
Analytical
Methods

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
D

ec
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 6

/9
/2

02
5 

11
:1

2:
13

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Bayesian inferen
aDepartment of Statistics, University of Warw

warwick.ac.uk
bDepartment of Molecular Sciences, Macq

E-mail: alison.rodger@mq.edu.au

† Electronic supplementary informa
10.1039/d0ay01645d

Cite this: Anal. Methods, 2021, 13, 359

Received 31st August 2020
Accepted 5th November 2020

DOI: 10.1039/d0ay01645d

rsc.li/methods

This journal is © The Royal Society o
ce assessment of protein
secondary structure analysis using circular
dichroism data – how much structural information
is contained in protein circular dichroism spectra?†

Simon E. F. Spencer*a and Alison Rodger b

Circular dichroism spectroscopy is an important tool for determining the structural characteristics of

biomolecules, particularly the secondary structure of proteins. In this paper we propose a Bayesian

model that estimates the covariance structure within a measured spectrum and quantifies the

uncertainty associated with the inferred secondary structures and characteristic spectra associated with

each secondary structure type. Furthermore, we used tools from Bayesian model selection to determine

the best secondary structure classification scheme and illustrate a technique for comparing whether or

not two or more measured protein spectra share the same secondary structure. Our findings suggest

that it is not possible to identify more than 3 distinct secondary structure classes from CD spectra above

175 nm. The inclusion of data from wavelengths between 175 and 200 nm did not substantially affect the

ability to determine secondary structure fractions.
Introduction

Proteins are the main focus of a wide range of areas of research,
from biochemistry to cellular biology to drug discovery. Since
a protein's structure determines its functionality, many spec-
troscopic techniques have been developed, each one designed
to explore an aspect of these biomolecules.1 Far ultra-violet
(<260 nm) circular dichroism (CD) spectroscopy is an impor-
tant and successful spectroscopic technique that gives mean-
ingful information about the secondary structure of proteins,2–6

i.e. its local shape. CD is particularly useful when only samples
in solution are available and techniques such as X-ray crystal-
lography cannot be used. Thanks to the fast and cheap nature of
the experiments, CD is an ideal tool for testing controls in many
protein screening assays related to the drug discovery process.7

In recent years large datasets of CD spectra have been
produced8–10 which enable the relationships between secondary
structure and CD data to be explored through mathematical
modeling and statistical analysis. In CD spectroscopy the main
approach to nd the secondary structure has been to deconvo-
lute a spectrum into a weighted sum of so-called characteristic
spectra by a variety of different algorthims.11–14 For a given
protein the relative weight of each characteristic spectrum
ick, Coventry, UK. E-mail: s.e.f.spencer@

uarie University, NSW, 2109, Australia.

tion (ESI) available. See DOI:

f Chemistry 2021
enables calculation of the abundance of the respective structure
element from known data about the structure of the proteins
making up the reference set. From a statistical perspective these
approaches share the same model structure: a linear model,
and use standard regression techniques to t the model. There
are a few exceptions, such as neural network model
approaches,15–17 though the self-organising map neural network
approaches also involve nding a best match combination of
spectra and assigning secondary structures from them. The
implicit assumption behind a linear model is that the errors at
each wavelength are uncorrelated and have equal variance, even
though evidence for a more complicated error structure has
been recently pointed out,18 with variance depending on the
wavelength. There are also signicant amounts of correlation
within some parts of the spectrum. In this work we used
a Bayesian approach in which we keep the linear structure but
let the covariance matrix of the CD spectra be as general as
possible in order to identify crucial dependencies within the CD
spectra and weight the information in the most coherent way.
Firstly, our approach can be used as a secondary structure
estimationmethod or to enhance existing algorithms. Secondly,
we can use tools from Bayesian model selection to investigate
the secondary structure classications schemes that can be
determined successfully from CD data. In particular, we
consider which secondary structures can be assigned from CD
data between 175–260 nm. We also explore possible uses of the
posterior uncertainty.
Anal. Methods, 2021, 13, 359–368 | 359
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Methods
Notation

