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Meta-biomaterials are designer biomaterials with unusual and even unprecedented properties that pri-
marily originate from their geometrical designs at different (usually smaller) length scales. This concept
has been primarily used in the context of orthopedic biomaterials with the ultimate aim of improving the
bone tissue regeneration performance of implants and decreasing the risk of implant-associated infec-
tions. In this paper, we review the ways though which geometrical design at the macro-, micro-, and
nanoscales combined with advanced additive manufacturing techniques (3D printing) could be used to
create the unusual properties of meta-biomaterials. Due to their intended applications in orthopedics,
metallic and hard polymeric biomaterials have received the most attention in the literature. However, the
reviewed concepts are, at least in principle, applicable to a wide range of biomaterials including ceramics
and soft polymers. At the macroscale, we discuss the concepts of patient-specific implants, deployable
meta-implants, and shape-morphing implants. At the microscale, we introduce the concept of multi-
physics meta-biomaterials while also covering the applications of auxetic meta-biomaterials for improving
the longevity of orthopedic implants. At the nanoscale, the different aspects of the geometrical design of
surface nanopatterns that simultaneously stimulate the osteogenic differentiation of stem cells and kill
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bacteria are presented. The concept of origami-based meta-biomaterials and the applications of self-
folding mechanisms in the fabrication of meta-biomaterials are addressed next. We conclude with a dis-
cussion on the available evidence regarding the superior performance of meta-biomaterials and suggest

rsc.li/biomaterials-science some possible avenues for future research.

Introduction
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however, an alternative paradigm has been emerging motiva-
ted by the recent discoveries of how the desired mechanical,
physical, and biological properties as well as advanced (bio-)
functionalities could be achieved through geometrical designs
at the macro-, micro-, and nanoscales. This marks the birth of
the so-called “designer biomaterials” where smart application
of physical and biological principles combined with compu-
tational models guide us in designing geometries that give rise
to the desired properties and functionalities. This approach of
using physical principles and computational models to design
materials with novel properties and advanced functionalities is
sometimes called “rational design”' and has recently gener-
ated tremendous enthusiasm and interest worldwide. The first
applications of the rational design process for the develop-
ment of advanced functional materials have been in techno-
logical areas other than biomedicine. The resulting materials
are often called “metamaterials”.

Metamaterials are often defined as architected materials
that, owing to their rationally designed small-scale architec-
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ture, exhibit extraordinary properties not usually seen in
natural materials. This is a generally valid attempt at a defi-
nition for technological metamaterials where the aim of the
rational design process is to achieve exotic mechanical,*®
acoustic,” ™ or electromagnetic’**® properties. This definition,
however, does not capture the entire picture when it comes to
‘meta-biomaterials’ whose aim is to replace biological tissues
either temporarily (to facilitate their regeneration) or perma-
nently (as implantable medical devices). In fact, biological
tissues are the nature’s magnum opus and, as such, possess a
host of extraordinary properties that man-made meta-biomater-
ials can only hope to imitate. The list of unusual properties
exhibited by biological tissues is long and includes negative
Poisson’s ratios,"”” a combination of ultrahigh stiffness with
ultrahigh toughness (i.e., contradictory designs requirements
for engineering materials),"* > and interfacing extremely soft
materials with extremely hard materials (e.g., in bone-tendon or
bone-cartilage connections).*"*>

Indeed, in the case of meta-biomaterials, we are searching
for designs that enable us to achieve properties that are readily
available in nature particularly in the living matter. In particu-
lar, millions of years of evolution has equipped organisms
with ingenious ways to meet multiple, often contradictory,
design criteria. Living tissues, therefore, present favorable
combinations of mechanical, mass transport, and biological
properties including combinations that are ordinarily con-
sidered mutually exclusive. Given that the temporary or perma-
nent replacements of biological tissues should mimic their
properties, meta-biomaterials can be defined as ‘architected
materials that mimic the unusual combinations of properties
exhibited by living tissues’. This, of course, does not preclude
designing meta-biomaterials whose properties are purposefully
or due to (fabrication) limitations different from those of the
tissues they replace, as the native properties of tissues under
homeostatic conditions are not necessarily the best ones for
transient states such as those of a regenerating tissue.

In addition to the differences highlighted above, meta-bio-
materials are different from the vast majority of other metama-
terials studied to date in that they target multiple types of
(physical) properties. In that sense, meta-biomaterials can be
considered ‘multi-physics metamaterials’ as opposed to single-
physics metamaterials such as mechanical, acoustic, or optical
metamaterials. The rational design of meta-biomaterials,
therefore, requires the application of multi-physics compu-
tational approaches at multiple length and time scales to
devise micro-architectures that gives rise to the desired multi-
physics properties.

