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Bioinorganic supplementation of calcium
phosphate-based bone substitutes to improve
in vivo performance: a systematic review and
meta-analysis of animal studies†

Irene Lodoso-Torrecilla,a,b Raquel Klein Gunnewiek,a Eline-Claire Grosfeld,a,b

Rob B. M. de Vries,c Pamela Habibović, d John A. Jansena,b and
Jeroen J. J. P. van den Beucken *a,b

Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or

silicon is an interesting approach to increase the biological performance in terms of bone regenerative

potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this

approach has not been systematically analyzed, yet. Consequently, we performed a systematic review

using the available literature regarding the effect of bioinorganic supplementation in CaP-based bioma-

terials on new bone formation and material degradation in preclinical animal bone defect models and

studied this effect quantitatively by performing a meta-analysis. Additional subgroup analyses were used

to study the effect of different bioinorganics, animal model, or phase category of CaP-based biomaterial

on bone formation or material degradation. Results show that bioinorganic supplementation increases

new bone formation (standardized mean difference [SMD]: 1.43 SD, confidence interval [CI]: 1.13–1.73).

Additional subgroup analysis showed that strontium, magnesium and silica significantly enhanced bone

formation, while zinc did not have any effect. This effect of bioinorganic supplementation on new bone

formation was stronger for DCPD or β-TCP and biphasic CaPs than for HA or α-TCP (p < 0.001). In

general, material degradation was slightly hindered by bioinorganic supplementation (mean difference

[MD]: 0.84%, CI: 0.01–1.66), with the exception of strontium that significantly enhanced degradation.

Overall, bioinorganic supplementation represents an effective approach to enhance the biological per-

formance of CaP-based bone substitutes.

1. Introduction

Bone is one of the most commonly transplanted tissues with
over 2 million bone graft procedures performed annually
worldwide.1 However, bone regeneration is still a challenge for
large defects or in patients with systemic diseases that nega-
tively affect bone regeneration (e.g., osteoporosis2 or diabetes

mellitus3). Autografts, i.e. a patient’s own bone, is the gold
standard in treating bone defects resulting from e.g. trauma or
tumor removal. However, this therapeutic approach shows
many disadvantages, including low availability, additional sur-
gical site for tissue harvest, and donor site morbidity.4 In
order to overcome these problems, research has focused on
synthetic bone grafts, which are off-the-shelf available and do
not require a second surgical site. Amongst available synthetic
alternatives for bone graft substitutes, calcium phosphate
(CaP)-based bone substitutes are preferred due to their simi-
larity in crystalline structure and chemistry to the inorganic
phase of natural bone, which offers them excellent
biocompatibility.5,6 Depending on the Ca/P molar ratio,
different CaP compounds can be distinguished, which have
different physicochemical properties (Table 1). CaP-based
bone substitutes are applied as bone substitute material in the
form of granules, blocks or cements.

The inorganic portion of bone primarily includes calcium
phosphates with hydroxyapatite as the most abundant phase,
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and trace amounts of bioinorganics such as magnesium, zinc,
strontium or fluorine.10–12 Therefore, addition of bioinorgan-
ics to synthetic CaP-based bone substitutes is an interesting
approach to improve their resemblance with the inorganic
composition of bone and to potentially enhance the biological
properties (e.g. increase bone regeneration potential). Multiple
bioinorganics have been added to CaPs with variable biologi-
cal effects. Among them, strontium, silicon, magnesium and
zinc seem to be the most studied ones, and have been sup-
plemented to CaPs mainly either by substitution of one atom
by the other (e.g. Sr for Ca) or by physical entrapment in the
lattice. Strontium (Sr) is an element chemically similar to
calcium, and can substitute calcium ions in osteoblast-
mediated processes.13 Multiple studies have shown that Sr has
a beneficial effect on bone tissue by enhancing osteoblast
activity, while inhibiting osteoclast-mediated resorption.14–16

Silicon (Si) plays an essential role in bone formation, mineral-
ization and crosslinking of collagen and proteoglycans during
bone growth.17–19 For example, the presence of Si in bioactive
glasses, another widely used synthetic bone graft substitute,
was described to benefit initial cell adherence, which in turn
increases cell proliferation and differentiation.20 Although
different studies have shown that Si-supplementation of CaP-
based bone substitutes enhanced osteoblast proliferation and
differentiation,21,22 others showed contradictory results.23