Let cx be the CD spectrum measured from an individual protein
x, formally a row with nl entries along the wavelength range, in
our case usually for data measured between 175 nm and 260 nm
with steps of 1 nm. The CD spectrum units are the per residue
molar absorption units D3 measured in mol�1 dm�3 cm�1. Let
fx represent the secondary structure fractions, a row vector of ns
secondary structure elements thatmust sum to one. Finally let B
be a matrix of dimension ns � nl, whose rows hold the char-
acteristic CD spectra for each secondary structure class. The
common hypothesis in the linear model is:

cx ¼ fxB + wx (1)

where the row vector wx represents the error between the pre-
dicted spectrum and the observed data. Even though eqn (1)
seems a typical regression problem it has challenging features
to be faced. First, eqn (1) is actually a special kind of inverse
problem19 where both the parameters fx and the design matrix
are unknown. To overcome this lack of knowledge about the
design matrix it is common practice to use a reference set,
a dataset of proteins with known secondary structure and CD
spectra, to estimate B. The secondary structure fractions fx for
proteins in a test set can then be determined. Many existing
algorithms do not use the full information from the reference
set but oen have a variable selection step13 from which to
identify a subset of proteins closely related to the test protein x
to estimate the matrix B. Second, the elements of fx are not
independent but are constrained to sum to one and usually
constrained to be non-negative numbers, as they represent the
proportion of the molecule that belongs to each secondary
structure class:

0 # fi # 1, for i ¼ 1,.,ns (2)

Xns
i¼1

fi ¼ 1 (3)

Each existing approach has a different method for satisfying
such constraints, sometimes based on ad hoc criteria and
leading to an approximate solution, e.g. the sum can be in the
region 1 � 0.05.11

A third challenge relates to the common assumptions of
considering normal and independent variables for the error wx.
IfS is the covariance matrix within a spectrum, then it is usually
chosen to be a diagonal matrix, not taking into account possible
correlations that a spectrum is known to display.

In the following sections we discuss a Bayesian approach to
inference where the fraction vector fx and characteristic matrix
B are estimated jointly, making full use of the information in
the reference set, i.e. without variable selection. We introduce
a Dirichlet prior for the fractions fx to capture the constraints (2)
and (3) and most importantly we estimate a general covariance
matrix S for the errors, allowing the model to learn the correct
covariance structure from the reference set.
360 | Anal. Methods, 2021, 13, 359–368
Model and likelihood

In order to use all the data in a reference set to estimate
secondary structures of unknown proteins, we proceed as
follows. Let C be the matrix denoting all the spectroscopic data,
whose rst nr rows are the CD spectra of the reference set, and
the remaining nt are the spectra of the proteins in the test set to
be analyzed, each row having length nl. In the same way let F be
the (nr + nt) � ns matrix of secondary structure fractions for all
the proteins, where ns is the number of secondary structure
classes. We treat all of the proteins the same, whether they are
in the reference set or not, and any unknown secondary struc-
ture fractions are treated as parameters and inferred. The
matrix formulation of the model for the CD spectra is:

C ¼ FB + W (4)

where the ns rows of B can be thought of as the characteristic CD
spectra for each secondary structure class and W is the random
matrix representing experimental variability and any other
disagreement between the observed data and predicted spectra,
such as lack-of-t.

We suppose that the CD spectra are normally distributed
about BF with the same general covariance matrix S, which will
be inferred from the data. Furthermore, we assume no depen-
dence between the spectra of different proteins. This leads to
the error W taking the form of a matrix normal distribution:

W � Nnrþnt ;nlðOnrþnt ;nl; Inrþnt;SÞ (5)

where Onrþnt ;nl is the (nr + nt)� nl zero matrix, Inr+nt is the (nr + nt)
� (nr + nt) identity matrix. The matrix S captures the covariance
structure along the rows of W (among the wavelengths in
a spectrum), whilst the columns of W (representing the
proteins) are assumed to be independent. Thus, the likelihood
function is the matrix normal density:

LðC jF t;B;SÞ ¼ ðð2pÞnl jSjÞ�ðnrþntÞ=2

exp

�
� 1

2
Tr
�ðC � FBÞTS�1ðC � FBÞ�� (6)

where Ft is the submatrix of unknown secondary structure
fractions related to the nt proteins in the test-set.
Prior distributions

The model parameters are the set {Ft,B,S}, and prior knowledge
is factorized as follows:

p(Ft,B,S) ¼ p(Ft)p(S)p(B|S,Ft)

The conditional dependence structure of the model is shown
in the ESI (Fig. S1†). For every protein in the test set we chose
independent Dirichlet-distributed priors:

fx � Dir(a), for x ¼ nr + 1,.,nr + nt

and in applications we used the Jeffreys prior
This journal is © The Royal Society of Chemistry 2021
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a ¼ [1/2,.,1/2]ns

The Dirichlet distribution is a natural choice because the
parameter space is a ns-dimensional simplex dened by the
constraints (2) and (3).

For B andSwe follow the common choice for Bayesian linear
models and choose conjugate priors.20 The prior for B is the
matrix normal distribution with mean M and covariance
matrices U andS. In applications thematrixMwas chosen to be
the zero matrix, which is symmetrical with respect to positive
and negative signals – reecting le and right-handed chirality
– and has a shrinkage effect. The matrix U represents the
covariance between the secondary structure classes and a g-
prior21 is chosen to account for possible relationships within the
secondary structures:

U ¼ g(FTF)�1.

