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Compact “push—pull” photochromic diaryethenes (DAEs) with
unsymmetric oxidation pattern of the benzothiophene core display
multicolour fluorescence switching, as a result of dual emission
from both “open” and “closed” forms. These DAEs also present an
unprecedented photo-fatigue resistance.

Photochromic compounds have isomeric states interconvertible
by alternate irradiation with ultraviolet (UV) and visible light via
a shared (singlet) excited state." They attract great attention
in life and materials science.” The optical properties of two
distinct structures are drastically different, and the switching is
controllable by changing the irradiation wavelengths. Due to the
high sensitivity of fluorescence, as the state-reporting signal, optical
systems with fluorescent photochromic units are particularly
promising.’ The photoswitching of fluorescence is promising for
molecular memories,” bio-imaging® and, in particular, as a tool for
cutting-edge nanoscopy techniques.®

Due to thermal stability of the two isomers and efficient photo-
conversion, diarylethenes (DAEs) have emerged as a versatile plat-
form for constructing fluorescent photochromic compounds.”
Current fluorescent DAEs can be divided into two categories:
Turn-Off**® and Turn-On modes.” In the former case, DAE is
connected with an additional fluorophore (forming a dyad), and
the mechanism of fluorescence modulation is based on energy/
electron transfer, usually to the closed form. This molecular design
is versatile and applicable to various types of fluorophores. The
latter case relies on the intrinsic fluorescence of the photogenerated
closed-ring isomers® of the highly fluorescent 1,2-[bis-(2-alkyl-1-
benzothiophene-1,1-dioxide-6-aryl-3-yl)perfluorocyclopentenes. '

“ Max Planck Institute for Biophysical Chemistry (MPI BPC), Am Fassberg 11,

37077 Géttingen, Germany. E-mail: vladimir.belov@mpibpc.mpg.de
b Department of Optical Nanoscopy Max Planck Institute for Medical Research,
Jahnstrasse 29, 69120 Heidelberg, Germany. E-mail: mariano.bossi@mr.mpg.de
¢ Research Center for Smart Molecules, Rikkyo University, Tokyo, Japan.

E-mail: iriem@rikkyo. ac.jp
+ Electronic supplementary information (ESI) available: Synthesis and photo-
physical studies. See DOI: 10.1039/c9cc09390g
1 Equal contributions.

2198 | Chem. Commun., 2020, 56, 2198-2201

Multicolour fluorescent
diarylethenes with high photo-fatigue resistancef

12 Mariano L. Bossi,

¥ ROYAL SOCIETY
PP OF CHEMISTRY

"“sulfide—sulfone”

C

;t*b Vladimir N. Belov, (2 *® Masahiro lIrie

Another intriguing category is dual fluorescence systems.
Although dual-emissive assemblies combining more than two
fluorescent components (e.g. a fluorescent dye, a fluorescent
diarylethene, and fluorescent dots) have been reported,"* photo-
chromic compounds that exhibit fluorescence in both isomers
are still very rare."” Due to simple chemistry which is favourable
for labelling biomolecules, the compact molecular switches have
advantages over complex multicomponent hybrid materials.

Here, we report a series of unique push-pull fluorescent
DAEs with unsymmetric oxidation pattern in the benzothio-
phene core (MeO-H, MeO-CN, MeO-CN2) that not only exhibit
reversible blue-to-red multicolour fluorescence switching,
but also undergo over 10000 cycles (in acetonitrile) without
exclusion of air oxygen (Scheme 1).

In brief, MeO-H was synthesized via methylation of com-
pound 1" followed by selective oxidation of the n-electron-rich
benzothiophene unit bearing methoxy group. MeO-CN was
obtained by selective oxidation of compound 3'* with mCPBA
followed by transformation of aromatic iodide into cyanide using
Zn(CN),/Pd(PPhs),. Dicyanovinyl substituted diarylethene (MeO-CN2)
was prepared by formylation of unoxidized DAE MeO-H followed by
condensation with malonodinitrile (Scheme 2).**

To study the photophysical properties, we first measured
photoinduced UV-Vis spectral changes of MeO-H, MeO-CN, and
MeO-CN2. Upon irradiation with UV light (365 nm) in toluene,
the colourless solutions of all compounds turned reddish. The
absorption maxima (;ax/or) of the open-ring forms of MeO-H,
MeO-CN, and MeO-CN2 were observed at 338 nm, and the
corresponding absorption maxima of the closed-ring forms

MeO-H (R = H), MeO-CN (R = CN), MeO-CN2 (R = CH=C(CN), )

Scheme 1 Photochromic reactions of MeO-H, MeO-CN and MeO-CN2.
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Scheme 2 Synthesis of “sulphide—sulfones” MeO-H, MeO-CN and MeO-CN2.