Another effect of Si is, that when supplemented to CaP cer-
amics, it enhances their stability.24,25 Magnesium (Mg) is one
of the most abundant ions in the human body with >50% of
the total Mg amount present within bone tissue. Mg improves
bone metabolism by enhancing cell proliferation and differen-
tiation and maintaining the normal function of parathyroid
glands and metabolism of vitamin D.26,27 Mg deficiency is a
risk factor of osteoporosis.28–31 In vivo studies have shown that
Mg-supplementation in CaP-based bone substitutes implanted
in the maxillary sinus floor enhanced their biodegradation
and improved their osteoconductivity compared to Mg-free
controls.32 Zinc (Zn) is required for the growth, development
and maintenance of healthy bones, in which it stimulates
osteoblast activity, inhibits osteoclast’s resorptive function,
and enhances bone protein synthesis, leading to increased
bone mass and growth.33,34 Cultures of osteoblasts or osteo-
blast precursors in the presence of Zn ions have shown an
upregulation of osteogenic marker gene expression, while Zn
deficiency downregulated their expression.35–37 In combi-

nation with CaP-based bone substitutes, Zn has shown to
enhance osteoblast proliferation in vitro and enhance osteo-
conduction and osteoinduction in vivo.38–42

In general, bioinorganic supplementation to CaP-based
bone substitutes has been largely studied and many studies
have explored the effect of bioinorganic supplementation on
the physico-chemical characteristics and in vitro and in vivo be-
havior of the CaP-based bone substitutes. Specifically, mainly
small animal models (i.e. rat or rabbit) have been considered,
although some studies have included larger animals, such as
sheep or dogs. However, the use in human patients has been
limited and only CaPs with Mg43–45 and Si46–48 have been
implanted. To further enhance their clinical applicability it is
important to review the current available data of preclinical
studies in order to set a direction for future preclinical and
clinical studies. Further, in view of the ambiguous effects of
bioinorganic supplementation of CaP-based bone substitutes,
there is a clear need to create an overview of all relevant in vivo
studies. To this end, in vivo studies using experimental animal
bone defect models were retrieved from the literature to
analyze the effect of bioinorganic supplementation of CaP-
based bone substitutes on bone formation and material degra-
dation. Studies including synthetic CaP-based bone substitutes
supplemented with any bioinorganic were analyzed. For com-
parison reasons, it was important that the CaP-based bone
substitute without the bioinorganic was also one of the
studied groups and that only one bioinorganic was studied. To
this end, the available literature was systematically reviewed
for data on this topic and gathered data was used to perform a
meta-analysis, where the main outcome measures were new
bone formation (NBF) and remaining material (RM), both col-
lected from histomorphometric data.

2. Methods
2.1. Search strategy

The study protocol was designed following SYRCLE
(SYstematic Review Center for Laboratory animal
Experimentation) guidelines (ESI Fig. S1†).49 For identification
of all original papers on the topic, we systematically searched
PubMed and Embase (via OvidSP). The search was conducted
on the 27th November 2018 without any language restrictions
and consisted of four main components: “bone regeneration”,

Table 1 Main CaP compounds used as bone substitutes and their Ca/P ratio7–9

Compound and typical abbreviation Chemical formula Ca/P ratio

Dicalcium phosphate anhydrous (DCPA) CaHPO4 1
Dicalcium phosphate dihydrate (DCPD) CaHPO4·H2O 1
Amorphous calcium phosphate (ACP) CaxHy(PO4)z·nH2O, n = 3–4.5; 15–20% H2O 1.2–2.2
α-Tricalcium phosphate (α-TCP) α-Ca3(PO4)2 1.5
β-Tricalcium phosphate (β-TCP) β-Ca3(PO4)2 1.5
Calcium deficient hydroxyapatite (CDHA) Ca10−x(HPO4)x(PO4)6−x(OH)2−x 1.5–1.67
Hydroxyapatite (HA) Ca10(PO4)6(OH)2 1.67
Tetracalcium phosphate (TTCP) CaO·Ca3(PO4)2 2.0
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“bone substitutes”, “bioinorganics” and “animal studies”. For
each component, relevant thesaurus terms were collected and
synonyms were identified for application in a title/abstract
search [TiAb]. The full search strategies in PubMed and
Embase are depicted in Tables S1 and S2,† respectively.

