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Silver (Ag())) binding to consensus zinc fingers (ZFs) causes Zn(i)
release inducing a gradual disruption of the hydrophobic core,
followed by an overall conformational change and formation of
highly stable Ag,S, clusters. A compact eight-membered Ag,S,
structure formed by a CCCC ZF is the first cluster example reported
for a single biological molecule. Ag()-induced conformational changes
of ZFs can, as a consequence, affect transcriptional regulation and
other cellular processes.

Zinc finger (ZF) domains are one of the most abundant structural
motifs found in proteins, with a wide range of physiological roles
including transcriptional regulation, signal transduction, DNA
repair, cell migration, etc."™ Although ZFs contain Zn(u) in their
native structures, they provide an impressive range of binding
properties for monovalent (Cu(r) and Au(i)), divalent (Cd(u), Pb(u),
Hg(u), Pt(i), Fe(u), Co(n), and Ni(u)) and trivalent (Sb(m) and As(ur))
metal ions. These cations can compete with Zn(u), impacting the
native domain structure (Fig. Sla, ESIf) and as a consequence
influencing the biological functions of ZFs due to their various
coordination geometries, ionic radii and ligand specificities.*®
Moreover, they can promote multinuclear species formation,
cysteinyl sulfur oxidation or incomplete coordination.”™ All of
these outcomes are important in the case of toxic metal ions,
which can be absorbed into the body from diet, drinking water,
by inhalation, dermal exposure or medical intervention, eventually
finding their way to cells to exert toxicity by abolishing the ZF
functions.

Extensive research has been devoted to the effects of heavy
metals, like Pb(u), Hg(u) or Cd(u), on ZF domains, but much
less is known about the impact of Ag(i) ions. Various Ag(i)
complexes have been vigorously tested for antimicrobial,">"?
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anti-inflammatory or anticancer properties. The use of
elemental silver nanoparticles (AgNPs) is high and rising rapidly
(30% of the products declared to contain NPs are AgNPs). They
can be found in multiple daily life applications including food
and textile industries, electronics and personal care. Moreover,
the AgNP coatings are becoming popular in medical devices
and bone implants as antibacterial additives.'*'®'? This rapid
expansion of AgNPs in various fields elevates the population
exposure to metallic nanoparticulates and ionic silver due to the
high reactivity of Ag in aerobiosis.>

Animal studies have shown that exposure to Ag in any form
leads to its accumulation mostly in the liver and spleen,> while
occupational health studies in humans reported deposition of
insoluble silver sulfide or selenide precipitates in the dermis and
cornea, causing argyria and argyrosis, respectively.”>>* Besides, a
very slow clearance of Ag has been measured in the brain and
testis, two crucial organs.*' Cellular experiments using hepato-
cytes, fibroblasts, and other human cell lines showed that
endocytosed AgNPs undergo lysosome-assisted dissolution to
Ag(1),”>?° which is the actual intracellular chemically reactive
form of silver. This process leads to the subsequent formation of
intracellular Ag(i)-thiolate complexes,”**?*”*® strongly suggesting
that Ag(1) ions target cysteine rich proteins and peptides including
metallothioneins and glutathione that are abundant. Other
proteins with solvent-exposed cysteines such as ZFs could also
bind to Ag(r), with toxic consequences. This issue has not been
properly explored, however.

In order to shed more light on how Ag(1) ions affect ZFs, we
examined their interactions with consensus peptide 1 (CP1) ZF
model peptides containing two (CCHH), three (CCCH) and four
(CCCC) Cys residues using UV-Vis and CD spectroscopies, mass
spectrometry (MS)-electrospray ionization (ESI) and ion-mobility
(IM), quantum mechanics/molecular mechanics (QM/MM), and
molecular dynamics (MD) and well-tempered metadynamics
(WT-MetaD) simulations. CP1 ZF models have been extensively
studied in terms of the coordination chemistry and thermo-
dynamics.***° We used the recently updated CP1 sequence which
represents natural ZF features even better (Fig. S1b, ESI}).*!
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Fig.1 CD (a) and UV-Vis (b) titrations of 25 pM CCCC ZF in 20 mM TES
buffer (pH 7.0) with Ag(). Blue, red, green, magenta, and black indicate 0, 1,
2, 3, and 4 Ag(l) eq., respectively. The insets show the changes in molar
ellipticity and absorption at 220 nm and 279 nm over the range of 0—-4 eq.
of Ag(l), respectively.