Following George and Foster,22 we set the hyper-parameter
g ¼ nr, the dimension of the reference set, this choice is
referred to as the unit information prior.

The prior for the nl � nl covariance matrix S, representing
the covariance structure within a CD spectrum, is the inverse-
Wishart distribution. The inverse-Wishart Wn

�1(d,S) is the
generalization of the inverse-Gamma distribution in n-dimen-
sions, having density:

pðSÞ ¼ cðn; dÞjSjðnþd�1Þ=2jSj�ð2nþdÞ=2
exp

�
� 1

2
Tr
�
S�1S

��

for positive denite S where

cðn; dÞ ¼ 2�nðnþd�1Þ=2

G½ðnþ d� 1Þ=2�
and G[$] is the Euler Gamma function.

In applications we chose d ¼ nl, representing the degrees of
freedom, and S ¼ Inl, a covariance matrix with no correlation
and unit variances. In summary, we can write for the priors:

B
���ðS;F tÞ � Nns ;nl

	
M; nr

�
FTF

��1
;S



(7)

S � Wnl
�1ðnl;SÞ (8)
McMC algorithm

The computation of the posterior distribution p(Ft,B,S|C) is
done using Markov chain Monte Carlo (McMC). Due to the
conjugate prior specied in eqn (7), the full conditional distri-
bution for B follows a matrix normal distribution,20,23

BjðC ;S;F tÞ � Nns ;nl

�
M*;U*;S

�
(9)

with updated parameters:

M* ¼ U*
�
FTC þU�1M

�
U* ¼ �FTF þU�1��1
This journal is © The Royal Society of Chemistry 2021
The full conditional distribution for the covariance matrix S
is given by,

S|(C,Ft) ¼ W�1(d*,S*) (10)

with

d* ¼ dþ nr
S* ¼ S þMTU�1M þ CTC � �M*

�T�
U*
��1

M*

The conjugate priors for B and S allow us to integrate out
these parameters and obtain a closed-form expression for the
likelihood:

pðC jF tÞ ¼ 1

pnrnl

�jU*j
jU j

�nr Gnl

�
d*

2
�jSjd

Gnlðd=2ÞjS*jd*
(11)

where GpðaÞ ¼ ppðp�1Þ=4Qp
j¼1 Gðaþ ð1� jÞ=2Þ is the multivariate

gamma function. Integrating out these parameters greatly
improves the mixing of the resulting MCMC algorithm.

The prior for Ft is not conjugate and so these parameters are
updated using a Metropolis–Hastings step, for each protein
individually. Proposals are generated using an adaptive
Dirichlet random walk algorithm. If fx is the row within Ft for
protein x, then the proposal is

f
0
x � Dirchletðaþ bxf xÞ (12)

where the scaling factor bx is increased by 0.234 � 10/i on
iteration i if the proposal is rejected and decreased by 0.776 �
10/i if the proposal is accepted. This adapts each proposal to
target an acceptance rate of 0.234. If samples for S and B are
required then these can be drawn from eqn (9) and (10)
respectively given the samples from Ft.
Protein data and reference sets

Open access CD datasets are available in the Protein Circular
Dichroism Data Base (PCDDB)9 with high quality data obtained
using Synchrotron Radiation Circular Dichroism. From the
PCDDB we took the SP175 dataset8 containing spectra for 71
globular proteins. We considered three secondary structure
classication schemes. The rst comes from the DSSP algo-
rithm24,25 which includes 8 classes: a-helix, 3-10-helix, b-strand,
turn, bend, p-helix, b-bridge, irregular. In the SP175 database
there is almost no contribution from p-helix, so in all analyses
we combined this class with irregular, leaving 7 classes in total.
The second scheme we considered included just 3 classes taken
from DSSP: a-helix, b-strand and other (referred to as DSSPred),
comprising the sum of the remaining categories. The third
scheme was dened through the CD scheme26 and following.27

We refer to this as the SELCON scheme whose six secondary
structure classes are: regular helix (the middle of any helix),
distorted helix (the two residues on each end of a helix), regular
b-strand, distorted b-strand (1 residue on the end of each
strand), turn and other. Finally, we also consider the BeStSel
classication scheme from ref. 27. Their eight classes are
regular a-helix, distorted a-helix, le-twisted b-strand, relaxed
b-strand, right-twisted b-strand, parallel-strand, turn and other.
Anal. Methods, 2021, 13, 359–368 | 361
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For details of the interrelationship between these classication
schemes, see ref. 27.
Performance indices and cross validation

Algorithms are usually tested with leave-one-out cross valida-
tion. In this methodology one protein at a time is removed from
the reference set and is specied to be the test set. Repeating
this for each protein in the original reference set gives nr esti-
mated vectors of secondary structure, which we will refer to as
the cross-validation set.

