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Red-light-sensitive BODIPY photoprotecting groups
for amines and their biological application in controlling
heart rhythm

Caging the activity of dopamine with a red-light-sensitive
photoremovable protection group enables the use of
deep-tissue-penetrating light to control the heart rate
with high precision.
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Control of biological function by the use of photoremovable
protecting groups (PPGs) is a gateway towards many new medical
developments. Herein, we report the synthesis and application
of efficient and biocompatible BODIPY-based photoprotecting
groups for amines, which are cleavable with red light in the photo-
therapeutic window region (A > 650 nm). We use the most
promising PPG for the protection of dopamine and apply it to
control the beating frequency of human cardiomyocytes.

The amine functionality plays a key role in many bioactive
compounds and frequently determines, among others, their
solubility and target binding. By dynamically controlling the
activity of amine groups, one can therefore achieve control over
the activity of a drug within a biological system in selected time
and space. Among the diverse approaches towards targeted
activation, the use of photoprotecting groups (PPGs) has
emerged as a highly versatile, modular and efficient technique.
It allows for the selective release and/or activation of com-
pounds with light in a discrete manner to reduce side effects on
the biological system. It has been successfully applied to e.g.
gene activation and silencing," or protein interactions.’
Because of many potential non-invasive applications with
enhanced selectivity, light controlled activation of biologically
active compounds, such as antibiotics,>* anticancer agents,’
neurotransmitters,® amino acids or proteins’ and kinase
inhibitors® is currently being explored.’
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Since their introduction by Engels and Schlaeger'® for the
protection of adenosine, PPGs have been extensively studied,
and several key aspects have been determined as being crucial
for their applicability in biological systems. In their recent
seminal review, Klan ef al. highlight the most important para-
meters:® first, PPGs should exhibit a narrow and intense
absorption band, preferably in the so called ‘“phototherapeutic
window” (650-900 nm),"" in which the light used for photo-
deprotection is less toxic and shows better penetration
of biological tissues.'> Second, they should show sufficient
solubility and stability in aqueous media. Finally, the photo-
release reaction should proceed within a short time frame
(minutes) and yield the cargo compound in its active form.
Furthermore, the residual by-products from the removed PPG
should not absorb at the irradiation wavelengths and should be
biologically inert.

In this context, in particular primary amines attracted our
attention as PPG attachment points, as they are not only
prevalent in bioactive compounds but also highly versatile
functional groups in synthesis. However, previous attempts at
building release systems for amine groups have shown that
they are poor leaving groups and therefore an additional linker
between PPG and amine, such as a carbamate, is often needed
to enable their function in the desired manner." This approach
was exemplified by the photodeprotection of histamine,™
dopamine™ and Vemurafenib.?

A common issue with most widely used PPGs (o-nitrobenzene,
coumarin and benzoin derivatives)® is that their removal typically
requires high-energy light (650-900 nm), which can potentially
lead to tissue damage. A direct solution to this problem, ie.
red-shifting the absorption band of the PPGs by extending the
n-systems,'® has an inherent drawback of making the PPG
molecules larger and less polar, thus decreasing their solubility
in aqueous media.'® Recently, Bao et al. used styryl-conjugated
coumarins for the protection of alcohols,'” while Etchenique
and co-workers'® approached the problem of protection of
amines by using ruthenium bipyridine complexes. Both PPGs
show bathochromically shifted absorption maxima (Amax) in
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comparison with commonly used photoprotecting groups, but
not enough to absorb in the phototherapeutic window. To the
best of our knowledge, no efficient, red-light-sensitive systems
employing these methods have been developed for amines. An
alternative method for using red light in photodeprotection is
two-photon excitation.'®*° However, compared to one photon
excitation, irradiation with higher intensity of light is usually
needed as the probability of such a transition is smaller.>**!
Facing these important challenges and limitations in
designing a red-light responsive cage for amines, and inspired
by the work of the group of Winter and Weinstain and our
previous reports,"*"”**>* describing a red-sensitive BODIPY
PPG for esters, we set out to design and obtain analogous PPGs
for amines applicable in biological setting. For this purpose, we
choose the BODIPY (boron-dipyrromethene) core because of its:
(i) easy synthesis, (ii) near-ideal photochemical properties; (iii) a
narrow absorption band; and (iv) high ¢ values (~10° M~ " ecm™).**
Next, we envisioned extending the n-system of the compound by
adding styryl groups® which leads to a significant red shift of the
Amax- I our design, we also exchanged the fluorine atoms on the
boron in the BODIPY core, taking advantage of the finding by Klan
and co-workers®® that this increases the uncaging quantum yield.
As PPG attachment point, we swapped the ester moiety at the meso
position®* for an activated carbamate, which should allow to readily
attach the amines and enable efficient release (Fig. 1). After initial
studies with BODIPY-photoprotected 4-fluorobenzyl amine as the
model compound, we prepared an analogous carbamate derivative
for dopamine, a commonly used cardiac drug.>” We then tested
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Fig. 1 Structure of the BODIPY PPGs.
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the activity of the obtained compound before and after irradia-
tion with red light (1 = 652 nm) on in vitro beating human
embryonic stem cell (hESC) derived cardiomyocytes using multi-
electrode array (MEA) methodology and compared the obtained
values (beating frequency) with those obtained for dopamine.
The results presented here suggest a potential application of
PPGs in medical therapies.

