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We generate a new air-stable pseudo-Ds;,, Dy(i) Single-Molecule
Magnet (U = 1108 K, Tg = 14 K) by combining a weak equatorial
ligand field from a macrocyclic LN® ligand with a strong axial ligand
field. Based on our synthetic blueprint, we use ab initio calculations
to show the vast scope for macrocyclic engineering of magnetic
anisotropy.

Molecular systems which display the ability to retain magnetisation,
in the absence of an external magnetic field, resulting in the
appearance of magnetic memory of molecular origin, are known
as Single-Molecule Magnets (SMMs)." Lanthanide-based SMMs are
often associated with large magnetic moments and large magnetic
anisotropy. In 4f-SMMs, the energy barrier to reorientation of the
magnetisation (Ueg) is strongly determined by the control of the
coordination environment at the level of a single metal ion.”
Specifically, the use of the Dy(m) ion in targeted coordination
environments that promote strong uniaxial symmetry stabilizes
the largest m; = £15/2 ground state and gives a large separation
from the excited m; states.”> Monometallic complexes with axial
symmetry such as square antiprismatic,® trigonal bipyramidal,*
pentagonal bipyramidal,>® and hexagonal bipyramidal,”® are an
effective way to favour slower relaxation of the magnetisation.
Furthermore, sandwich type ligands (e.g. cyclopentadienyl (Cp)
anionic ligands), have generated organometallic compounds with
impressive blocking temperatures showing coercivity up to 30 K,’
48 X,'° 55 K,"' 60 K,"> 66 K™ and 80 K."* Additionally, a unique
family of Ln-SMMS are the endohedral metallofullerenes (EMFS).'®

We have explored how the ligand electronics can tune SMM
properties®”*®7 and recently first introduced a blueprint for
engineering strong uniaxial magnetic anisotropy for Dy(ur) ions in
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Scheme 1 The macrocyclic ligand LN® (left)” and LN® (right).

a hexagonal bipyramidal geometry,” boosting the magnetisation
reversal barrier from ~50 K'® to ~1100 K, by using the macro-
cyclic ligand LN® (Scheme 1 left). Implementing further the
flexibility of our synthetic approach towards the engineering of
new quasi-Dy,;,, systems, we demonstrate the isolation of a new
Single-ITon Magnet (SIM) with pentagonal bipyramidal geometry,
[Dy™(LN%)(Ph;Si0),](BPh,)-CH,Cl, (1). Compound 1 shows out-of-
phase peaks in the ac susceptibility up to 80 K under zero dc field,
a high magnetization reversal barrier of 1108 K and hysteresis,
M(H), loops open up to 14 K, measured at an average sweep rate
of 0.01 T s (see Table S1, ESI{). 1 belongs to a small group of
pentagonal bipyramidal complexes that are both air-stable and
have a Ues above 1000 K (Table S1, ESIf). In our carefully
designed step-by-step synthetic approach we first targeted the
formation of a weak N5-pentagonal plane by employing the
macrocyclic L™® ligand (Scheme 1, right), unused in 4f chemistry,
formed from 2,6-diacetylpyridine and N,N’-bis-(3-aminopropyl)-
ethylendiamine.'® We then used the anion of triphenylsilanol,
Ph;SiO ™, as stronger anionic donors at both axial positions to
generate the pentagonal bipyramidal architecture (Fig. 1).
Importantly, our synthetic strategy offers vast synthetic
flexibility for carefully engineering the equatorial crystal field
in order to (i) further improve the relaxation dynamics and (ii) to
target the isolation of new quasi-D,;, systems with enhanced
magnetic anisotropy. In a quest to identify new promising
directions towards high temperature SMMs we also investigate
the new in silico models 1-N302 and 1-O5 (vide infra), inspired
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Fig. 1 Molecular structure of 1 with two PhzSiO™ axial ligands and the
polydentate ligand LN® in the equatorial plane, highlighted in green. Dy,
gold; O, red; N, blue; Si, light turquoise; C, gray; B, dark yellow. Hydrogen
atoms, solvent molecules and disorder components are omitted for clarity.

by 1. From our systematic study, we find that the proposed
in silico models are extremely promising as new target systems
and have the potential to show improved SMM properties, with
the magnetisation reversal barrier boosted up to ca. 1400 K and
1800 K, respectively (vide infra).

Compound 1 (Fig. 1) crystallises in the triclinic space group
P1 (Table S2, ESIT) with the asymmetric unit containing two
crystallographically independent molecules with a Dy---Dy
distance of 11.667 A. Both Dy(m) centres are found in an axially
compressed pentagonal bipyramidal geometry, as confirmed
via SHAPE analysis (see Table S4 and Fig. S3, ESIt).>° Two
Ph;SiO™ ligands occupy the axial positions providing the shortest
axial Dy-O bond lengths of 2.157(3) A and 2.136(4) A for Dy1A and
2.161(4) A and 2.158(4) A for DylB (see Table S3 and Fig. S2,
ESIt). In addition, the axial O-Dy-O angle is 176.54(15)° and
173.13(15)° for Dy1A and DylB, respectively. In the equatorial
plane of the L™° ligand (Fig. S2, ESI{) the Dy-N bonds fall in the
range of 2.400(5)-2.570(5) A for Dy1A and 2.457(5)-2.564(5) A for
Dy1B (Table S3, ESIt).