Furthermore, the rational design of meta-biomaterials
requires a multi-scale approach, because mimicking the func-
tionalities of biological tissues is otherwise impossible. As pre-
viously mentioned, the hierarchical design®*?** is partially
responsible for the extraordinary properties of biological
tissues particularly because, together with functional gradi-
ents, it allows for meeting contradictory design requirements.
This is contrast with the vast majority of technological meta-
materials demonstrated to date where only two distinct scales,
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namely the micro- and macro-scales, are recognizable. Indeed,
the limitations of the two length scales approach have been
also recognized by other metamaterials communities. For

number of  hierarchical = mechanical
2526 with extraordinary and otherwise imposs-

example, a
metamaterials
ible combination of properties, such as high stiffness and
auxetic behavior?” have recently appeared in the literature.

Given the importance of the different length scales in the
design of meta-biomaterials, this review has been organized
according to the length-scale at which the unusual properties
and functionalities of meta-biomaterials are created and
observed including the macro-, micro-, and nanoscales. In
practice, realizing meta-biomaterials with precisely controlled
geometrical designs requires the application of advanced addi-
tive manufacturing (AM = 3D printing) techniques. We will,
therefore, pay also some attention to AM techniques and their
application for fabrication of meta-biomaterials. After discuss-
ing each length scale separately, we will turn our focus to the
unique technical challenges that are associated with combin-
ing geometrical designs at different scales and the solutions
proposed for overcoming those challenges including those
based on (self-folding) origami. In terms of the application
area, the main focus of this article will be meta-biomaterials
that aim to enhance the bone tissue regeneration performance
and, thus, the longevity of orthopaedic implants while mini-
mizing the risk of implant-associated infections.

2. Macroscale design

One of the first applications of the form-freedom offered by
AM techniques for improving the longevity of orthopaedic
implants has been through patient-specific designs that
ensure the implant can exactly match the patients’ anatomy.
Due to this anatomical matching, patient-specific implants are
expected to result in improved primary stability, thereby
increasing the lifetime of implants in orthopaedic, trauma,
and maxillofacial surgeries. An exact matching of the complex
anatomical shapes exhibited by various bones*®*?° often
requires the use of complex geometrical designs (Fig. 1a). Such
a design route constitutes the simplest way through which
complex geometrical designs at the macroscale could be used
for improving the performance of implants and has been
explored by a large number of researchers.>® The design and
fabrication of patient-specific implants is, however, not the
only way to benefit from the advantages of complex designs at
the macroscale. Two new categories of the so-called ‘meta-
implants’ have been recently introduced that take full advan-
tage of complex designs at the macroscale to equip orthopae-
dic implants with unprecedented functionalities such as
deployability and shape-morphing behaviors.

2.1. Deployable meta-implants

The form-freedom offered by AM techniques could be used to
create deployable implants where the implant is compact in its
retracted state and could, therefore, be brought to the surgical

Biomater. Sci., 2020, 8, 18-38 | 19
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(@) A number of AM orthopaedic implants (reprinted from ref. 46 with permission from Elsevier, Copyright 2018). (b) The basic bi-stable

elements used for the design of multi-stable deployable implants.® (c) A deployable implant made through an arrangement of bi-stable implants.®

(d) A schematic demonstration of the concept of deployable implants.>®

site with minimum invasiveness. Once the implant is in its
intended implantation site, a deployment mechanism is acti-
vated to change the state of the implant to its fully deployed
state where it takes its full size and is fully load-bearing. The
shape and mechanical properties of the implant, therefore,
change through the deployment mechanism.

Similar ideas have been used in cardiovascular stents where
the stent is brought to its implantation site in a compressed
state and is released from its compressed state to recover its
shape elastically. The stent will, then, open the blood vessel up
at the point of its application. The superelastic features offered
by shape memory alloys such as NiTi*"*? could be used to
facilitate such deployment mechanisms by ensuring the full
recovery of the stent from its highly compressed state. This
simple deployment mechanism is practical in the case of
cardiovascular stents, because the forces required to keep our
very flexible blood vessels open are very small as compared to

20 | Biomater. Sci,, 2020, 8, 18-38

musculoskeletal forces and that there are tensile forces
imposed by the blood flow (i.e., blood pressure) that assist in
keeping the stent open. Similar design principle cannot be
used in orthopedic implants, because they need to withstand
very large forces that amount to several times the body weight
and are primarily compressive. That is why the design and fab-
rication of deployable orthopedic implants is much more
complex than the design of deployable stents, and requires
alternative design and AM paradigms.