The CD spectra were used to determine whether the Ag(i)
binding can induce conformational changes of the ZF peptides.
First, 0 to 4 equivalents of Ag(1) were titrated into each ZF. In the
CCCC ZF the Ag,L species (L denotes a given ZF) was formed
predominantly, as evidenced by the presence of isodichroic
points and the overall stoichiometry (Fig. 1a). Its CD spectrum
features two partially overlapping intensive negative bands at
210 and 225 nm indicating the presence of an a-helix with some
contribution from a B-sheet. Ag(1) binding also induced a new
band at 265 nm, assigned to a S — Ag(1) charge transfer (CT)
band.*** Ag(1) titrations of other peptides (Fig. S2a, ESIY)
yielded various negative and positive bands in the 200-225 nm
range indicating the formation of multiple Ag(1) complexes. The
comparison with Zn(u) induced CD spectra clearly demonstrates
the fundamental alteration of the ZF conformation by Ag(i)
coordination in all cases, but the far-UV features observed for
CCHH and CCCH ZFs were significantly weaker, indicating a
mostly random coil character of the formed Ag(i) complexes.*®
The absorption spectra of the same titrations confirmed the
formation of S — Ag(1) CT bands at 240-260 nm. Their molar
absorption coefficients increase with the number of Cys residues
(Fig. S2b (ESIf) and Fig. 1b).**?? Interestingly when plotted
against the Ag(i)-to-ZF molar ratio, the CT intensity linearly
corresponds to the number of Cys residues in ZFs, confirming
that predominant/final complexes formed for CCHH, CCCH and
CCCC ZF peptides are Ag,L, Ag;L and Ag,L, respectively (see
below). The course of titrations shows, however, that lower
stoichiometry complexes were also formed. Very similar UV-Vis
spectral patterns and complex stoichiometries observed in Ag(1)
titrations of CCAA and CCCA ZFs (His residues replaced with
alanines) indicate the absence of imidazole coordination to Ag(1)
ions in CCHH and CCCH (Fig. S3, ESIT). The above observations,
together with QM/MM MD simulations (Fig. S4-S6, ESI}),
strongly support the formation of Ag,Cys,, Ag;Cys; and Ag,Cys,
clusters in Ag,L, Ag;L and Ag,L species, respectively, with sulfur
donors bringing two Ag(r) ions. The simulations indicated the
absence of secondary structures in Ag,L and Ag;L, but the highly
regular octagonal Ag,Cys, cluster in Ag,L maintained the o-helix
and a distorted B-sheet, in excellent agreement with the CD
results. The Ag,S, rings with n = 3-14 are known for low
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molecular weight thiolates,>® and recently a similar Ag,Cys,
cluster was found in the Cu(r) site of dimeric Atoxl copper
chaperone (PDB: 5FOW), but the cluster formed by a CCCC ZF
is the first one reported for a single biological molecule.

The above results were corroborated by positive-ion ESI-MS-
monitored Ag(1) titrations of ZFs performed in pH neutral
solutions (Fig. S7, ESIt). The observed 3+ ions of metal free
ZFs turn to mono- and then to multinuclear Ag(i) complexes in a
stepwise manner, with Ag,L, Ag;L and Ag,L complexes being the
most saturated ones for CCHH, CCCH and CCCC ZFs, respectively,
confirming the spectroscopic results (Table S1, ESI{). These gas
phase data, however, have only a qualitative character.>®