The static dc magnetic susceptibility and magnetization
measurements for complex 1 are shown in the ESIf (Fig. S4
and S5). Upon cooling the y\T profile of 1 decreases steadily
from the room temperature value of 14.1 cm® mol " K to a value
of 13.05 cm® mol ! K at 10 K followed by a sharp drop below
10 K (Fig. S4, ESIt). The field-cooled (FC) and zero-field cooled
(zFC) magnetic susceptibility (Fig. S6, ESIt) diverge at 7 K for 1
with the maximum observed at ~5 K, indicative of a magnetic
blocking temperature, T;.”" The magnetic hysteresis measure-
ments, M(H) loops, performed on a microcrystalline powder
sample of 1 remain open up to 14 K, measured at a sweep rate of
0.01 T s " (Fig. 2 and Fig. S7, ESIf). The characteristic waist-
restricted shape of the loops is strongly affected by the faster
relaxation around zero field, due to the presence of unsuppressed
Quantum Tunnelling of the Magnetisation (QTM).?

Alternating current (ac) susceptibility measurements were
performed in order to investigate the magnetic relaxation in 1 (Fig. 3
and Fig. S8-5S11, ESIT). Under zero dc field, the out-of-phase ;"
susceptibility data exhibit well-defined maxima, clearly observable
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Fig. 2 Powder magnetic hysteresis measurements for 1 with an average
sweep rate of 0.01 T s Inset: M(H) loops around zero field region open
up to 14 K.
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Fig. 3 Plots of yu” (v) in zero applied dc field in the temperature range of
10-80 K for 1.

at temperatures up to 80 K (Fig. 3 and Fig. S8, ESIY), indicative of
slow magnetic relaxation and a high magnetisation reversal bar-
rier. The magnetisation relaxation times, t, were extracted by
fitting the Argand plots of y\" vs. ' using the generalized Debye
model (Fig. S11, ESIT).>* The a-parameters found are in the range
of 0.17-0.43 (2-80 K) showing a relatively wide distribution of
relaxation times. The t~' vs. T data were fitted using the
equation t ' = Tgr - + CT" + 10 "exp(—Ueg/T), in which C
and n are the parameters of the Raman process and tqmy is the
rate of QTM.>*" The best fit gives a magnetisation reversal barrier
Uetr=1108 K, 79 = 1.56 x 10" 5,n=2.05,C=0.03 K " s, 1qmm =
0.5 s, under zero dc field (Fig. S12, ESIt). The values of 1,, C and n
are within the commonly observed range for Dy(Ill) SMMs.?> The
exponent n of the Raman process has a smaller value than
expected for a Kramers ion (ie., n = 9) suggesting the presence
of Raman processes involving optical acoustic phonons.*

Ab initio calculations on 1, using the CASSCF/RASSI-SO/
SINGLE_ANISO approach implemented in MOLCAS 8.2 (see
ESI¥),>® reveal that the eight Kramers Doublets (KDs) span an
energy range of ~1520 K. Inspection of the calculated g-tensors
(Table S5, ESIf) show a highly anisotropic ground state

This journal is © The Royal Society of Chemistry 2020
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(m; = £15/2) with strong axiality (g,, = 19.979, gy, gyy = 0.001 for
DylA and g,, = 19.984, gy, gy = 0.000 for Dy1B). The main
anisotropy axis in 1 is nearly collinear with the shortest O-Dy-O
bonds, stabilised by the stronger donor Ph;SiO~ ligands
located above and below the equatorial plane of the L™ ligand
(Fig. 1 and Fig. S13, ESI¥).

The first excited state (m; = £13/2), located at ~600 K (594 K
for Dy1A and 602 K for Dy1B) and the second excited state
(m; = £+ 11/2) located at ~1040 K (1033 K for Dy1A and 1040 K
for Dy1B) are also axial in nature (Fig. S14 and Table S5, ESIT).
The maximum calculated relaxation barrier, Ue,;, for compound
1 is estimated at ~1040 K; in excellent agreement with the
experimentally determined magnetisation reversal barrier (Ueg)
of 1108 K found in zero dc field.

