, Y. Sun, Y. Tan, X. Jiao, H. Ju, Z. Qi, J. Zhu and Y. Xie, Joule, 2018, 2, 1004.
- 27 P. G. Dickens and M. B. Sutcliffe, Trans. Faraday Soc., 1964, 60, 1272.
- 28 R. Aerts, T. Martens and A. Bogaerts, J. Phys. Chem. C, 2012, 116, 23257.
- 29 Y. Horikawa, T. Hayashi and K. Sasaki, Jpn. J. Appl. Phys., 2012, 51, 126301.
- 30 J. B. Boffard, G. A. Piech, M. F. Gehrke, L. W. Anderson and C. C. Lin, *Phys. Rev. A: At., Mol., Opt. Phys.*, 1999, 59, 2749.
- 31 L. Wang, Y. Zhao, C. Y. Liu, W. M. Gong and H. C. Guo, Chem. Commun., 2013, 49, 3787.