2.2. Paper selection

The selection process was carried out using SyRF
(CAMARADES, UK) and divided into two phases. In the first
phase, two reviewers (E-C. G., and J. B.) independently per-
formed the paper selection based on title and abstract.
Differences were resolved by a third reviewer (I. L. T.). In the
second phase, the full text of the selected papers of the first
phase was reviewed by two independent reviewers (I. L. T. and
J. B). Differences were resolved by discussion until mutual
agreement was reached. The inclusion and exclusion criteria
for these two phases are depicted in Table S3.†

2.3. Data extraction and quality assessment

The study characteristics data were extracted by I. L. T. from
each selected paper: animal species, strain, number of defects
per group and time point, category of CaP-based biomaterial,
bioinorganic supplement, number of relevant groups, surgical
site, implantation period and main outcomes are presented in
Table 2. This Table 2 shows a summary of all the study charac-
teristics extracted (Table S4†). Bibliographic details (e.g.
author, year of publication, and language), animal numbers/
characteristics/medical condition, dose of bioinorganic and
number of defects per animal and their size were also regis-
tered (Table S4†).

Additionally, (histo-)morphometric data on bone formation
and/or material degradation were extracted for meta-analysis.
For all included papers, outcome data for experimental and
control groups were extracted if mean, standard deviation (SD)
or standard error (SE), and number of defects per group (n)
were reported or could be recalculated. If (histo-)morphometric
data were presented only graphically, data were remeasured
using image analysis software (Fiji 1.51n, ImageJ, National
Institutes of Health, Bethesda, MD, USA).50

The risk of bias was assessed using SYRCLE’s risk of bias
tool.51 Each paper was subjected to 9 questions related to the
general risk of bias and 3 questions related to quality of report-
ing of study quality items. The risk of bias was categorized as
low, unclear, or high, the reporting quality as yes or no. Two
independent reviewers (I. L. T. and R. K. G.) performed quality
assessment of all included papers. Disagreements were
resolved by discussion until mutual agreement was reached.

2.4. Data synthesis and statistical analysis

Data were meta-analyzed using Review Manager Version 5.3.2
(Copenhagen, The Nordic Cochrane Centre, The Cochrane
Collaboration, 2012). Forest plots were used to display individ-
ual and overall effect sizes. New bone formation (NBF) and
remaining material (RM) data were extracted from the included
papers and standardized mean differences (SMD; for NBF) or
mean differences (MD; for RM) and 95% confidence intervals

(CIs) were calculated per study/comparison. Overall effect sizes
were computed using a random effects model. Heterogeneity
was assessed using I2. When a paper included measurements
at different implantation periods, the outcome was extracted at
every time point. Exceptionally, when the same animals were
used for measurements at all implantation periods (i.e.
without sacrificing the animals at each time point), only the
measurements of the sacrificial time point were considered.
When a control group was used as comparison for different
experimental groups, the number of defects in the control
group was divided by the number of experimental groups to
avoid multiple comparisons with the same defects.

To explore possible causes of heterogeneity and to assess
the influence of several variables, subgroup analyses (post hoc
analyses) were performed on the condition that three or more
independent papers with five or more comparisons were avail-
able. The variables included in the subgroup analyses were
‘type of bioinorganic’, ‘animal species’ and ‘category of CaP-
based bone substitute’.

3. Results
3.1. Paper identification and selection

The systematic literature search identified 1341 references in
PubMed and 1094 references in Embase, leading to a total of
1943 references after removal of duplicates (Fig. 1). Of those,
1768 references were excluded in the title and abstract screen-
ing phase, leaving 175 papers for full-text evaluation. After full-
text study, 99 papers were excluded based on exclusion criteria
(Fig. 1) and 76 papers were included in the systematic review.
Some papers were excluded for more than one exclusion cri-
terion. One paper was not analyzed in the further steps of the
review because it was in Japanese and there were no resources
that allowed proper translation,122 one paper was retracted123

and three papers were excluded because they used non-syn-
thetic CaPs.124–126 In the meta-analysis, 45 papers with 133
quantitative bone formation comparisons and 20 studies with
57 quantitative remaining material comparisons could be
included.

