
Analyst

PAPER

Cite this: Analyst, 2020, 145, 6313

Received 2nd March 2020,
Accepted 4th July 2020

DOI: 10.1039/d0an00433b

rsc.li/analyst

Plate-height model of ion mobility-mass
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In the past decade, ion mobility spectrometry (IMS) in combination with mass spectrometry (IM-MS)

became a widely employed technique for the separation and structural characterization of ionic species

in the gas phase. Similarly to chromatography, where studies on the mechanism of band broadening and

adequate plate-height equations have been aiding method development and promoting advancements in

column technology, a suitable resolving power theory of drift tube ion mobility-mass spectrometry

(DTIM-MS) is essential to stimulate further progress in this emerging field of separation science. In the

present study, therefore, we explore dispersion processes in detail and present a plate-height model of

ion mobility-mass spectrometry. We quantify the effects of five major dispersion processes that contrib-

ute to zone broadening and determine the resolving power in DTIM-MS: diffusion, Coulomb repulsion,

electric field inhomogeneities, the finite initial spread of the ion cloud and dispersion outside the mobility

cell. A solution is provided to account for the nonuniform separation field in IM-MS in the presence of

multiple compartments. The equations – derived from first principles – serve as the basis for formulating

an expression that is similar in nature to van Deemter’s plate-height equation for chromatography. A com-

prehensive set of experiments was performed on a custom-built DTIM-MS instrument to evaluate the

accuracy of the plate-height model, resulting in satisfactory agreement between experiment and theory.

Building on these findings, the plate-height equation was employed to explore the influence of drift gas

pressure, injection pulse-width and the mobility of ions on resolving power from a theoretical point of

view. Our findings may aid instrument design and development in the future, as well as the optimization

of measurement conditions to improve ion mobility separations. By employing the plate-height concept

and the general formalism of differential migration processes to describe zone spreading in IM-MS, we

aim to find a common ground between this emerging method and such well-established techniques as

HPLC or CZE. We also hope that the work presented here will facilitate a broader acceptance of IMS as a

separation method of great potential by the communities of chromatography and electrophoresis, as well

as that of mass spectrometry.

1. Introduction

With the advent of commercially available instruments of
various designs, ion mobility-mass spectrometry (IM-MS) has

emerged from being a method used by a handful of academic
research groups – mainly in the fields of chemical physics and
gas-phase ion chemistry – to become a widely employed tech-
nique in analytical laboratories. Therefore, evaluating the per-
formance of IM-MS as an analytical method capable of separ-
ating ionic species based on their mass, charge, size and
shape is of high interest. The purpose of the present study is
to assess the efficiency of IMS/IM-MS as a separation method
that is based on the differential migration of ions through a
mobility cell. A plate-height model of drift tube IM-MS, built
on a macroscopic view of ion mobility separations, is pre-
sented. The frame of the plate-height model helps us under-
line differences and similarities between this emerging tech-
nique and such well-established differential migration
methods as capillary zone electrophoresis (CZE) or high-per-
formance liquid chromatography (HPLC).
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In analogy to the description of distillation and extraction
in fractionating columns,1 Martin and Synge developed the
plate theory of chromatography2–4 to describe the elution
process and the evolution of chromatographic bands.
Although more advanced macroscopic and microscopic the-
ories have been developed since, such as the differential mass
balance equations5 (forming the basis of the Van Deemter
equation6) or the stochastic theory of chromatography,7–13 the
concept of plate numbers and plate heights remained central
in the field. This well-established concept provides a set of
highly useful definitions, such as those of peak-to-peak resolu-
tion and peak capacity, making the evaluation of the efficiency
of separations convenient and consistent. By defining the plate
number and the plate height in a more general and abstract
manner that is not linked directly to distillation, extraction or
partition processes (i.e. to real or virtual equilibration stages in
the column), Giddings made this thoroughly developed
concept accessible for other differential migration methods of
separation.14,15 Therefore, although linear IMS and column
chromatography have fundamental differences (the first one
being an electrophoretic, the second a partition/adsorption
process), zone broadening in the two techniques can be
described employing the same formalism. When nonlinear
effects are absent, chromatographic peaks converge toward a
Gaussian profile, and the total variance of this distribution is
the sum of the variances corresponding to the individual dis-
persion processes. These conditions form the basis for the
application of plate-height models. As the aforementioned cri-
teria are satisfied in drift tube ion mobility spectrometry
(DTIMS) and drift tube ion mobility-mass spectrometry
(DTIM-MS) as well, the plate-height concept can be utilized to
address peak broadening. The dispersion processes that deter-
mine broadening in chromatography and IM-MS, of course,
are fundamentally different, but the framework is the same
and the fruitful analogy between the two aforementioned tech-
niques can be harnessed as long as the linearity of the system
is maintained.