The main design paradigm proposed in the design of
deployable implants is the concept of multi-stability in physics
and mechanics®*™” where the mechanisms are designed to
have two (i.e., bi-stable) or more (i.e., multi-stable) stable con-
figurations. Each of those stable states are associated with a
specific shape and set of mechanical properties. To change the
equilibrium state of the implant, an energy barrier should be
overcome in a specific direction. The direction of the required

This journal is © The Royal Society of Chemistry 2020
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deployment forces is particularly important in this regard,
because they should be in the opposite direction as the main
loading direction of the implant to make sure the deployed
implant cannot go back to its undeployed state once it has
been implanted.

In the first design of deployable meta-implants, the concept
of bi-stability (Fig. 1b) was used to design deployable
implants.”® Such bi-stable elements work on the basis of a
snap-through behavior that associates the different equili-
brium states of the element with different sizes and mechani-
cal properties. The basic snap-through elements were then
arranged in a variety of ways to create different types of deploy-
able implants that could be deployed either in the radial or
axial directions (e.g., see Fig. 1c and d). The deployment force
can be applied using an inflating balloon that exerts a tensile
force to push the implants from their retracted state to their
fully deployed state where the implant is subjected to primarily
compressive forces. The insertion of an inflating balloon is a
non-invasive procedure that is already used in some conven-
tional surgical procedures such as kyphoplasty,®® which is a
vertebral augmentation technique for the treatment of the
compression fractures of vertebrae. The fact that similar pro-
cesses are already in widespread clinical use, should facilitate
the adoption of the concept. A measurement of the deploy-
ment forces and mechanical properties associated with the
different designs of the deployable implants (i.e., different
arrangements of the bi-stable elements) has shown that they
are highly dependent on the exact arrangements of the basic
elements.*® This provides a design paradigm within which a
large number of design variations befitting different appli-
cations could be achieved from a single design of bi-stable
element. Given the fact that AM of multi-stable elements is
challenging, the availability of such a general design paradigm
could deliver multiple advantages in terms of the manufactur-
ability of deployable implants.

2.2. Shape-morphing meta-implants

As previously mentioned, patient-specific implants whose
shapes exactly matches the patients’ anatomy offer many clini-
cal advantages including improved primary and possibly also
secondary fixation. However, they are often much more expen-
sive, laborious, and time consuming to design and manufac-
ture. The design and manufacturing of one such implant
could take up to a few months depending on the complexity of
the case and the number of iterations required between the
designers and the responsible surgeon. These iterations and
extended lead times could also increase the cost of the
implant to many times that of off-the-shelf implants while
making patient-specific implants not an option when the
surgery needs to be performed within a short time span (e.g.,
in the case of trauma patients). It is important to note that
most of the costs of patient-specific implants are associated
with the design process where expert designers need to use
clinical images and expensive medical image processing soft-
ware to design the exact shape of the implant and iterate their
designs with the responsible surgeon.

This journal is © The Royal Society of Chemistry 2020
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An alternative approach based on the so-called “metallic
clay”*® concept has been recently proposed where the implant
is not designed to match the anatomy of a specific patient but
rather to exhibit shape-morphing and shape-locking behaviors
(Fig. 2a). This concept is in many ways similar to the way clay
is used: initially, the implant can be basically formed into any
shape using the relevant tools and/or by expert hands. Once
the desired shape has been achieved, the clay is fired (ie.,
baked) to freeze it in the intended shape. A similar concept
could be used for the design of shape-morphing implants that
will, in principle, be generic and, thus, available off-the-shelf.
The shape of the implants can be morphed into the desired
shape during the surgery. Subsequently, a locking mechanism
is activated to freeze the shape of the implant.