3.2. Description of characteristic of included papers

The main characteristics of the included papers are listed in
Table 2, ranked in alphabetical order of first author’s
surname. Further details of the characteristics (e.g. animal
numbers/characteristics/medical condition, dose of bio-
inorganic and number of defects per animal and their size) are
provided in Table S4.†

The included papers showed use of various animal species,
including rabbits (40 papers), rats (27 papers), sheep
(5 papers), dogs (2 papers), goats (1 paper) and pigs (1 paper),
with predominantly healthy animals (65 papers, ∼85%). In
11 papers, animals (female) were subjected to bilateral ovari-
ectomy-induced osteoporosis and in one paper animals were
subjected to steroid-induced osteonecrosis. Bone defects were
created in different sites, including femur (33 papers), tibia
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(17 papers), calvaria (14 papers), maxilla (4 papers), mandible
(2 papers), radius (2 papers), humerus (1 paper), ulna
(1 paper), vertebra (1 paper) and tarsal bone (1 paper).
Regarding the CaP-based materials used, 44 papers used slow
degrading ceramics (HA or α-TCP, from now on HA/α-TCP),
18 papers used fast degrading ceramics (DCPD or β-TCP, from
now on DCPD/β-TCP), 5 papers used a combination of HA and
β-TCP or a combination of TTCP and DCPA (from now on,
biphasic CaPs) and 9 used other CaPs, including calcium poly-
phosphates (CPPs) or calcium phosphate cements (CPCs) with
unknown exact composition. In addition, a wide range of bio-
inorganics were used; strontium (Sr, 31 papers), silicon (Si, 20
papers), magnesium (Mg, 9 papers), zinc (Zn, 8 papers), fluor-
ide (F, 3 papers), chloride (Cl, 1 paper), chromium (Cr,
1 paper), copper (Cu, 1 paper), iron (Fe, 1 paper), lithium (Li,
1 paper) and sulfur (S, 1 paper). A graphical overview of these
categories can be observed in Fig. S2.† In all papers that
involved the use of diseased animals (either osteoporosis or
osteonecrosis, 12 papers), CaP-based bone substitutes were sup-
plemented with Sr. Further, the bioinorganics dose, defect size
and implantation time widely varied among studies. Regarding
publication date, Fig. 2 shows an increase in number of papers
particularly over the last ten years. Trends in the use of bio-
inorganics are also clear: while Si was the most common bio-
inorganic used between 2000 and 2013, Sr became the most
commonly used bioinorganic for supplementation after 2013.

3.3. Risk of bias and quality of included studies

Fig. 3 presents the overall results of the risk of bias and report-
ing quality assessment of the 76 papers included in the sys-
tematic review. Overall, the reporting of quality items was
poor. Randomization was mentioned in less than 50% of the
included papers, blinding was seldom mentioned and only
3 papers addressed how the sample size was calculated.
Additionally, only 5.3% of the included papers indicated the
randomization method followed and this method was con-
sidered adequate and in as few as 2.6% of the papers the
implant allocation was correctly concealed. In addition, 22.4%
of the comprised papers registered low risk of bias regarding
to performance bias items “random housing” and “blinding of
the caregivers” and 26.3% were scored as low risk of bias for
the detection bias item “random outcome assessment”. For
this detection bias item, it is important to mention that even
more than 70% of the studies showed an ‘unclear’ risk of bias,
because bone formation is a rather slow process, the exact
order of sacrifice is not critical. As a rule, studies where each
animal had more than one group implanted, a low risk of bias
was considered for “random housing” and “blinding of the
caregivers” and “random outcome assessment”. Finally, 11.8%
of the papers scored high risk of bias for the attrition bias
item “incomplete outcome data” and 18.4% of the papers
appeared to have other problems, mainly, an unclear number
of animals or defects per animal or a low number of animals/
time point/group. Although most studies showed poor report-
ing which led to unclear risk of bias, none of the papers was
excluded based on its quality or risk of bias assessment.T
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3.4. Meta-analysis of outcome measures

New bone formation (NBF) and remaining material (RM) were
the outcome measures included in the meta-analysis (Fig. 4).
Additional subgroup analyses were conducted for variables
that likely influence bone formation and material degradation,
i.e. type of bioinorganic, animal species, and category of CaP-
based bone substitute (HA/α-TCP, DCPD/β-TCP, or biphasic
CaP). To ensure reliability, subgroup analysis was only per-
formed if at least five different comparisons from at least three
different papers were available.