(maxAcr) were 514 nm, 509 nm, and 540 nm respectively (Fig. S8,
ESIt). The photocyclization quantum yields (@(or -, cr)) of MeO-H
and MeO-CN were 0.50 and 0.44; similar to the values reported
for analogs.">'® The value of ®(op_,cr) found for MeO-CN2 was
one order of magnitude smaller. Upon exposure to visible light
(505 nm), the coloured solutions (containing mixtures of both
forms) were fully converted to colourless open forms. The photo
cycloreversion quantum yields (@(cr— o) in toluene for MeO-H,
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MeO-CN, and MeO-CN2 were found to be 0.02, 0.18 and 0.06, which
are several orders of magnitude higher than the ring-opening
efficiencies reported for another red-emissive fluorescent DAEs."”
In all cases, the values of the isomerization quantum yields
measured in acetonitrile and toluene were almost identical. There-
fore, the photoconversion degree of DAEs with unsymmetric oxida-
tion patterns is scarcely influenced by the solvent polarity.

The photoinduced changes in the emission spectra in
toluene and acetonitrile solutions and the main photophysical
data are given in Fig. 1 and Table 1. In contrast to ‘“oxidized”
fluorescent DAEs™'%* with a high ratio of isomerization quantum
yields (®(or- cr/Pcr—or > 100), now the photostationary states
(PSS365nm) contain mixtures of both isomers in comparable
amounts. Thus, the optical properties of the UV-irradiated solu-
tions depend on absorption/emission spectra of both isomers, the
degree of conversion, and the excitation wavelength.

We next studied the multicolour fluorescence properties of
MeO-H, MeO-CN, and MeO-CN2. Irradiation of the solutions of
MeO-H and MeO-CN in toluene with UV light (365 nm) rapidly
changed the initial blue emission to red (Table 1 and TOC
graph). The emission maximum (™) and the fluorescence
quantum yield (@g) of the open form MeO-H were found to be
535 nm and 0.5%, and gA™* and &g of the closed form - 622 nm
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Fig. 1 Emission changes observed for DAEs MeO-H (A-C), MeO-CN (D-F), and MeO-CN2 (G-1) for 10 full cycles of irradiation (365 nm/505 nm), in
acetonitrile (A, D, G) and toluene solutions (B, E, H). Light of 365 nm ensures excitation of both isomers. The emission changes at the maxima of each
isomer are shown in the insets. The emission colours of both states (PSS-365 and PSS-505) are shown in the CIE chromaticity space (400-800 nm

range); see also Fig. S9 and S10 (ESI+).
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Table 1 The main photophysical data of MeO-H, MeO-CN, and MeO-CN2, in acetonitrile
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Open form Closed form (366 nm) (470 nm) (365 nm)  resistance [N%]
MeO-H 338/4365 535/0.5 514/12 657 622/0.4 0.50 0.02 0.89 23900
MeO-CN 338/4002 518/1.9 509/12 018 598/3.1 0.44 0.18 0.42 29300
MeO-CN2 338/25615 490/0.1 540/19 844 639/6.6 0.03 0.06 0.62 14 500

and 0.4%, respectively. To our surprise, the presence of an electron
withdrawing cyano group in compound MeO-CN increased the
values of @q of both open and closed forms to 2% and 3%,
respectively. The dyes presented here have very large Stokes shifts
(especially open forms). Remarkably, the introduction of an electron
acceptor dicyanovinyl group (MeO-CN2) further increased the &g of
the closed ring form to 6.6%, though it decreased the @4 of the open
form to 0.1%. To evaluate the solvent polarity effect on fluorescent
properties, we determined @y values and recorded the fluorescence
spectra of open- and closed-ring isomers in acetonitrile. Although
the emission in acetonitrile was weaker than the emission in
toluene, the multicolour fluorescence response was clearly observed.
The plots in the CIE chromaticity space show reversible multicolour
fluorescence changes of the three compounds in toluene and
acetonitrile (Fig. 1C, F and I). The reversible transitions were induced
by irradiation with UV and visible light. Furthermore, a distinct
difference in the colour transition path in the CIE diagram
was observed when solvents with different polarity were used
(acetonitrile and toluene).