The tight structure of the Ag,L complex of the CCCC ZF was
additionally confirmed by MS/MS experiments, in which no
molecular fragment could be obtained for this species, as
opposed to other studied complexes (Tables S2-S6, ESIt).*”
The [Ag4L]*" molecular ion (Fig. S8 (ESIT) for the experimental
and simulated isotopic patterns) was subjected to the IM-MS
experiment, along with the [ZnL]>" and L** ions. The shorter
drift time (DT) and the narrower peak of [Ag,L]*", compared to
[ZnL]**, perfectly agree with its simulated compacted structure
(Fig. 2 and Fig. S8, ESIt). To further investigate the nature of
these conformational changes, the average collision cross-
sections (CCSs, Q) of the ZF complexes in the 3+ charge state
were calculated from the DT data (Fig. 2). The Ag,L complex was
more compact (2 = 439 A%) than the ZnL complex (Q = 461 A*) and
the apo-peptide L (Q = 512 A%) (Fig. 2). The CCS values calculated
with IMPACT software from MD simulations are comparable to
those obtained experimentally (Fig. S9, ESIT). To examine if Ag(1)
ions could affect stable Zn(u)-ZF complexes, Zn(u) saturated ZF
peptides were titrated with Ag(1) ions as monitored by CD and
UV-Vis (Fig. S10, ESIt). In all three peptides Zn(u) ions were easily
substituted by Ag(1) ions. The comparison of Ag(i) titrations of
free and Zn(u)-complexed ZFs shows some differences in the
course of signal changes, suggestive of low amounts of mixed
metal intermediates, but at stoichiometric Ag(1) concentrations the
Ag,L, Ag;L and Ag,L species were formed almost exclusively for
peptides with two, three and four cysteinyl residues, respectively.
The spectra recorded at those ratios and at a slight Ag(1) excess are
identical to those recorded for free peptide titrations. This indicated
that the Ag(1) affinity to the respective complexes is at least about
two orders of magnitude higher than that of Zn(u). In order to

100

431 \ N\4.57 |\ 5.07 o0t CCS

; linear fit CCS
50

L ZnL Ag,L
0
I T T T T T T
3 4 5

)

0
N
o

CCS fits (A?
EN
[o1]
o

I
N
o

Intensity (%)

6 7 8
Drift time (ms)

Fig. 2 The arrival time distributions (ATDs) of the CCCC ZF species in the
3+ charge state derived from the IM-MS experiment. The inset shows
average collision cross-sections (CCSs) of the CCCC ZF species in the 3+
charge state.
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Fig. 3 Zn(n) transfer from 10 uM CCCC ZF to 100 uM PAR during titration
with 0-4 eq. of Ag(l). The measurement was performed in 20 mM TES
buffer (pH 7.0).

correlate Zn(u) release with Ag(r) binding, the chromophoric Zn(u)
chelating probe 4-(2-pyridylazo)resorcinol (PAR) was added to the
Zn(u) saturated ZFs, followed by stepwise addition of single mol
equiv. of Ag(1) ions, up to four per ZF for consistency.*® Firstly, to
show that Ag(1) binding to PAR does not induce absorption at
492 nm, the control experiments (without peptides) were performed
(Fig. S11, ESIY). After that, the concomitant Zn(u) release steps were
determined in a time-dependent mode at 492 nm for Zn(PAR),
(Fig. 3 and Fig. S12, ESIt). The Zn(u) release was rapid in all cases,
with the apparent rate positively correlated with the number of Cys
residues. A similar higher reactivity of ZnCys, cores has been
observed previously for a human/chicken estrogen receptor, E. coli
N-Ada, HIV-1 nucleocapsid and FOG-1 protein.****! The addition of
1 mol equiv. of Ag(1) to the CCHH ZF caused the release of ca. 60%
of Zn(u) from this peptide (Fig. S12, ESIt). The 1st Ag(1) effect was
less pronounced for CCCH and CCCC ZFs, at ca. 40% and 30%,
respectively (Fig. 3 and Fig. S12, ESIf). This trend reflects the
increased cooperativity of the formation of Ag;Cys; and Ag,Cys,
clusters. Furthermore, as showed by us previously, a Cys sub-
stitution to other noncoordinating residues weakens the Zn(u)
binding more strongly than a His substitution.**** Individual
Cys residues in ZnCys, have comparable reactivities and energetic
contributions to the Zn(i) complex.***

The Ag(1) complexes are too strong for the direct determination
of affinity constants; therefore, we performed CD-monitored Ag(1)
titration experiments in the presence of 150 uM cyanides (CN-), the
strongest known simple Ag(i) ligand, used as a competitor.*> The
binding isotherms were significantly shifted towards higher Ag(i)
concentrations (Table S7 and Fig. S13, ESIT). This effect was used to
estimate the constant for the CCCC ZF, for which the Ag,L species
predominates at all concentrations of added Ag(). Using Kyg(cny, =
20.9 we obtained log Kxg 1, = 54.9 corresponding to log K = 13.7 per
one Ag(r) for pH 7.0 (see the ESI{ for details of calculations).*® This
value is indeed more than 2 log units higher than that for the Zn(u)-
CCCC complex (log K1, = 11.26 at pH 7.0) (Fig. S14 and Table S8,
ESIt).*® Due to the significant overlap of intermediate and final
complexes for CCHH and CCCH ZFs, their Ag(1) affinities could not
be determined precisely, but the ratio of ca. 100 of Ag(1)/Zn(u)
affinities appears to remain valid (Fig. S14 and Table S8, ESIT).
This means that Zn(u) replacement in ZFs by Ag(i) can occur even
at low silver exposure, and at higher Ag(i) concentrations the
cooperative cluster formation will make this process essentially
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thermodynamically irreversible. Taking into account that exposure
of AgNPs may load a cell with millions of silver atoms,*” our results
indicate that ZFs may indeed be targeted intracellularly.