The concept of metallic clay requires two major mecha-
nisms, namely shape-morphing and shape-locking mecha-
nisms. The shape-morphing capability is afforded to the
implant through incorporation of many joints (Fig. 2b and c).
The joints may be complaint or kinematic (or a combination
of both) depending on the specific requirements of the
implant. In kinematic joints, the shape-morphing behavior is
created through the relative (rigid body) movements of the
different parts of the joints with respect to each other, while
the elements of complaint joints*® need to undergo material
deformation. Similarly, the locking mechanisms could be
either complaint (Fig. 2b) or kinematic (Fig. 2¢). In the case
of kinematic locking mechanisms, a moving barrier blocks
the degrees-of-freedom of the joints, thereby locking the
implant in its current shape. Complaint locking mechanisms,
however, use elastic forces to lock the implant in its current
shape. Given the complex geometries involved, the non-
assembly fabrication of a large number of (kinematic) joints,
such as those used in shape-morphing metallic implants is
only possible through an efficient use of AM and a re-design
of traditional joints to make it possible to fabricate them
without any need for support structures.*® If successful, the
metallic-clay concept could change the design paradigm par-
ticularly for such surgeries as the treatment of acetabular
defects where well-defined bony contours exist that relatively
effortlessly define the desired shape of the implant. Given the
minimum amount of material that is used in the design of
deployable and shape-morphing implants, simultaneously
satisfying the requirements regarding the mechanical per-
formance and shape-morphing capabilities poses a major
challenge that needs to be overcome through the smart appli-
cation of optimal design approaches such as topology
optimization.

3. Microscale design

The next scale of geometrical design concerns the design of
the micro-architecture of meta-biomaterials. This is the scale
whose rational design is the closest to the traditional defi-
nition of the term metamaterials within the contexts of
mechanical and acoustic metamaterials. The aim of microscale

Biomater. Sci, 2020, 8, 18-38 | 21
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Fig. 2 (a) A schematic drawing illustrating the concept of metallic clay as applied for the treatment of acetabular defects (reprinted from ref. 40
with permission from Elsevier, Copyright 2019). (b) Some examples of the prototypes made to demonstrate the concept of joints as well as the
concept of complaint locking mechanisms (reprinted from ref. 40 with permission from Elsevier, Copyright 2019). (c) A number of prototypes made
to demonstrate the concept of kinematic locking mechanisms (reprinted from ref. 40 with permission from Elsevier, Copyright 2019).

scale design is to rationally design the geometry of the consti-
tuting unit cells of a porous structure in such a way that its
effective properties at the macroscale meet certain design
objectives. In most cases, the objective is to achieve (a combi-
nation of) material properties that are unique and not attain-
able in traditional ways.

22 | Biomater. Sci,, 2020, 8, 18-38

In addition to adjusting the material properties, microscale
geometrical design could be used to facilitate the other ways
through which the performance of meta-biomaterials could be
improved. Two of these mechanisms are particularly note-
worthy. First, AM porous structures possess up to several
orders of magnitude larger (internal) surface areas as com-

This journal is © The Royal Society of Chemistry 2020
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pared to their solid counterparts. This could, in turn, result in
an amplified effect of surface bio-functionalization approaches
(e.g., see ref. 41-45) such as those applied for preventing
implant-associated infections and improving the osteogenic
response of biomaterials. Second, the internal pore space of
meta-biomaterials could be used to accommodate drug deliv-
ery vehicles and to adjust their release profiles.

In the following sub-sections, we review some examples of
the unusual properties that could result from the rational geo-
metrical design of meta-biomaterials and describe how they
could contribute towards an improved performance of ortho-
pedic implants.

3.1. Meta-biomaterials as multi-physics metamaterials

As opposed to most other metamaterials where the targeted
properties are usually of one type, meta-biomaterials need to
simultaneously satisfy multiple design criteria regarding pro-
perties of different physical natures, essentially requiring a
multi-physics design approach. The different types of pro-
perties include mechanical properties (ie., quasi-static
mechanical properties and fatigue behavior), mass transport
properties (i.e., permeability and diffusivity), and morphology-
dependent biological properties (e.g., curvature, pore size).
While the native bone tissue possesses all those properties,
replicating the same in synthetic biomaterials is often very
challenging, if not impossible.

The microscale design of meta-biomaterials is usually per-
formed  either using beam-based or sheet-based
geometries.*®"” In the case of beam-based geometries, the
basic unit cells making up the micro-architecture of the meta-
biomaterials are designed using structural elements with large
length to diameter ratios (i.e., beams or struts). Some examples
of such unit cells are space-filling polyhedra and modifications
thereof. The unit cells of sheet-based geometries, on the other
hand, are made from sheets whose thickness is much smaller
than their other dimensions (Fig. 3a). While the relationship
between the geometrical design and the resulting properties
including quasi-static mechanical properties,*®>> fatigue
lives,>*™®® and permeability®"®> have been extensively studied
for strut-based geometries, relatively limited information is
available regarding sheet-based geometries. A recent study,®
however, has shown that a specific class of sheet-based geome-
tries, namely triply periodic minimal surfaces, are extremely
successful in satisfying the multi-physics design requirements
laid out for meta-biomaterials and could offer a combination
of bone-mimicking elastic modulus, a very high yield strength,
extremely long fatigue lives, and bone-mimicking transport
properties, as well as a bone-mimicking mean surface curva-
ture of zero.®® This unique and ideal combination of material
properties and this extremely high level of multi-physic bone
mimicry is a good example of how a proper selection of the
geometrical design at the microscale could lead to favorable
properties at the higher length scales. Of course, it is impor-
tant to realize that replicating the properties of the native bony
tissue, which is in an equilibrium, homeostatic state, may not
be the best way to stimulate bone tissue regeneration.