The performance of an algorithm, i.e. comparing
a secondary structure estimate with the X-ray experiment value,
taken as “truth”, is performed with two measures commonly
accepted in the CD literature: the root-mean-square deviation
(RMSD) d and the Pearson correlation coefficient r. They are
dened for a protein x with true value f *x as

dx ¼
 
1

ns

Xns
i¼1

	
f x;i � f *x;i


2!1=2

rx ¼
Pns
i¼1

�
fx;i � f x

�	
f *x;i � f *x



sf xsf *x

(13)

where �f denotes the mean of the entries in the vector f and sf

denotes the standard deviation. These two quantities are related
to single protein estimation only. In order to measure the
performance of the algorithm, averages over the cross-valida-

tion set are taken. In particular the average RMSD, d ¼ 1
nr

Xnr
x¼1

dx

has been used by other authors, see for example,11 as prediction
error of any (future) protein structure estimates.

As well as measuring global performance, it is interesting to
know how the algorithm behaves for each secondary structure
class. The RMSD di and correlation coefficient ri, for class i, are
calculated similarly to (12) and (13), but performing the sum
over the proteins x in the cross-validation set. The measures are
known in the literature as performance indices of the analysis
and used for comparisons between methods. A variety of more
sophisticated performance measures also exist, which attempt
to normalise by the amount of variation inherent within each
class. One such measure is zi ¼ si/di,28 where si is the standard
deviation of the secondary structure fractions for class i. If zi is
greater than 1 then the average error is less than a random
choice from the reference set.

Our Bayesian approach produces a posterior distribution
over secondary structures rather than a single estimated
secondary structure vector. Unless otherwise stated we have
used the posterior mean secondary structure as the estimated
structure.
Model comparison via marginal likelihoods

An advantage of our Bayesian approach is that it becomes
possible to use Bayesianmodel comparison to answer questions
of scientic interest, such as which secondary structure classes
can be identied from the reference proteins and whether two
362 | Anal. Methods, 2021, 13, 359–368
CD spectra share the same secondary structure. In order to
choose between models {Mi : i ˛ I}, we examine the posterior
probability in favour of model Mi, given by:

PðMi |CÞ ¼ pðC jMiÞPðMiÞP
j˛I

p
�
C |Mj

�
P
�
Mj

� (14)

where p(C|Mi) is the marginal likelihood for model i.
There is no closed form available for the marginal likeli-

hoods for these models. However, due to the conjugate priors
for B andS, we can integrate out these two parameters to obtain
an expression for p(C|Ft), see eqn (11).

To obtain an estimate of the full marginal likelihood

p(C) ¼ Ð p(C|Ft)p(Ft) dFt

we apply methodology that uses samples from the McMC to
inform an importance sampling estimator for the marginal
likelihood.29,30 First samples are obtained from the marginal
posterior p(Ft|C) using the usual McMC algorithm. Secondly
a parametric distribution (with known normalising constant) is
tted to the McMC samples, usually a multivariate normal
distribution. Let q(Ft) denote the density of this distribution. In
this application only the rst (ns � 1) components of each
secondary structure vector are used, as the nal component can
be recovered from constraint (3). Thirdly, N samples (labelled
Ft

(1),.,Ft
(N)) are drawn from q(Ft). Finally, we obtain the

importance sampling estimator for the marginal likelihood for
a specic model Mi:

pðC |MiÞ ¼ 1

N

XN
k¼1

p
�
C |F t

ðkÞ;Mi

�
p
�
F t

ðkÞ|Mi

�
q
�
F t

ðkÞ� (15)

It is desirable to make q(Ft) over-dispersed relative to the true
posterior, to make the variance of the importance sampling
estimator as small as possible. This can easily be achieved by
replacing q(.) with a multivariate t-distribution or a mixture of
the multivariate normal and the prior p(Ft). For full details of
this methodology see Touloupou et al.29
Results and discussion
Secondary structure estimation

There is signicant debate in the literature as to whether CD
spectra from 260–175 nm contain enough information to give
different spectral signatures for any folds more than a-helix and
b-sheet. So, to avoid trying to answer multiple questions
simultaneously we chose to assess the accuracy of secondary
structure estimation using our Bayesian approach by perform-
ing a leave-one-out cross validation over the reference set SP175
with the simplest classication scheme, DSSPred. In Table 1 we
have compared our model predictions with some of the other
algorithms, including SELMAT3,8,26 Partial Least Squares (PLS),
Principal Component Regression (PCR), Neural Network (NN),
and Support Vector Machines (SVM) using results taken from
ref. 31. Broadly speaking, our Bayesian approach is competitive
with the other approaches for a-helix, but does not do as well for
This journal is © The Royal Society of Chemistry 2021
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Table 1 Cross-validation results for the SP175 proteins with 3
secondary structure classes from DSSP: a-helix, b-sheet and other
structure. Results for competing approaches (SELMAT3, PCR, PLS, NN
and SVM, taken from ref. 31) are shown. The best performing approach
for each measure is given in bold. d is RMSD and r is the correlation