New bone formation. Forty-five papers with 133 bone for-
mation comparisons met the inclusion criteria for meta-ana-
lysis of NBF (expressed as number of SDs difference; hereafter:

SD) (Table 3 & Fig. S3†). The analysis contained 134 experi-
mental groups, including data of 1345 bone defects. The
overall effect of bioinorganics on new bone formation (i.e.
SMD intra-paper comparisons of CaP-based bone substitute
supplemented with a bioinorganic vs. control CaP-based bone
substitute) was 1.43 SD with 95% CI = [1.13, 1.73] and a rela-
tively high heterogeneity of 71%. In 52 comparisons, the sup-
plementation of bioinorganics significantly increased NBF,
while only one comparison showed that bioinorganic sup-
plementation significantly decreased NBF. Regarding the type
of bioinorganic, supplementation with Mg, Si or Sr signifi-
cantly increased NBF, while Zn showed to have no effect.
Incorporation of Zn had significantly less effect on NBF than
incorporation of any of the other bioinorganics (p < 0.001).
Bioinorganic supplementation significantly enhanced NBF in
all animal species and increased NBF regardless of the type of
CaP-based bone substitute, but was particularly prominent for
DCPD/β-TCP and biphasic CaPs (p < 0.001). In general, sub-
group analysis decreased the heterogeneity, but this slight
decrease does not explain the heterogeneity.

Remaining material. Twenty papers with 57 remaining
material comparisons met the inclusion criteria for meta-ana-
lysis of RM (%) (Table 4 & Fig. S4†). The analysis contained 57
experimental groups, including data of 616 bone defects. The
overall effect of bioinorganic supplementation on RM (i.e. MD
between CaP-based bone substitute and CaP-based bone sub-
stitute with bioinorganics) was 0.84% with 95% CI = [0.01,
1.66] and a very high heterogeneity of 100%. For interpretation
of the results, it is important to understand that a ‘positive’
effect (MD > 0) means that there was more RM in bioinorganic
supplemented materials than in control materials without bio-
inorganic. In 22 comparisons, bioinorganic supplementation

Fig. 1 Flow diagram showing literature search and selection results. SR: systematic review; MA: meta-analysis; NBF: new bone formation; RM:
remaining material.

Fig. 2 Cumulative number of papers published per year that were
included in the systematic review, as a whole, and depending on the
type of bioinorganic used. After a single paper in 1988, the number of
papers increased after 2000. Bioinorganics that were used in only one
paper were not included (i.e. Cl, Cr, Cu, Fe, Li and S).
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significantly increased RM, while in 18 comparisons bio-
inorganic supplementation significantly decreased RM.
Regarding type of bioinorganic, Si supplementation signifi-
cantly increased RM, Mg did not have an effect, and Sr signifi-

cantly decreased RM (p < 0.05 compared to Si and p > 0.001
compared to Mg). Bioinorganic supplementation did not have
an effect in any animal species nor type of CaP-based bone
substitute. Similarly to NBF, subgroup analysis decreased

Fig. 3 Risk of bias.

Fig. 4 Meta-analysis of (a) new bone formation (NBF; SD) and (b) remaining material (RM; %). For NBF (SD) the standardized mean difference [95%
CI] is plotted and for RM (%) the mean difference [95% CI] is plotted. Black indicator represents the overall effect of bioinorganics supplementation
to CaP-based bone substitutes. Subgroup analysis is shown in different colours; bioinorganics in grey, animal species in blue and CaP type in red.
Dotted lines represent the ‘no effect’ value and the dashed lines represent the overall average effect.

Table 3 Subgroup analysis of the included papers for outcome new bone formation (NBF; SD)

Subgroup Number of comparisons Number of defects Effect estimate SMD [95% CI] Heterogeneity (I2)

Overall 134 1345 1.43 [1.13, 1.73] 71%

Magnesium, Mg 19 168 1.67 [0.83, 2.50] 66%
Silicon, Si 59 486 1.49 [1.04, 1.95] 57%
Strontium, Sr 27 393 1.93 [1.26, 2.59] 80%
Zinc, Zn 15 162 0.14 [−0.47, 0.76] 66%

Rat 38 417 1.65 [1.08, 2.23] 72%
Rabbit 76 736 1.46 [1.03, 1.89] 73%
Sheep 10 94 1.09 [0.30, 1.88] 50%

HA/α-TCP 85 811 0.87 [0.56, 1.18] 61%
DCPD/β-TCP 36 346 2.26 [1.52, 3.00] 75%
Biphasic CaP 7 96 3.06 [1.84, 4.28] 69%
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the heterogeneity, but the decrease does not explain the
heterogeneity.