To obtain derivatives of biologically relevant amines whose
activity could be controlled by irradiation with red light, we
designed a synthetic route for the preparation of BODIPY-PPG
based on reactive carbamates. The synthesis of the desired
compounds started with the preparation of BODIPY ester 1 as
reported previously*® (Fig. 2), followed by a Knoevenagel con-
densation leading to compound 2.

The latter reaction was initially run under standard Dean-
Stark conditions, allowing us to obtain compound 2 in 43%
yield.”® However, the yield was greatly improved by placing the
neat reaction mixture under vacuum, presumably by efficiently
removing water>® (80% yield). Ester 2 was then hydrolysed using
NaOH_,q) in methanol to provide alcohol 3 in 75% yield, followed
by reaction with p-nitrophenyl chloroformate to provide the
activated carbonate 4 in 91% yield. Finally, this substrate was
converted with 4-fluorobenzylamine to the desired carbamate in
90% yield. A similar strategy was used to obtain compound 8. To
install CH; groups on the boron at the BODIPY moiety, alcohol 3
was reacted with CH3;MgBr at room temperature following a
modified literature protocol,>® providing compound 6 in 60%
yield. The formation of carbamate 8 from carbonate 7 afforded
the desired compound in 55% yield. For comparison, compound
6 was reacted with acetic acid in the presence of EDCI and DMAP
to give the corresponding acetate 9 (73% yield).

The photochemical properties of photocaged compounds 2,
5, 8 and 9 were then tested under standardized conditions (see
ESL T Fig. S1-S9). First, to determine if the compounds were
indeed photoactive, we proceeded to measure their UV-vis spectra
before and under irradiation with red LED (A = 652 nm). For
most of studied compounds, a decrease in absorption was
observed (Fig. 3b). As expected, ester 2 reacted slowly. Unfortu-
nately, the same was observed for compound 5, which, even after
installing the carbamate linker, needed around 1 h of irradiation
to fully react under the standardized irradiation conditions.
Additionally, both compounds 2 and 5 had fairly low solubility
(limited to low puM range) in the used media (1:1 mixture of

NH,
4:91%
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Fig. 2 Synthesis of protected compounds 2, 5, 8, 9 and 10.
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Fig. 3 Comparison of photochemical properties of 10 uM in 50% aceto-
nitrile/5 mM phosphate buffer pH = 7.5 samples of compounds 2, 5, 8 and
9: (a) UV-vis spectra, (b) change in absorbance at Amax vs. time.

Table 1 Photochemical properties of compounds 2, 5, 8, 9 and 10

Emax X 10 g6s0 X 107°  Half-life”  Amax
Entry Cpdno. X M'em™] M 'em '] [min] [nm]
1 2 F 98 67 — 665
2 5 F 73 54 9.5 663
3 8 CH; 47 45 2.7 646
4 9 CH; 46 44 2.5 646
5 10 CH; 63 61 1.6 643

¢ Under irradiation with Sahlmann Photochemical Solutions LED system
(3 x 400 MW, Zmax = 652 nm, FWHM 26.4 nm from 0.2 cm distance),
in 50% acetonitrile/5 mM phosphate buffer pH = 7.5.

acetonitrile/aq. phosphate buffer) and had the most red-shifted
Amax values of all the obtained compounds (Table 1).