To illustrate the Ag(i)-coupled folding process of the CCCC
ZF, a 1.3 ps long WT-MetaD simulation was performed along
with two collective variables (CVs) capturing an o-helix and
hydrophobic core formation (Tyr1, Phe10 and Phe18).*® To fully
characterize how the Ag(i) cluster influences the folding,
unbiased probability distributions were obtained for a set of
CVs through a reweighting procedure (details in the ESIL¥
Fig. $15).*° The binding of the first Ag(1) ion (two Ag-S bonds)
induces structures with the ao-helix either folded or unfolded
but the hydrophobic core always unpacked (Fig. 4a, Fig. S16a, b
and S17, ESIf). The modulated formation of the o-helix
depends on whether Ag(r) binds to Cys3 and Cys6 or Cys19
and Cys23, the latter located at the o-helix C-terminus (inter-
mediate 12, Fig. S17a and b, ESI}). In agreement, the analysis of
Ag(1) binding order demonstrated that either Cys6-Ag(1)-Cys3
or Cys23-Ag(1)-Cys19 could be formed first as shown in Fig. S18
(ESIt). The binding of the second Ag(1) (four Ag-S bonds) occurs
through intermediate 14 forming the Cys3-Ag(1)-Cys19 bonds.
This partially folds the o-helix and stabilizes the hydrophobic
core (Fig. 4b, Fig. S16a-c, S17 and S18, ESIT). The Ag;L complex
(six Ag-S bonds) is formed by the Cys19-Ag(1)-Cys23 coordination
(Fig. 4c and Fig. S16a-c, ESIT). A basin for this intermediate 15
was not found, suggesting a transient character of this species
(Fig. S16b and S17b, ESIt). The fourth Ag(i) ion binds via
Cys6-Ag(1)-Cys23 and stabilizes the hydrophobic core by packing
the Tyr1 residue (native state N, Fig. 4d, Fig. S16a-c, S17 and S18,
ESIt). In the metal-coupled folding mechanism, proposed
elsewhere,®® partial o-helix formation was observed for the
CCHH ZF in the absence of a Zn(u) ion. In contrast, in the
Ag(1)-coupled folding mechanism, proposed herein for the CCCC
ZF, there is no a-helix formation in the absence of Ag(i). There-
fore, stabilization of the o-helix and packing of the hydrophobic
core are modulated by the number of Ag(1)-S bonds formed.**°
Such a cooperative stabilization might point towards compact
Ag,Cys, cluster formation and indicate that breaking up any of
these components will destabilize the CCCC ZF.

Our study demonstrates that Ag(i) ions can directly replace
Zn(u) in ZFs of all kinds, forming complexes of various stoi-
chiometries and inducing extensive conformational changes in
the native ZF structures. They include the loss of secondary
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Fig. 4 Average structures for the intermediate and native basins extracted
from FES obtained by WT-MetaD. (a) Intermediate 4 (14); (b) intermediate 13;
(c) intermediate 11; and (d) native state (N) (see Fig. S16, ESI,{ for more
details).
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structure elements in CCHH and CCCH ZFs and formation of
an alternative secondary structure in the CCCC ZF. The maximum
number of Ag(1) ions bound per ZF is equal to the number of Cys
residues, with the highly ordered eight-membered Ag,Cys, structure
formed in the CCCC ZF. The Ag(i}-induced conformational changes
of biologically active ZF proteins might enhance or inhibit their
binding to cognate DNA sequences. Very recently the ability of low
dose AgNP exposure to inhibit the activity of hepatocyte nuclear
receptors (NR) was demonstrated.”” NR are CCCC ZF transcription
factors and thus our study provides the molecular basis for the
understanding of this and other manifestations of silver toxicity.
Our results warrant further research on the chemistry and biology of
silver reactivity towards ZF proteins and other cellular thiols in the
context of widespread AgNP exposure.
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