4. Discussion

Supplementation of CaP-based bone substitutes with bioinor-
ganics is a widely researched method to enhance their bone
regenerative potential. While in the early 2000s and even
before few papers on the topic were published, the past decade
has shown a substantial increase in studies on the use of bio-
inorganics, probably related to an increasing need for effective
synthetic bone substitutes. To date, however, no consensus
exists regarding the efficacy of bioinorganic supplementation
of CaP-based bone substitutes. Here, we systematically
reviewed the literature to retrieve papers on the subject and
utilized the reported data for a meta-analysis to quantitatively
determine the effect of bioinorganic supplementation of CaP-
based bone substitutes on bone formation and material degra-
dation. Subgroup analyses were also done to determine the
effect of individual bioinorganic supplementation, differences
between different types of CaP-based bone substitutes, and
animal model effects on these outcome parameters. Our main
finding is that bioinorganic supplementation of CaP-based
bone substitutes enhances bone formation and affects
material degradation in a bioinorganic-compound-dependent
manner. Subgroup analyses showed that Sr, Mg and Si signifi-
cantly enhanced bone formation, while addition of Zn did not
have an effect. Bone formation was most enhanced in the
more degradable DCPD/β-TCP ceramics and biphasic CaPs,
while the effect in the more stable HA/a-TCP was less pro-
nounced. Finally, the effects of bioinorganic supplementation
of CaP-based bone substitutes on bone formation and material
degradation were similar in different animal models.

4.1. Type of bioinorganic

Bioinorganic supplementation of CaP-based bone substitutes
is commonly performed by ionic substitution. Bivalent cations
such as Sr2+, Mg2+ and Zn2+ can substitute Ca2+ ions within
the crystal lattice of CaP, while CO3

2− as well as SiO4
4− can sub-

stitute the phosphate group (i.e. PO4
3− or HPO4

2−) and F− as
well as Cl− can replace the hydroxyl (OH−) group. Because

these bioinorganic ions commonly have different ionic radii
than the replaced ones, their supplementation can induce
different conformational changes in the crystal lattice struc-
ture, which in turn, can lead to changes in crystal lattice stabi-
lity, microstructure, crystallinity and solubility.127 This change
in the lattice structure can also lead to an increased calcium
and/or phosphate release, and more generally, the ion
exchange dynamics between the ceramic and a biological
system, which can affect processes related to bone formation
and remodeling.128 Thus, the effect of bioinorganics sup-
plementation of CaP-based bone substitutes on bone for-
mation or material degradation is likely related to direct
chemical effect of the bioinorganic compound used as well as
to changes in the lattice structure of the CaP ceramic resulting
from its incorporation. Most studies using bioinorganic sup-
plementation did not show the release of bioinorganics in vivo,
which leads us to infer that the enhancement in bone for-
mation is also related to the conformational changes induced
in the CaPs when supplemented with bioinorganics.23

Regarding the effect of bioinorganic supplementation on
bone formation, all bioinorganics included in this study
improved bone formation, with the exception of Zn. While the
exact reason for this positive effect can still not be fully
explained, it may be partly related to previous findings that Si
plays a role in the initiation of the mineralization process of
bone,17 Mg can increase the alkaline phosphatase (ALP)
activity129 and Sr stimulates osteoblastic activity.130 Zn,
however, has demonstrated to have a concentration-dependent
effect on bone formation both in vitro and in vivo.127 Ikeuchi
et al. observed that supplementation with 6.5 µg mL−1 of Zn to
the culture medium of human bone marrow cells induced
mineralization, but higher Zn concentrations hindered it.131

Similarly, Ito et al. reported that CaP ceramics containing up
to 1.3 wt% of Zn enhanced the proliferation of MC3T3 osteo-
blastic cells, while higher concentrations were cytotoxic.38 In
the included animal studies, a wide range of Zn concentrations
was used (from 0.04 wt% to 5 wt%). Therefore, it is not sur-
prising that, on average, Zn supplementation had no effect on
bone formation due to the inhibitory effect of the higher con-
centrations. In agreement with this, Kawamura et al.40

observed an increased bone formation when supplementing
HA-based scaffolds with 0.316 wt% of Zn, but in scaffolds con-