Much better results were obtained for BODIPYs 8 and 9 with
a B(CHj), group instead of BF,. Both compounds readily
responded to irradiation with red light in about 20 min. The
measured quantum yield for compound 8 under the irradiation
with UV light (standard K;[Fe(C,0,)3] actinometry, 1 = 365 nm,
for details see ESIT) was 0.01%, at 20 °C. For a model carboxylic
acid, caged with the same group, a roughly 10-times higher
quantum yield was measured.?® Although the Ay.x of com-
pounds 8 and 9 was slightly blue-shifted (646 vs. 663 nm) when
compared to compounds 2 and 5 (Table 1), the CH;-substituted
derivatives were reacting much faster and their solubility in the
used media was relatively higher, making them far more
promising PPGs for biological applications. While, compared
to other PPGs for amines, these molecules show lower quantum
yields, they do absorb light at longer wavelength. The solvent
that was used in our system was, however, still not fully
representative for a biological setting.

To assess the feasibility of the designed photoprotecting
group in selective activation of drugs with light in biological
systems, we synthesized compound 10 (Fig. 2), a BODIPY-
protected dopamine derivative, and tested its light-dependent
activity on spontaneously beating, hESC-derived cardiomyo-
cytes as an in vitro model of a beating heart. Dopamine, aside
from being a known neurotransmitter, plays a significant role
in regulating cardiac function by increasing heart rate and
contractile force.>® As patients using dopamine can suffer from
severe adverse effects of the drug, ranging from mild nausea to
anxiety and life-threatening arrhythmias,*" we envisioned that
using a derivative of dopamine which could be selectively

5482 | Chem. Commun., 2020, 56, 5480-5483

View Article Online

Communication

activated therapeutically at a chosen site, could not only help
to control the patients’ cardiac function, but also limit the
occurrence of the adverse effects of the original drug.

For this cause, the methodology of using PPGs to hinder the
activity of the drug until it is needed seems to be an attractive
approach. Even though synthetic routes of protecting
dopamine with PPGs for neurological applications do exist,"**?
none of the reported compounds has been used to control
cardiac rhythm with light within the phototherapeutic window
(650-900 nm), which would enable safe biological use.

In our approach, the multi-electrode array (MEA) methodol-
ogy was used for the determination of activity of compound 10
on spontaneously beating hESC derived cardiomyocytes before
and after irradiation with red light (1 = 652 nm) by detecting the
differences in the electrical signals that cause contractions of
the cells. Therefore, we first prepared the hESC-derived cardio-
myocytes in accordance with a method previously described.**
After 10 d of additional maintenance to assure syncytium for-
mation, a baseline measurement for beating frequency was per-
formed. Subsequently, pre-dilutions of PBS containing 10 puM
compound 10 were irradiated with red light (1 = 652 nm) for
4 min periods. The cells were incubated for 20 min with 1 pM of
compound 10, dopamine or 1 pM of deprotected compound 10
and their beating frequency was determined with the MEA (for the
experimental details see ESIt). For each of the measurements, the
data was collected for at least 30 s and compiled statistical data
was analysed using the CiPA analysis tool (Axion Biosystems) and
subjected to a one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparisons test (for exact values, please refer to
the ESIT). We were able to observe significant differences in activity
of irradiated and non-irradiated forms of compound 10 based on
the beating frequency of the cardiomyocytes (Fig. 4). The activity of
deprotected compound 10 was comparable to the activity of
dopamine. Although the protected compound 10 still exhibited
some residual activity, it was significantly lower when compared to
both dopamine and deprotected compound 10.

In summary, we have presented the development of red-
light-sensitive (4 = 652 nm, in the therapeutic window for light)

A =650 nm
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Fig. 4 Photorelease of dopamine: observed beats per min values for
human cardiomyocytes treated with dopamine or compound 10. Graph
presents the medians and 5-95 percentiles. The cells were seeded on
48-well CytoView MEA plate in CDM3 medium supplemented with 5%

KnockOut Serum Replacement and incubated in RPMI medium containing
B27 supplement with 10% PBS (pH = 7.4).
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photoprotecting groups for the amine functionality, which could
be used in a biological setting for the control of bioactivity
by light.

Fluorinated BODIPY derivatives 2 and 5 could be uncaged in
aqueous media under red light irradiation in 10 to 20 min on
average. The photodeprotection of methylated compounds 8, 9
and 10 occurred rapidly in aqueous media and the cargo
molecules were released efficiently within a couple of minutes.
These compounds proved to be superior to their fluorinated
derivatives not only in terms of the deprotection efficiency, but
also in terms of solubility in the used media.

To provide the proof of principle for the usefulness of our
system in clinical applications, we employed compound 10,
a BODIPY-protected dopamine derivative, on spontaneously
beating hESC derived cardiomyocytes and observed a signifi-
cant increase in their beating frequency after irradiating them
for 1 min with red light (4 = 652 nm). These results prove
that the developed photoprotecting groups can be successfully
employed in a biological setting and offer future prospects in
medical treatments.
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