To explore the effect of solvent polarity on fluorescence proper-
ties, we selected MeO-CN for further studies, due to its @q values
comparable in the open and closed forms. The emission band of the
open-ring isomer exhibited red-shift with increasing solvent polarity,
which indicates the push-pull electronic effects in this isomer
(Fig. 2A and B).'® The emission band of the closed-ring form
underwent only a slight red-shift, even in highly polar solvents
(methanol and acetonitrile; Fig. 2C). Thus, the overall push-pull
interactions in the closed form are weaker than in the open form.

Based on the recorded fluorescence spectra of MeO-CN in
various solvents, we plotted CIE diagram describing the colour
perception of a human eye (Fig. 2D). The solvatochromism of
the open form of MeO-CN combined with its photoinduced
multicolour fluorescence switching enabled the control of
emission colour in a wide chromaticity range (Fig. 2D).

Using the automated optical measurement system,'* we evaluated
the photo-fatigue resistance (“cycling number” N:) of the compounds
in acetonitrile (Fig. 3A and Table 1). For cyclization reactions,
irradiation with UV (365 nm) light was continued until the
photostationary state (PSS) was reached, which was monitored
by an increase in absorption at 518 nm. Then the samples were
irradiated with visible light (505 nm), until cycloreversion reac-
tions were fully complete (see Fig. S11-S13 in ESI¥). In addition
to the standard observation of the colour changes by monitoring
the absorption of the CFs (Fig. 3B and C), we also tracked the
fluorescence changes (Fig. 3D and E) with UV excitation of both
isomers in acetonitrile (Fig. S14-5S19, ESI{) and toluene solutions
(Fig. S20-S22, ESIt). After one of the photostationary states of the
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Fig. 2 Normalized fluorescence spectra of the open (A, igx = 350 nm)
and closed (C, Agx = 540 nm) forms of MeO-CN in cyclohexane, toluene,
dioxane, ethyl acetate, methanol and acetonitrile. (B) Emission maxima of
the OF vs. ET30 values of the solvents. (D) CIE diagram of the open- and
closed-ring isomers of MeO-CN.

system was reached (i.e. under irradiation with UV or visible
light), the emission maximum (wavelength at the maximum of
the detected signal) was automatically searched. A plot of such
calculated emission maxima gA™® vs. the number of cycles,
along with the histograms of the total obtained values, demon-
strates the value of this parameter as an efficient state assign-
ment of the system. An assignment of the system state to the
closed or open form was based on absorption (Fig. 3C) or
emission maxima (Fig. 3D). For the first 100 cycles, it showed
no errors; the threshold was arbitrarily set at the middle point
between the two local maximum bins of the corresponding
histograms (Fig. 3C and E). Remarkably, the cycling number of
MeO-CN exceeded 29 000 (50% bleaching, relative to the initial
absorbance). The fatigue resistance of MeO-H is on the same
order (>23 000 cycles), while compound MeO-CN2 survived over
14 000 switching cycles. To our knowledge, this is the first report
on photochromic fluorescent compounds that endure more than
10000 switching cycles.

In summary, we introduced three photochromic diaryethenes
with unsymmetrically oxidized cores, exhibiting photoswitchable
emission signal, with a blue-to-red multicolour fluorescence
modulation. Diarylethenes with a distinctive dual fluorescence
switching capacities were recently reported by Yokoyama et al.*>
Compound MeO-CN presented here is advantageous in terms of
its improved fluorescence quantum yield in both open/closed

This journal is © The Royal Society of Chemistry 2020
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ring isomers, efficient photocyclization/cycloreversion quantum
yields (faster switches), and the compact structure. In addition, it
exhibited an outstanding photofatigue resistance, which is
essential for all practical applications. While several fluorescent
diarylethenes are reported to endure several thousands of photo-
cycles, such highly photostable fluorescent DAEs, as MeO-H,
MeO-CN and MeO-CN2 are still rare."*'® We believe that our
work will contribute to the design and facile synthesis of
diarylethenes with unsymmetric oxidation patterns and unusual
photophysical properties interesting for the optical superresolu-
tion techniques.
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