One can imagine changing the planarity and rigidity of the
L™ macrocycle by using different building blocks (or the
application of pressure) to allow access to new pseudo-Ds, environ-
ments. Our ongoing efforts are focused on fully exploring the vast
synthetic flexibility in the design that our approach offers in order
to improve the relaxation dynamics. In this regard, the LoProp®®
charges on 1, computed using the CASSCF wavefunction, show
that the negative charges at the secondary amine -NH- groups are
of similar magnitude to those found for the axial oxygen atoms
(Fig. S15, ESIt). Hence, replacing the secondary amine -NH-
groups with tertiary amines has the potential to result in smaller
negative LoProp charges in the equatorial plane, which may
have a significant impact on further improving the magnetic
properties of 1.

Furthermore, the ability to discover promising new candidate
systems that have the potential to show improved SMM properties
and could be targeted by experimental chemists is of key impor-
tance. Following on from the insight gained from the LoProp
charges, using 1 as a blueprint we have created the in silico model
systems 1-N302 and 1-O5 (Fig. S16 and S17, ESIf). In the new
model systems we examine how changes in the first coordination
sphere of 1, at the equatorial positions, affect the magnetic
anisotropy. In both model systems 1-N302 and 1-O5 we have
maintained the same coordination environment at the axial
positions as in 1 but the equatorial ligand L™® has been
modified in silico to LN*°* and the 16-crown-5 ligand (i.e., the
closest candidate of the crown ether family to the L") (Fig. S16
and S17, ESI}). Firstly, we modified in silico L™> (Schiff base
ligand formed from 2,6-diacetylpyridine and N,N’-bis-(3-amino-
propyl)-ethylendiamine, see Scheme 1) to L"*“* (Schiff base
ligand formed from 2,6-diacetylpyridine and 3,3’-(ethane-1,2-
diylbis(oxy))bis(propan-1-amine)). This is an alternative strategy
to replace the two -NH- groups that have the larger LoProp
charges, with two oxygen groups (Fig. S16, ESIt). In the model
system 1-N302 (Fig. S16, ESIt) the first excited state is calcu-
lated at 658 K (m; = £13/2, g,, = 17.046, gxx = 0.028, g, = 0.032)
with the second (m; = +11/2) located at 1190 K and the third
(0.62|£1/2 > +0.22|£3/2>) excited state at 1438 K (Table S6,
ESIt). The maximum calculated relaxation barrier, U, for
model system 1-N302 is estimated at ~1400 K (Fig. 4, upper).
In addition, the computed LoProp charges on the oxygen atoms
are found to be 50% smaller than those on the -NH- groups in
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Fig. 4 Ab initio calculated relaxation dynamics for 1-N302 (Upper) and
1-05 (Lower). The black line indicates the KDs as a function of magnetic
moments. The violet dashed arrow represents QTM (QTM = quantum
tunnelling of the magnetisation) via the ground state and TA-QTM
(TA-QTM = thermally assisted QTM) via excited states. The blue dashed
arrow indicates possible Orbach processes. The red arrows indicate the
mechanism of magnetic relaxation (Orbach/Raman). The numbers above
each arrow represent corresponding transverse matrix elements for the
transition magnetic moments.2®

1 (Fig. S18, ESI{). Next we employed a crown ether ligand in the
equatorial plane of our model system because of its neutral
nature, long metal-ligand distances, the popularity of crown
ether ligands in 4f chemistry®* and to compare it with L™> and
LN*92, In the model system 1-O5 the strongly axial excited states
are higher in energy than that of 1 (Table S7, ESIt). In addition,
the transverse components for model system 1-O5 are weaker
giving lower g,./g, values (Table S7, ESIt). The QTM probabilities
calculated for the first three KDs (0.45 x 107%) 0.49 x 1072
0.68 x 10~ 'ug, respectively) are lower compared to 1 with the
magnetization relaxing via the fourth KD giving a calculated
magnetization reversal barrier of 1788 K (Fig. 4, lower). The ratio
between the axial B, parameter and the corresponding non-axial
crystal field parameters also increases 1 < 1-N302 < 1-O5 (Table S8,
ESIt) supporting the increase of U, from 1 (~1040 K) to
1-N302 (~1400 K) and 1-05 (~1800 K) (Fig. S20, ESI}).

In conclusion, we report [Dy"(L¥*)(Ph;SiO),](BPh,)-CH,Cl,
(1) using the macrocyclic ligand L™?, which is a strongly axial
Dy(m) single-ion magnet in a pentagonal bipyramidal geometry
showing out-of-phase peaks up to 80 K under zero field, a high
anisotropy barrier of 1108 K, and hysteresis loops open up to
14 K (@ 0.01 T s). This novel compound was engineered
following our flexible synthetic approach where five long Dy-N
bonds are formed by the macrocyclic ligand L™°, while two
strong donor Ph;SiO™ ligands are used for the axial positions,
creating the short O-Dy-O bonds. Future work will involve
modifying the planarity and rigidity of the L™® macrocycle
and investigating the new pentagonal bipyramidal families

Chem. Commun., 2020, 56, 12037-12040 | 12039
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identified through our computational studies, showing the vast
scope for macrocyclic engineering of magnetic anisotropy.
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