Biomaterials Science

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *Biomater. Sci.*, 2020, **8**, 2040

Correction: Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity

Kalpana Mandal,*^a Ze Gong,^b Alexis Rylander,^a Vivek B. Shenoy^b and Paul A. Janmey*^a

DOI: 10.1039/d0bm90022b

Correction for 'Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity' by Kalpana Mandal *et al.*, *Biomater. Sci.*, 2020, **8**, 1316–1328.

After publication, the authors found an error in Fig. 5(b and c) in the main paper. The corrected Fig. 5 is shown below.

Fig. 5 Model explains the viscoelastic regulation results for different cells. (A) Schematic of motor clutch model for a cell spreading on an elastic or viscoelastic substrate (collagen I coated only on elastic PAA components). Myosin motors pull the actin bundle towards the cell center at a retrograde flow velocity $V_{\rm f}$. Clutches connect the actin bundle to the substrate based on the reaction rates $r_{\rm on}$ and $r_{\rm off}$ and resist the retrograde flow. The spreading speed $V_{\rm s}$ is the difference between polymerization speed $V_{\rm p}$ and retrograde flow $V_{\rm f}$. The viscoelastic substrate is represented as a generalized Maxwell model with two relaxation timescales $\left(\tau_{\rm s1} = \frac{\eta_1}{k_{\rm a1}}, \tau_{\rm s2} = \frac{\eta_2}{k_{\rm a2}}\right)$. (B–C) Spreading speed $V_{\rm s}$ of PHH cells (B) and Huh7 cells (C) on elastic (black) and viscoelastic (orange) substrates. Error bars represent the standard deviation (N = 10 simulations).

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aInstitute for Medicine and Engineering, University of Pennsylvania, Philadelphia 19104, USA. E-mail: mandalk@pennmedicine.upenn.edu, janmey@pennmedicine.upenn.edu ^bDepartment of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia 19104, USA