In the first part of the study, a macroscopic model is pre-
sented that describes the spatial spread of ion clouds during
ion mobility separations (section 3). The model addresses the
most important processes that contribute to zone spreading in
DTIM-MS: diffusion, Coulomb repulsion, electric field inho-
mogeneities, the finite initial spread of the ion cloud and
broadening after the mobility cell. Equations derived from first
principles to quantify the effects of these intrinsic and extrin-
sic processes that contribute to dispersion are presented and
interpreted in detail. Following the description of the model,
the findings are synthesized employing the plate-height
concept to yield a formula that is analogous to van Deemter’s
equation for chromatography6 (section 4.1). We employ the
aforementioned equation to calculate the resolving power of a
custom-built drift tube ion mobility-mass spectrometer under
a variety of defined operating conditions, and the results are
compared to those obtained experimentally in a series of sys-
tematic measurements (section 4.2). The plate-height model is
found to reproduce experimental results with satisfying accu-

racy, validating the theory and the suitability of the approach.
Finally, employing the plate-height equation, calculations are
performed to explore the role of the drift gas pressure, the
injection pulse-width and the mobility of the ions in determin-
ing the resolving power of IM-MS (section 4.3). For this
purpose, a representative set of hypothetical analytes – span-
ning over a wide range of sizes and charge-states – were
chosen to emphasize the generality of the theory.

1.1. Figures of merit in the plate-height model

To quantify the effects of different contributors to peak broadening
in IM-MS and to compare this method to other separation tech-
niques, one requires a suitable framework and indices that are
accurate measures of the performance of separation methods. For
this purpose, a linear static model of theoretical plates and plate
height (inherited from chromatography) was chosen. The most
important figures of merit that are used throughout this article –

namely variance, number of theoretical plates, resolving power,
and the height equivalent to a theoretical plate – are defined and
described in detail below.

(I) Let us first address the shape, width and statistical var-
iance associated with distributions and peaks. Since drift
tubes and TWIMS cells serve as Gaussian operators (similarly
to columns in chromatography), peaks in IMS approach a
Gaussian lineshape. It should be noted that even though
peaks in chromatography and IMS are never truly Gaussian,
they converge toward this distribution. Therefore, it is a con-
venient and widely-accepted approximation to describe them
using the normal distribution, although in the case of chrom-
atography the exponentially modified Gaussian (EMG) is a
more accurate model. The width of a Gaussian in separation
methods can be expressed using the distribution’s standard
deviation (σ), and is generally defined either in time (2σt,
termed temporal width) or in space (2σL, spatial width). The
widths defined this way equal the distance between the two
inflection points of the Gaussians, measured either in the tem-
poral- or in the spatial domain, respectively. The relation
between σt and σL is given by the velocity of the ion packets.

The quantities σt
2 and σL

2 are generally employed to express
dispersion in plate-height models and we refer to them as the
temporal- and spatial variance, respectively. In case individual
dispersion processes are considered to act independently,
such as in DTIM-MS, the variances corresponding to them are
additive. The resulting overall temporal variance of a given
arrival time distribution (ATD), or the spatial variance of the
corresponding zone arises as the sum of the appropriate var-
iances associated with the individual dispersion processes.

(II) The number of theoretical plates (N) is a universally
accepted dimensionless quantity to describe peak broadening,
given by definition as:

N ¼ t2

σt2
¼ L2

σL2
ð1Þ

Here, t is the time a given ion cloud or band spends in the
separation field (time of separation; for example, drift time,

Paper Analyst

6314 | Analyst, 2020, 145, 6313–6333 This journal is © The Royal Society of Chemistry 2020

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ju

ly
 2

02
0.