Table 4 Subgroup analysis of the included papers for outcome remaining material (RM;%)

Subgroup Number of comparisons Number of defects Effect estimate MD [95% CI] Heterogeneity (I2)

Overall 57 616 0.84 [0.01, 1.66] 100%

Magnesium, Mg 6 60 3.83 [−2.03, 9.68] 93%
Silicon, Si 27 250 6.08 [1.72, 10.43] 97%
Strontium, Sr 15 180 −2.60 [−3.94, −1.27] 100%

Rat 13 138 2.68 [−1.80, 7.15] 86%
Rabbit 33 348 −0.78 [−1.69, 0.14] 100%

HA/α-TCP 20 202 −0.32 [−1.62, 0.99] 100%
DCPD/β-TCP 33 256 3.15 [−0.71, 7.02] 97%
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taining higher Zn concentration, an increased bone resorption
was observed. Furthermore, the substitution of Zn towards Ca
is restricted to about 15%,132 while other bioinorganics, such
as Sr can fully substitute the Ca.133 For example, Elgali et al.
(2016) studied three levels of Ca substitution of HA by Sr, up to
50%.70 Hence, it can be supposed that the effect of Zn is
limited compared to Sr. It is important to mention that com-
parison between studies regarding the bioinorganic dose is
complicated, as different authors express the amount of bio-
inorganics incorporated with different units (i.e. moles or
degree of Ca substitution, among others) and, most impor-
tantly, many studies do not indicate the specific dose. On the
other hand, Cruz et al. (2018) performed a qualitative systema-
tic review on the effect of Zn supplementation into CaPs and
concluded that Zn supplementation may be an interesting
option for enhancing bone repair.134

In vivo degradation of CaP materials can be achieved by two
different routes: passive degradation by dissolution of the
ceramic matrix or active degradation due to cellular inter-
action. Bioinorganics supplementation may fine-tune degra-
dation by altering either or both of those routes. Our systema-
tic analysis revealed that incorporation of Sr increased material
degradation. Because it is known that Sr decreases osteoclast
formation and osteoclast resorbing activity,135,136 a delay in
material degradation would be expected. Therefore, we assume
that the enhancement of material degradation is related to a
change in the lattice structure due to the smaller size of Sr
ions compared to Ca.10 This change in the CaP lattice structure
may reduce its stability and enhance the passive degradation
of the CaP matrix.

The sub-group analysis revealed that supplementation with
Si inhibited material degradation. This finding is in agreement
with the hypothesized mechanism of action, as Si has been
commonly supplemented to increase CaP stability.25,137

Further, careful review of the included papers shows that the
use of calcium silicate (CaSiO3) was the preferred method for
Si supplementation of the CaP ceramic, i.e. β-TCP.89,115,118

While β-TCP or calcium silicate alone degrade relatively fast,
the combination of both interfered with their degradation and
was found to enhance bone formation. The authors hypoth-
esized that the degradation of β-TCP or calcium silicate
occurred too rapidly to provide adequate conditions for bone
in-growth. Apparently, the combination of both created the
appropriate environment for new bone formation, even when
delaying CaP degradation.

Moreover, it was observed that Sr supplementation was
used in all the papers dealing with osteoporotic animals, plau-
sibly due to the fact that Sr has shown beneficial effects in the
treatment of osteoporosis.138,139 For example, Sr ranelate, is a
commonly used anti-osteoporotic drug.140,141

4.2. Type of animal model

An animal model in biomedical research is commonly chosen
based on the 3Rs principles as well as practical issues.142–144

Still, it is known that large animal models can more accurately
mimic the clinical situation and, hence, are more adequate to

assess the efficacy of bone substitutes.4 However, a low preva-
lence of large animal models was observed in the systematic
review. Sheep were used in a sufficient number of papers to
allow the meta-analysis of new bone formation, but the
number of papers was too low for proper meta-analysis of
remaining material. Dogs, goats and pigs were also used, but
not enough data were available for meta-analysis. Apart from
animal species, the defect characteristics are also important
for the outcome and clinical relevance of a study. Defect size
and defect site (cortical vs. trabecular bone) have been proven
to affect the bone formation process. Cortical bone has been
shown to regenerate slower than trabecular bone when bioma-
terials are used as graft substitutes.145,146 Regarding defect
size, it is important that the animal studies involve the use of
“critical size defects”, which cannot heal spontaneously. For
example, in case of a rat calvarial model, an 8 mm defect is
generally considered critically-sized,147 although smaller
defects up to 5 mm have been also described as critical.148,149