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 (a) Some examples of the meta-biomaterials designed using
different types of triply periodic minimal surfaces and fabricated using
selective laser melting.“'115 (b) Pentamode metamaterials made from
Ti-6Al-4V®® and (c) the double-cone shape of their struts.®® (d) The
Ashby’s law between relating relative density to the mechanical pro-
perties of cellular structures breaks down in the case of pentamode
metamaterials.®®

However, the advantages of microscale geometrical design
within the context of meta-biomaterials remain relevant
regardless of the chosen design objective, because microscale
geometrical design could be also applied to satisfy any alterna-
tive design objectives.

Another example of the use of microscale geometrical
design for creating unprecedented properties is reported in a
study on pentamode metamaterials.®> A specific design of pen-
tamode metamaterials was proposed in 1995 °® but was never
realized in practice until 2012 where a first realization using a
low-stiffness polymeric material was reported.®” However, the
low mechanical properties of the materials from which those
specimens were made, meant that they were of limited use for
practical applications. In 2017, pentamode metamaterials were
realized for the first time from a medical-grade titanium
alloy with extremely high mechanical properties (i.e., Ti-6Al-4V,
elastic modulus = 110 GPa).®® The specific shape of the beam-

Biomater. Sci., 2020, 8, 18-38 | 23
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like elements making up the diamond-type unit cell of
these structures, namely the double-cones that are attached to
each other at their base (Fig. 3b and c¢), makes AM of
this type of metamaterials very challenging particularly from
metals.

There are two specific reasons why the properties offered
by pentamode metamaterials are interesting within the
context of meta-biomaterials. First, it has been shown that
pentamode metamaterials could be designed to exhibit
mechanical properties described by any elasticity tensor that
is thermodynamically admissible.®® Pentamode metamater-
ials, therefore, offer a general design platform that could be
used to create any set of mechanical properties that may be
suitable for bone tissue regeneration regardless of what the
final design criteria turn out to be. Second, it has been
shown that, for this particular class of materials, the univer-
sally valid Ashby’s law, which postulates a power law type
relationship between the relative density and mechanical pro-
perties of cellular materials, breaks down (Fig. 3d).°>°® The
breakdown of this law has to do with the fact that almost all
of the stress is transferred through the apex of the double-
cones, meaning that the dimensions of the base of the cones
could be changed at will, without affecting the effective
mechanical properties of the metamaterial. As a result, it is
possible to decouple the mechanical properties of the lattice
structure from its relative density. Given the fact that the
mass transport properties of porous structures are highly
dependent on their relative density (or porosity),**’° penta-
mode mechanical metamaterials offer a route to the decou-
pling of the mechanical and mass transport properties of
meta-biomaterials. A decoupled design of mechanical and
mass transport properties is particularly interesting given the
fact that they often require conflicting choices in terms of the
geometrical design.

Proper design of the geometry at the microscale requires
knowledge regarding the boundaries of possible properties.
Since many mechanical and physical properties that were
previously thought to be impossible can now be achieved, a
natural question to ask is, ‘are there any well-defined bound-
aries for the multi-physics boundaries of meta-biomater-
ials?’ If yes, what are those boundaries? In the case of some
of the mechanical properties (e.g., elastic modulus), some of
those boundaries have been established before (e.g.,
Hashin-Shtrikman bounds’). The property bounds are,
however, less clear in the case of some other types of multi-
physics properties and need to be further researched in the
future.

3.2. Auxetic meta-biomaterials

Auxetic metamaterials’>”’* are a special case of mechanical

metamaterials with negative values of the Poisson’s ratio.
A negative value of the Poisson’s ratio means that, contrary to
the vast majority of natural material, auxetic metamaterials
expand upon stretching and shrink upon compression. This
unusual behavior has many applications in other engineering
areas including a high energy absorption capacity’> that may

24 | Biomater. Sci., 2020, 8, 18-38
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be also relevant for