Method

a-helix b-sheet Other

d r d r d r

Bayesian 0.061 0.96 0.127 0.77 0.137 0.65
SELMAT3 0.063 0.96 0.083 0.86 0.078 0.70
PCR 0.057 0.97 0.069 0.91 0.066 0.80
PLS 0.053 0.97 0.073 0.90 0.068 0.78
NN 0.055 0.97 0.067 0.91 0.062 0.82
SVM 0.057 0.97 0.069 0.91 0.066 0.79

Table 2 Cross-validation results for the SP175 proteins with the
SELCON secondary structure scheme. Results for competing
approaches SELMAT3 and PCR are taken from ref. 31. The best per-
forming approach for each measure is given in bold

Structure

Bayesian SELMAT3 PLS

d r d r d r

Regular helix 0.090 0.836 0.048 0.956 0.040 0.971
Distorted helix 0.129 0.043 0.035 0.809 0.036 0.791
Regular b-strand 0.090 0.695 0.073 0.792 0.063 0.853
Distorted b-strand 0.281 �0.081 0.020 0.913 0.023 0.889
Turn 0.201 0.098 0.052 0.325 0.052 0.332
Other 0.169 0.278 0.050 0.717 0.050 0.720
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b-sheet. Results for the normalised measure z are given in the
ESI (Tables S1 and S2†). Overall, there is no clear best approach.

Table 2 (which is rotated with respect to Table 1) shows the
leave-one-out cross validation results using the SELCON
secondary structure scheme, over the SP175 reference set. This
time the Bayesian approach does not perform well, particularly
for the classes turn and other. Results for the normalised
measure z are given in the ESI,† where a value above one indi-
cates an improvement above choosing at random from the
reference set. For both SELMAT3 and PLS the value of z is just
1.04 for turn. The results of Table 2 and the normalisedmeasure
z in the ESI† indicate that there is not enough information, even
in spectra down to 175 nm to differentiate the 6 SELCON
secondary structure motifs.

We hypothesise that the underlying cause of this is that in
our Bayesian approach we do not perform variable selection to
identify a subset of the reference set for each cross-validation
step. Variable selection has been found to avoid inconsis-
tencies between CD spectra and secondary structure schema to
improve the quality of the analysis.13,27 We have chosen not to
select a subset of proteins for the reference set that are similar
to the test protein as we wanted to use all the information from
the reference set. If an a-helix, for example, has a characteristic
signal then it should be consistently present in spectra for all
proteins containing a-helice. We do believe that other protein
features, such as distortions at the ends/joins, side chains and
higher order structures, can obscure or modify this signal.
This journal is © The Royal Society of Chemistry 2021
These features are not necessarily represented in any of the
secondary structure characterisation schemes. Bayesian anal-
yses usually consider information from the whole data set and
use the parameter uncertainty to weight the information
content rather than discarding information that does not t the
pattern.

Another consideration is that early, landmark papers that
found a need for variable selection32,33 were using techniques
such as partial least squares (PLS) to identify the basis vectors
from a comparatively small number of reference proteins.
Whilst PLS will always succeed in producing n basis vectors
from n (linearly independent) protein measurements, it is not
clear from this kind of analysis how many of the resulting
vectors contain only contributions from the underlying signal.
The variability inherent in the dataset will certainly dominate in
the last basis vectors and (hopefully) the signal will dominate in
the rst few vectors, but it may be the case, especially when the
number of proteins in the reference set is small, that the basis
vectors in the middle are actually representing the variability in
the dataset as much as clearly identied secondary structures.
The immediate conclusion that could be made is that variable
selection is important for making predictions using existing
classication schemes. However, the apparent success of the
variable selection approaches depends on having ‘like’ proteins
in the reference set which is simply not always possible with
unknown proteins.
Identiability of secondary structure classes

To explore what can be identied from the CD spectra, we used
themodel selectionmethodology to determine which secondary
structure classes can be identied from the amount of infor-
mation in a given reference set. We used the 3 classication
schemes: DSSP, SELCON and BeStSel, and we also dened
simpler schemes from within these by summing together
components. Since DSSP, SELCON and BeStSel have 7, 6 and 8
secondary structure classes respectively, we considered 5220
schemes in total.

