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A two-step route to MK-4482 (EIDD-2801, 1) was developed
consisting of an esterification and hydroxamination of cytidine.
The selective acylation and direct amination eliminate the need
for protecting and activating groups and proceed in overall yield of
75%, a significant advancement over the reported yield of 17%. The
step count is reduced from five transformations to two, and expen-
sive uridine is replaced with the more available cytidine.

Remdesivir has presented itself as an option for COVID-19 treat-
ment; however, improvements upon this initial solution are still
desired. Fulfilling demand is complicated by issues related to raw
material supply,'® price,'” and synthetic route length.> MK-4482
(EIDD-2801)® presents an interesting complement to remdesivir
for COVID-19 treatment. It is structurally simple in comparison,
and it can likely be made from abundant raw materials. These
factors would be expected to alleviate supply chain difficulties and
reduce costs. Encouragingly, MK-4482 shows potential to treat
mice with remdesivir resistant strains of COVID-19, and the active
pharmaceutical ingredient (API) is orally bioavailable. These
advantages prompted Merck to license the drug candidate from
Ridgeback Biotherapeutics.”

The initial disclosure of MK-4482 is the only synthesis which
appears in the open literature (Fig. 1), and not unexpectedly there
are significant opportunities for improvement over this early route:

e The API is constructed over five chemical transformations.

e The route suffers from low yield (17% maximum, yield of
diol deprotection not disclosed).

e The step count is lengthened by derivatizations and
protections.
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¢ Uridine, an expensive material of limited availability, is the
synthetic starting point.

Building the API from cytidine instead of uridine presents
several advantages. First, raw material costs can be decreased
because cytidine is ~40% of the price of uridine.® Secondly,
there is potential to reduce the synthesis to a two-step sequence
comprising esterification and transamination (Fig. 2).

We began our exploration by examining direct transamina-
tion of cytidine with hydroxylamine.” Older literature studies
suggested that mono-hydroxamination can be achieved under
the right concentration, temperature and pH, while minimizing
over-reaction of the substrate.”®” More recently this finding was
repeated by Purohit with preparative HPLC separation’® while
Painter claimed difficulties with the procedure leading to 20%
yield.”? In our hands, with slight adjustment of the reaction
conditions, N(4)-hydroxycytidine (NHC, 3) was synthesized in
70% assay yield (AY). Importantly, upon concentration, pure
NHC was obtained by simple crystallization directly from the
reaction mixture in 50% isolated yield.

We also explored transamination of cytidine isobutyryl ester 4,
and surprisingly, with the use of NH,OH-H,SO, in iPrOH,
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Fig. 1 The first generation route to MK-4482 from uridine.
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Fig. 2 A new route to MK-4482 from cytidine.

dihydroxamination was avoided completely. We were quite
pleased to find that the ester remained intact. MK-4482 was
obtained from 4 in 96% isolated yield (IY), demonstrating viability
of direct hydroxamination from either cytidine reaction pathway.

Selective acylation remained as the largest technical uncer-
tainty toward production of a shorter, protecting group free route
to MK-4482. The esterification of NHC 3 would need to be
selective for one of four hydroxyl groups, and the literature
suggests that the N-hydroxy group is most reactive toward
acylation by chemical means.”®® Enzyme catalyzed esterification
of cytidine has achieved this goal by making use of vinyl esters
and anhydride acyl donors.” The use of oxime ester transfer
agents was of particular interest due to the structural similarity
with N-hydroxycytidine, 3, and excellent selectivity was observed
with uridine though cytidine was unfortunately reported to give
the O,N-diacylated product.’® We were curious whether this
approach would work to form the desired a-branched esters.

Surprisingly immobilized CALB (Candida Antarctica Lipase B)
provided the desired selectivity not only for N-hydroxycytidine
but also for cytidine. Isobutyric oxime ester 5 was used as the
acyl transfer agent with solid supported enzyme (200 wt%,
1.5 mol%). A sufficient excess of the oxime ester was necessary
to drive the reaction to completion, and early results have been
best with 1,4-dioxane. MK-4482 was isolated in 74% yield from 3,
and 4 was isolated in 78% yield from cytidine. A traditional
chemically catalyzed acylation was developed to provide a non-
enzymatic option to reach 4. Though inexpensive this option
might not be preferable to the enzymatic route. More reagents
are added to the reaction system and a greater number of
byproducts are formed which might hamper efforts to purify
the intermediate at scale. Conversion was stopped at 90% to halt
over-acylation of the product, resulting in an isolated yield of
76% of 4. Similarly, an alternative route to 3 was developed from
uridine."*

This completes two concise routes to MK-4482, which differ
in the order of synthetic transformations. When conducting
esterification first, MK-4482 is obtained in 75% yield, and it is
made in 37% yield when hydroxyamination is conducted first.
The step count is reduced from five transformations to two, and
the more expensive uridine is replaced with cytidine. The use of
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protecting groups and derivatization is eliminated. We plan to
further report on the optimization of this preliminary result to
refine catalyst loadings, solvent selection, and yield while
developing process-amenable isolation sequences.
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