 D
ow

nl
oa

de
d 

on
 6

/1
8/

20
25

 4
:1

7:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0an00433b


arrival time or retention time), while L is its equivalent in
space (length of the separation field, i.e. the distance covered
during the migration process). Time and length domains are
not to be confused and one needs to be consistent when using
them in order to end up with a dimensionless quantity. Eqn
(1) also gives the relation between σt

2 and σL
2. If a distribution

or peak is not sufficiently close to a Gaussian, it is more accu-
rate to employ statistical moment analysis (analysis of the
shape of the distribution) and obtain the variance by calculat-
ing the second central moment of the distribution rather than
deriving it from the distance between the inflection
points.16–18 The theoretical plate was originally introduced to
describe distillation processes and it does not have a real
physical meaning in the case of differential migration tech-
niques (chromatography, electrophoresis, capillary electrochro-
matography, field-flow fractionation, time-of-flight and dis-
tance-of-flight mass spectrometry, ion mobility spectrometry,
etc.). However, it is a very useful index that provides a frame
for comparing the performance of different methods. In the
case of IMS and IM-MS, N can be interpreted as the square of
the displacement of the ion cloud corresponding to a peak in
relation to the variance that is generated during the displace-
ment. In other words, it is a measure of “resistance toward
broadening”, as N expresses the ratio of two antagonistic pro-
cesses: migration (directional and beneficial) and dispersion
(random and detrimental). The aforementioned resistance,
however, is not an intrinsic property of a given compound, but
characteristic to the separation and to the behavior of the
analyte during this process. Although N is generally used to
evaluate and compare the performance of techniques, it is
always calculated for a given analyte and can be different for
different species undergoing the same separation process.3 In
other words, it depends on both the measurement conditions
and on the nature of the analyte. As N is inversely proportional
to variance, reciprocal plate numbers are additive, provided L
and t are the same for all dispersion processes considered.
Satisfying this criterion is not trivial when post-cell processes
lead to a nonuniform separation field. An appropriate solution
for such situations is given in section 3.5.

(III) The height equivalent to a theoretical plate (HETP) –
also termed simply plate height (H) – is the ratio of the length
of the separation field and the number of theoretical plates.1

To give a more general, abstract definition proposed by
Giddings, HETP can be interpreted as the rate of generating
variance or, in other words, zone spreading per unit
length:14,15

HETP ¼ L
N

¼ σL2

L
ð2Þ

HETP is directly proportional to spatial variance and has a
dimension of length. Since HETP is generally used in column
chromatography, most prominently in the well-known plate-
height equations of van Deemter6 and Giddings19 that show
the contribution of the individual dispersion processes in an
elegant way, we also employ it to formulate the analogous
expressions.

(IV) Another dimensionless figure of merit to evaluate the
performance of separations is resolving power (Rp):

Rp ¼ t
wh;t

¼ L
wh;L

ð3Þ

Here, wh is the full-width-at-half-maximum (FWHM) of a
distribution, expressed as either a temporal or a spatial quan-
tity. Rp is analogous to N, and in case of a Gaussian distri-
bution the relation between the two figures of merit is the
following:

Rp ¼ N
8 ln 2

� �1=2

ð4Þ

The number in the denominator stems from the relation
between σ and wh for normal (Gaussian) distributions
wh ¼ σ

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p� �
. Although the relation between Rp and N

might imply that Rp
−2 is also an additive quantity, one must

be careful. As Rp is defined based on the FWHM of distri-
butions, not on variances, the addition of Rp

−2 involves the
addition of FWHM squared values (wh

2). This quantity,
however, is not necessarily an additive one: wh

2 values add lin-
early only in the specific case when all of the distributions are
Gaussians (and the underlying processes act independently).
Summation of the square of FWHM values when at least one
of them corresponds to a different type of distribution (rec-
tangular, quadratic, etc.) contradicts the central limit theorem
of statistics20 and leads to incorrect results. Since some of the
dispersion processes in IM-MS are characterized by non-
Gaussian distributions (most importantly the injection pulse
that is generally described as a rectangular function), care
must be taken. In other words, the total width of the peaks
and the corresponding overall resolving power cannot be calcu-
lated by adding the wh