Each potential secondary structure scheme is represented by
a different design matrix of secondary structure fractions F.
Given F, we can evaluate the marginal likelihood for the model
analytically from eqn (11) since the test set is empty here. These
marginal likelihoods can be used to produce Bayes factors
comparing any pair of models and, once prior probabilities for
each model have been specied, the posterior probability in
favour of each secondary structure scheme can be identied.
Following Scott et al. and Spencer et al.34,35 we adjusted for
multiplicity caused by different numbers of structures in the
different models by rst assigning a prior distribution over the
number of classes, and then dividing the mass equally amongst
the models that have the same number of classes. In applica-
tions we chose a uniform prior over the number of classes
between 3 and the maximum as summarised in Table 3.

We performed model comparison to nd the most appro-
priate model within the three secondary structure schemes
individually and also amongst all three schemes. Again, to avoid
bias towards schemes with larger numbers of models, we rst
Anal. Methods, 2021, 13, 359–368 | 363
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Table 3 Models with posterior probability greater than 0.001 within each classification scheme and in a comparison between all schemes
combined

Classication
schemes

Posterior
probability

Log marginal
likelihood Secondary structure classes

DSSP 0.510 �7296.235 a-helix 310-helix+b-strand + bend b-bridge + turn + other
0.448 �7296.366 a-helix b-strand + bend 310-helix+b-bridge + turn + other
0.028 �7299.131 a-helix+b-

bridge
b-strand + bend 310-helix + turn + other

0.013 �7299.892 a-helix+b-
bridge

310-helix + b-strand + bend Turn + other

SELCON 0.999 �7319.677 Regular a-
helix

Regular b-strand Distorted a-helix + distorted b-
strand + turn + unordered

BeStSel 1.000 �7205.936 Regular a-
helix

Le b-strand + relaxed b-strand +
parallel

Distorted a-helix + right b-strand +
turn

DSSP, SELCON,
BeStSel

1.000 �7205.936 Regular a-
helix

Le b-strand + relaxed b-strand +
parallel

Distorted a-helix + right b-strand +
turn

Fig. 1 Plots of fraction (out of a total of 1) of secondary structure
motifs versus a-helical content for the proteins in reference set SP175
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assigned a prior probability of one third to each scheme and
then divided this prior mass amongst the models stemming
from each scheme as before. Table 3 gives all the schemes with
posterior probability greater than 0.001. For DSSP the posterior
probability is largely split between 2 very similar models that
differ only in where 3–10 helix is included. For the SELCON
scheme the best model included regular helix and regular b-
strand as separate components and combined the remaining
classes together. The best model for the BeStSel scheme
included 3 basis spectra: regular a-helix; the sum of le-b-
strand + relaxed and b-strand + parallel, and the remaining
components. This model had by far the largest marginal like-
lihood and therefore it also dominates the comparison between
the 3 classication schemes. Interestingly under all three clas-
sication schemes just 3 basis spectra were needed to explain
the data. These all included a single a-helix class in the best
model and combined class including b-strand as the second
basis spectrum. It may be concluded that no more than three
distinct structures that can be assigned from the data between
175–260 nm.

To investigate this further we performed a cross-validation
with the BeStSel secondary structure scheme with the highest
marginal likelihood for 3, 4 and 5 secondary structure classes.
Results for the normalised measure z are given in ESI.† We
repeated each analysis using data down to 175, 180, 185, 190,
195 and 200 nm. The results show that for all these ranges our
approach can successfully identify 3 secondary structure
classes, as the z values are all substantially above 1. This
provides at least some evidence that our model selection
approach, which favours the BeStSel secondary structure
scheme, does so with good reason. The z values decay slightly as
the lowest 5 nm of the spectra are sequentially removed, but not
substantially. However, when we try to infer more than 3
secondary structure classes then there is always at least one
class that has a z value below one.

These results are an interesting contrast with the accepted
literature consensus e.g.36 which is that data to 200 nm contain
two independent pieces of information (which with the
requirement of the sum of components adding to 1 makes three
364 | Anal. Methods, 2021, 13, 359–368
pieces of information), data to 190 nm contain 3–4, and data to
178 nm provide 5. The origin of this consensus is in a single
value decomposition approach based on 16 reference spectra
performed in 1985 by Manavalan and Johnson.33 Our work
indicates that although CD spectra to lower wavelengths do
contain more information about protein structure, it cannot be
translated into increasing numbers of traditional well-dened
structures.

Spectra covariance matrix and spectral quality

As shown in Fig. 1, a-helix and b-sheet content are in practice
fairly anti-correlated, whereas turns and bends scatter about
a mean value largely independent of helix and sheet content
until high helix content where bonded turns decrease. So, we
wished to characterise the covariance structure of a CD spec-
trum. We used the SP175 reference set to calculate the posterior
using the DSSP structure annotation.