In the current review, it was observed that some studies used a
5 mm defect,92,120 while others used a larger defect size of up
to 10 mm.67,95,104

4.3. Type of CaP-based bone substitute

Based on the classification suggested by LeGeros (2002), CaP-
based bone substitutes can be categorized in different groups
with different stability/solubility: (1) hydroxyapatite (HA) and
α-tricalcium phosphate (α-TCP); (2) biphasic CaPs, and (3)
dicalcium phosphate dihydrate (DCPD) and β-tricalcium phos-
phate (β-TCP).150 Overall, we observed that bioinorganic sup-
plementation had no effect on material degradation, but
enhanced bone formation for all types of CaPs. This effect was
more significant for DCPD/β-TCP and biphasic CaPs than for
HA/α-TCP. This can be explained due to the faster degradation
of DCPD/β-TCP and biphasic CaPs compared to HA/
α-TCP.151–153 Passive CaP degradation is determined by the
chemistry and stability of the used calcium phosphate,154,155

and hence faster degrading bone substitutes (i.e. DCPD/β-TCP
and biphasic CaPs) release the bioinorganics earlier, which in
turn enhances faster bone formation.

4.4. Limitations of the study and clinical relevance

Our search strategy allowed for inclusion of a large number of
studies, which gave a detailed overview of the used approaches
for supplementing bioinorganics to CaP-based bone substi-
tutes. Moreover, the large number of papers enabled the per-
formance of meta-analysis and sub-group analysis. However,
this led to a high statistical heterogeneity, which is related to
the considerable experimental variability.156,157 Therefore, it
has to be emphasized that the current findings should not be
generalized as subgroup analysis did not reduce the heterogen-
eity. In order to compensate for experimental variability, a
random effect model was used in the meta-analysis. Ideally, all
experiments should be performed in a similar manner, but as
previously observed in other systematic reviews using pre-clini-
cal studies, this is difficult to achieve.3,158,159 Another limit-
ation of the systematic review is the low quality of reporting in
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pre-clinical papers. Study blinding was seldom reported and
randomization was reported in less than half of the included
papers. Most papers reported bone formation as a percentage
of the defect area but, however, some articles reported it as
BMD (mg cm−3) or as a regeneration efficiency ratio, which
required to plot the NBF by means of the SMD (in SD, not %).
Therefore, it is not known exactly to which extent the bone for-
mation was enhanced (in %). Nevertheless, an estimate of
∼8% increase in bone formation would be expected.

Regarding the clinical application of supplementation of
bioinorganics, a general screening of literature available was
performed in PubMed using a similar search and the ‘Clinical
Trial’ filter. This search showed that only Mg43–45,160–163 and
Si46–48 have been already supplemented to CaP materials for
clinical applications and are being commercialized for oral
and orthopedic surgical procedures.164,165 Although both bio-
inorganics were shown to enhance bone formation compared to
unfilled defects and to the similar extent as xenografts,161,163

autografts showed a superior performance.46,166

5. Conclusion

This systematic review and meta-analysis indicates a signifi-
cant positive effect on new bone formation by supplementing
CaP-based bone substitutes with bioinorganics compared to
CaP-based bone substitutes without bioinorganics, especially
when using strontium, silicon or magnesium. Moreover, the
rapidly degrading DCPD/β-TCP ceramics and biphasic CaPs
benefited from bioinorganic supplementation to a higher
extent than the slowly degrading HA/α-TCP. Bioinorganic sup-
plementation did not have an overall effect on material degra-
dation, but strontium significantly enhanced and silicon
inhibited degradation of synthetic CaP-based bone substitutes.
Further research is needed to pinpoint whether these effects
on new bone formation and material degradation are directly
related to the biological properties of bioinorganics or to the
structural changes in CaP-based bone substitutes resulting
from supplementation by bioinorganics.
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