2 values of the individual dispersion pro-
cesses together when not all of them are characterized by a
normal distribution. This important issue has been often over-
seen when employing the conditional resolving power theory
of IMS (and, consequently, also in the semi-empirical resolving
power model, as it is based on the former one). Shortcomings
of the aforementioned theories that stem from this oversight
are addressed in more detail in the ESI, section S1.†

A possibility to overcome the above-described problem and
render resolving power limit to a dispersion process with non-
Gaussian distribution (such as the injection pulse-width) is to
calculate the FWHM of a normal distribution that has the very
same variance as the non-Gaussian distribution in question,
and use the FWHM value of this virtual Gaussian to obtain the
correct Rp limit. In other words, the variances of non-Gaussian
distributions are obtained using statistical moment analysis,
the plate number limits of these dispersion processes are cal-
culated using the definition of N, and the corresponding
limits of Rp are obtained employing eqn (4). This solution is
mathematically equivalent to the addition of variances, and
completely justified as long as the observed ATD is sufficiently
close to a Gaussian profile. In the present study, the described
solution is employed to incorporate resolving power into the
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plate-height model and to formulate the appropriate
equations.

Because plate heights and theoretical plates are directly
related to variance, it is more convenient and fortunate to
employ them when evaluating the efficiency of separations.
Although resolving power is not traditionally employed as a
figure of merit within plate-height models in chromatography,
electrophoresis, etc., we included it into the plate-height
model of IM-MS due to its widespread application in the IMS
community. Thus, to conform to the conventions of both
fields, in the present study HETP, N and Rp will be used in
parallel.

2. Experimental section
2.1. Materials and methods

Dextran from Leuconostoc mesenteroides (analytical standard,
for GPC, average Mw 1000) was purchased from Fluka; tetra-
butylammonium iodide (≥99.0%) and 12-crown-4 (98%) were
purchased from Sigma-Aldrich. The compounds were dis-
solved in water/methanol 50/50 (v/v) solution containing 0.1%
formic acid in the following concentrations: dextran 1 mg
mL−1; tetrabutylammonium iodide (TBAI) 200 μM; 12-crown-4
500 μM. The following three singly-charged cations were
chosen for the experiments: protonated 12-crown-4 (nominal
m/z = 177, DTΩHe = 74 Å2), sodium adduct of dextran-derived
trisaccharide (nominal m/z = 527, DTΩHe = 139 Å2) and TBAI
trimer cation [(TBA)3I2]

+ (nominal m/z = 981, DTΩHe = 270 Å2).
The analytes are commercially available standards, yield sym-
metric ATDs and the ratio of the ions’ mobilities is approxi-
mately 1 : 2 : 4 (equirational progression).

Data processing was carried out using an in-house devel-
oped LabView software, while data analysis and calculations
were performed using Origin 2017 software package
(OriginLab Co.). ATDs were fitted with Gaussian function
(employing Levenberg–Marquardt least-squares minimization
algorithm) to allow for the determination of arrival times

(corresponding to the peak centroid), full-width-at-half-
maxima (wh) and standard deviations (σ). Rotationally-aver-
aged collision cross sections were determined using the
stepped-field method and the Mason–Schamp equation.