This journal is © The Royal Society of Chemistry 2021
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distributions of the transformation matrix B and covariance
matrix S using the DSSPred scheme (a-helix, b-sheet and other).
In this case the test set is empty and so there is no need for
McMC – samples from the posterior can be drawn directly from
eqn (9) and (10).

Fig. 2(a) shows the three characteristic spectra that were esti-
mated from the SP175 reference set: the thick lines are the
posterior median of the three columns of B and the shaded area
captures a 95% credible interval. In Fig. 2(b) we show an image
representation of the posteriormode forS, given by S*/(nr + nl + 1).
Thus, we conclude that despite the tendency for a-helix and
b-sheet to act like a see-saw (Fig. 1), they have distinct typical
shapes that combine to give an observed spectrum.

Fig. 2(a) and (b) show that there is more uncertainty/variability
for lower wavelengths and relatively little variability above 250 nm
where the spectra approach zero. The wide diagonal green band in
Fig. 2(b) indicates a strong correlation between errors at similar
wavelengths. Conversely the red patches indicate a negative
correlation between very low wavelengths and the middle of the
spectrum, indicating that if the observed spectrum is lower than
predicted at around 190 nm, for example, then it will be higher
than expected in the 210–230 nm region.

A key feature of our modelling approach is that we estimate
covariance structure of a CD spectrum directly from the data,
allowing the measurement uncertainty to change with wave-
length and errors at similar wavelengths to be correlated. Most
existing algorithms implicitly assume that the errors are
uncorrelated so that S is forced to be a diagonal matrix.11–14,27

This forces errors at similar wavelengths to be uncorrelated,
when in reality we expect them to be similar. Fig. 2(b) shows the
estimated error structure of a spectrum and strong correlation
structure is clearly present. Furthermore, the diagonal
elements, representing variances, have a strong dependence on
the wavelength, with larger variances at lower wavelengths. This
feature is expected due to how the CD instrument works. At
shorter wavelengths the high-tension voltage of the photo-
multiplier tube, which transforms the light signal into an
electrical signal, is increased to compensate for the lower power
of the light source. Thus, an increased variability in the low UV
region data (l < 200 nm) is a known feature of this kind of
Fig. 2 (a) Plot of the estimated characteristic spectra for a-helix,
b-sheet and other structure based on an analysis of the SP175 refer-
ence set. The lines represent the posterior median and the shaded
areas represent 95% credible intervals for the characteristic spectra. (b)
The posterior mode for the covariancematrix within a CD spectrumS,
based on the same analysis.

This journal is © The Royal Society of Chemistry 2021
spectrum, but gives a worrying indication that the reference
spectra are not as perfect as one might hope in the low wave-
length region. Above 200 nm the covariance gradually fades to
zero along the diagonal indicating higher quality data in this
region.

Fig. 2(b) also shows that close wavelengths are positively
correlated but further wavelengths are negatively correlated.
Two potential mechanisms for generating a negative correlation
structure are shown in Fig. 3. Negative correlation could be due
to differences in the spectra of proteins in the reference set with
similar overall secondary structure content. For example, if two
proteins, with close secondary structure, display two similar
spectra with a small scaling factor (concentration error) or
a slight translation on the wavelength axis (poor wavelength
calibration),37 these differences would lead to a tted spectrum
somewhere in between and the residual would be positive
correlated in the short distance but negative for further wave-
lengths as the spectra change sign or gradient. Another source
of disagreement between the observed and tted spectra could
be a lack of t of the model, which might stem from the
different between, n helical residues being in 5 small helices or
1 large one.27 Nevertheless, our methodology is able to identify
these features of the CD data covariance structure, allowing it to
properly weight the information when performing secondary
structure estimation or spectral comparison.
Do two proteins with similar spectra have the same secondary
structure?

The second model selection question we address is to deter-
mine whether two or more similar looking protein CD spectra
Fig. 3 Schematic representation of two kinds of error that lead to the
correlation structure observed in Fig. 2(b). In (a) a translation to the left
of 2 nm and (b) a rescaling of the spectrum by a factor of 0.7 (dash line)
was applied to the true spectrum (solid line). The true spectrum was
bovine gamma-E protein (PDB entry 1m8u). The bottom row plots
show the difference between the true spectrum and the spectrum
with error.