2.2. Ion mobility-mass spectrometry measurements

A schematic representation of the custom-built DTIM-MS
instrument employed to obtain the experimental data in the
present study is shown in Fig. 1.21 A device of very similar
design has also been described in detail by the Bowers
group.22 The ions – generated using a nanoelectrospray ion
source (nESI) and Pt/Pd-coated borosilicate capillaries pre-
pared in-house – are collected, radially focused and trapped by
a ring-electrode radiofrequency ion funnel. This four-stage
entrance funnel also served to inject discrete ion clouds with
defined pulse-width and injection voltage (30 V) at a rate of
10–20 Hz into the 805.5 mm-long drift region. The latter con-
sists of similar segments of conductive glass tubes (Photonis,
USA) and was operated at ambient temperature (295.0 ± 0.2 K,
monitored with a PT100 temperature sensor attached to the
drift cell) in the pressure range from 3 to 5 mbar during the
experiments, using helium as buffer gas (99.999% purity).
Being critical in IMS experiments, the buffer gas pressure was
monitored with a high-precision MKS Baratron absolute
pressure gauge (type 627). To avoid the contamination of the
high-purity buffer gas inside the drift tube, a constant pressure
difference of 0.60 mbar was maintained between the drift
region and the entrance funnel. The drift field was varied
between 2.0 V cm−1 and 14.4 V cm−1 in the measurements,
corresponding to reduced electric fields between 1.6 and 19.3
Td. A second electrodynamic ion funnel (exit funnel, 144 mm
in length) enables the radial confinement of ion clouds after
the drift cell and facilitates the transport of ions through the
conductance limit (the pressure and temperature in the exit
funnel is identical to that inside the drift region). Ions are
then transmitted through two differentially pumped stages by
ring-electrode guides before reaching the high vacuum region
of the instrument. Here a quadrupole mass filter and another

Fig. 1 Schematic drawing of the custom-built DTIM-MS instrument used in the experiments.
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quadrupole ion guide of identical dimensions enables m/
z-selection and the efficient transport of ions. The ions then
pass an einzel lens stack and a set of steering lenses before
finally being detected using an off-axis electron multiplier.
Another possibility offered by the setup is to pulse the ions
into an orthogonal Wiley–McLaren time-of-flight mass analy-
zer before subsequent detection. This latter operation mode,
however, was not utilized in the present study, as it only allows
for the sampling of the ATDs at a much lower rate due to the
time-of-flight analysis. In spite of the unique design, the
instrument is similar and comparable to commercially avail-
able DTIM-MS devices. Together with the fact that the pre-
sented theoretical model is highly general and not based on
specific considerations regarding instrument design, the find-
ings bear relevance to any other DTIMS and DTIM-MS setup.

3. Theoretical model

In the following section each dispersion process that contrib-
utes to zone spreading in DTIM-MS is addressed individually.
Equations that quantify the effects of the most important
intrinsic and extrinsic contributors are derived and interpreted
in detail. Only the most important equations are presented
here, while detailed derivations can be found in the appropri-
ate parts of the ESI,† as indicated. At the end of the section we
also provide a brief comparison between the plate-height
model developed herein and its counterparts for chromato-
graphy and electrophoresis. The findings described here will
enable the formulation of an expression that is similar in
nature to van Deemter’s equation for chromatography, pre-
sented in the Results and discussion section. Therefore, if the
detailed description of the model is not of the reader’s main
interest, they can directly continue with section 4.

In relation to peak broadening, it is important to mention
that peaks are not present in the mobility cell and are abstract
by their nature. Peaks or ATDs only arise when the analytes
reach the detector and generate a response signal as a function
of time. On the other hand, zones – formed by the ion clouds
or ion packets – consist of the actual analytes and traverse the
separation field. In the present study, the expressions peak
broadening and zone broadening or zone spreading are used
in accordance with the nomenclature of chromatography and
electrophoresis.15 A suitable alternative might be ion cloud
broadening, but it is not our aim to establish such novel terms
for IMS. Finally, it should be emphasized that the following
equations are only valid in the low-field regime, whereby the
ions are assumed to be in thermal equilibrium with the buffer
gas and, consequently, the ion mobility (K) is not a function of
the electric field strength.23

3.1. Intrinsic contributors I. Diffusion

Longitudinal diffusion has been identified in IMS and IM-MS
as the most important and dominant among the intrinsic con-
tributors – processes that cause dispersion inside the mobility
cell.23–25 Considering only a few fundamental equations of

Einstein and Townsend, calculating diffusional broadening is
straightforward (ESI, section S2†).