Anal. Methods, 2021, 13, 359–368 | 365
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correspond to proteins with the same secondary structure or
not. Let cx and cy be the spectra from two protein samples x and
y. LetM0 be the model assuming the two proteins have the same
secondary structure. Let M1 be the alternative model in which
we look for two separate secondary structures for x and y.
Schematically we have:

M0: f x ¼ f y
M1: f xsf y

Using eqn (14) and (15) we evaluate the marginal likelihood
and the posterior model probability for the two models. As
a model prior we chose P(Mi) ¼ 1/2 for i ˛ {0,1}.

Under model M0 the spectra cx and cy are assumed to have
the same secondary structure f : fx¼ fy. Here Ft has two identical
columns, both equal to f. Under model M1 we obtain posterior
samples for fx and fy, which represent the two columns of Ft. For
both models the marginal likelihood can be estimated with the
importance sampling estimator (15). However, for modelM0 the
importance proposal must be tted to posterior samples from
just one column of Ft, and the second column is set equal to the
rst; whilst in M1 the two columns are sampled independently.

We tested the comparison method for two CD spectra with
two simulated examples. For our rst spectrum cx, we take the
spectrum of sucrose porin protein (scrY, PDBID: 1a0s) from the
MP180 dataset.38 To obtain our second spectrum cy, we added
noise to cx. First, we added white noise (Fig. 4 le column), with
standard deviation equal to 0.12D3. Second, Fig. 4 right column,
we added multivariate Gaussian noise with zero mean and
covariance matrix given by the posterior mode for S, repre-
senting the usual experimental variability. For both compari-
sons we tted the competing models using 1000 iterations of
the MCMC and then used 100 000 importance samples drawn
from a t-distribution with 3 degrees of freedom. The model
Fig. 4 Top row: plots of the scrY spectrum (black) and the scrY
spectrum with added noise (red). Bottom row: plots of the difference
between the two spectra. Left column: Gaussian white noise, right
column: multivariate Gaussian noise with covariance structure rep-
resenting usual experimental variability (see text for details).

366 | Anal. Methods, 2021, 13, 359–368
comparison with white noise suggests that the secondary
structures are different (posterior probability of a difference
0.987). For the experimental noise, the model comparison
favours the simpler model, that the two secondary structures
are the same (posterior probability of a difference 0.033).
Although the magnitude of the white noise is much smaller
than the experimental variability (see Fig. 4 lower plots), the
model comparison exercise has correctly identied that the
white noise does not conform to experimental variability.

Conclusions

In this paper we rst validated our Bayesian approach for CD
structure tting, then we used the model selection methodology
to compare secondary structure classication schemes. We
found that the BeStSel scheme was better at explaining the
SP175 reference set than the competing schemes. We also
found that the preferred model included just 3 basis spectra,
which suggests that attempting to predict more than 3 types of
structure will lead to much greater uncertainty in the estima-
tion. By looking at the normalisedmeasure zwe showed that CD
data between 175–260 nm contain only enough information to
assign 3 secondary structure motifs (some version of a-helix and
b-strand, and the rest). In contrast to the general consensus, our
work indicates that although CD spectra to lower wavelengths
do contain more information about protein structure, it cannot
be translated into increasing numbers of traditional well-
dened structures that can be determined. We would advise
using data down to at least 195 nm, with lower cut-offs slightly
improving the structure tting. In practice more structures can
be assigned if the reference set is reduced to include only
spectra similar to the unknown protein.

We have showed the importance of capturing the correct
covariance structure within a spectrum. Our Bayesian approach
accounts carefully for the uncertainty inmeasurement as well as
the unknown basis spectra. Three basis spectra and their
uncertainty envelopes were generated. The experimental
uncertainty could be removed by replacing the smoothed aver-
aged reference and test spectra in our calculations withmultiple
individual repeats, preferably from different experiments and
instruments. The result would be the spectral/structural varia-
tion for a revised Fig. 1(a). With replicate spectra the model
could be further developed by adding a multivariate random
effect associated with each protein, so that it would become
possible to quantify the variation due to measurement error and
poor model t separately.

Whether our Bayesian method identies two spectra as
different depends strongly on the kind of noise in the two
spectra and we were able to distinguish between a typical CD
error, inferred from the reference set, and another kind of
noise, i.e. a Gaussian random error. This comparison method
has potential wide applications, as a suitable tool to monitor
structural changes in protein screening assays, production
processes or drug discovery processes.

A second direction for future development would be to
combine data from different techniques such as linear
dichroism, infrared absorbance spectroscopy, Raman, NMR
This journal is © The Royal Society of Chemistry 2021
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etc.3,39–46 that might provide orthogonal information about
protein structure. By fully characterising the measurement
uncertainty with each technique, our Bayesian approach
provides a natural way to combine and to correctly weight
information across techniques, unlike existing approaches28,47

in which the inuence of each technique depends only on the
relative numbers of points observed in each spectrum.
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