The spatial and temporal variance generated due to diffu-
sional broadening is given as:

σL;diff
2 ¼ Ld2

2D
KVd

¼ Ld2
2kBT
qVd

ð5aÞ

σt;diff
2 ¼ td2

2D
KVd

¼ td2
2kBT
qVd

ð5bÞ

In the above expressions Ld is the length of the drift cell, td
is the drift time, Vd is the drift voltage, T is the absolute temp-
erature, D is the diffusion coefficient of the ion while K is its
mobility, kB is the Boltzmann constant and q is the charge of
the ion (q = ze, where z is the charge-state and e is the elemen-
tary charge). The two variances are not equal, neither regard-
ing their numerical values, nor their units. Eqn (5a) refers to a
spatial quantity, while eqn (5b) expresses variance in the time
domain. According to their definition, the diffusion limit of
plate number and resolving power can be readily calculated
from eqn (5a) or (5b):

Ndiff ¼ KVd
2D

¼ qVd
2kBT

ð6Þ

Rp;diff ¼ KVd
16D ln 2

� �1=2

¼ qVd
16kBT ln 2

� �1=2

ð7Þ

The above results are analogous to those of zone electro-
phoresis, for which the corresponding equations were first
derived in 1969.14 Since diffusional broadening leads to
Gaussian distributions, employing the relation given in eqn (4)
to derive resolving power from the number of theoretical
plates in fully justified. Eqn (6) and (7) express precisely what
Giddings described so eloquently in his magnum opus:
“Separation is the art and science of maximizing separative
transport relative to dispersive transport”.15 In this case, the
directional motion of ions due to an electric field is respon-
sible for separative (also termed differential) transport, and is
proportional to K. On the other hand, random thermal motion
causing diffusion (the corresponding transport property being
D) is responsible for dispersive (entropic) mass transport.26

One can also interpret eqn (6) as the ratio of an electrical
energy – the electrical potential energy drop experienced by
the ions (qVd) – and the thermal energy (kBT ).

14,27

Eqn (6) makes it apparent that the diffusion limit of theore-
tical plates is directly proportional to the applied drift voltage
(within the low-field limit), a measurement parameter the
analyst has under complete control. Second, it also depends
on the ratio of two transport properties, the mobility and the
diffusion coefficient of the ion, not on their absolute values.
This ratio is entirely independent of the collision cross section
and depends only on the temperature and the charge of the
species. Thus, decreasing the temperature in the mobility cell
leads to increased resolving power.28–30 It is interesting to
recognize that the diffusion limit of the plate number/resol-
ving power is entirely independent of analysis time and the
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pressure inside the mobility cell. These variables are not
involved in eqn (6) and (7), neither explicitly, nor implicitly.
Although both K and D depend on p, they depend on it in the
same way, meaning that the effect of pressure cancels out.

It is also evident that Ndiff and Rp;diff do not depend expli-
citly on the length of the mobility cell. Since the exponents of
Ld and Ed (the drift field, i.e. the strength of the electric field
inside the drift cell) are equal in eqn (6) and (7), and they are
inversely proportional (yielding EdLd = Vd), applying the same
drift voltage on a longer drift tube will not increase the
diffusion limit of resolving power. However, since the upper

limit of the low-field regime is determined by the
Ed
n

ratio,

with n being the drift gas number density, longer drift tubes
and higher pressures in the mobility cell allow for the appli-
cation of higher drift voltages, while maintaining operation
under low-field conditions to avoid entering the realm of non-
linear IMS. Furthermore, as we shall see later when addressing
other dispersion processes, employing longer drift cells and
higher pressures are beneficial and have a significant, positive
influence on the apparent resolving power (at the cost of
reduced transmission and duty cycle). Although diffusion
appears as the most important among the intrinsic dispersion
processes, it is not the only factor that contributes to zone
spreading in IMS.24,31–41 Consequently, the diffusion limit of
resolving power is essentially never reached in practice, and
eqn (5)–(7) only express the contribution of this process to
total zone spreading.

3.2. Intrinsic contributors II. Coulomb repulsion

Coulombic interaction between ions and the perturbation of
the electric field inside the separation region (e.g. the capillary
or the drift tube) by the presence of charged species can lead
to interesting phenomena in electrophoretic systems.
Nonlinear effects and boundary anomalies have been extensively
studied in condensed-phase electrophoresis, often in relation with
conservation functions,42 the most prominent being the
Kohlrausch regulating function (KRF).43 In CZE, for example, elec-
tromigration dispersion (EMD) significantly influences the shape
and width of zones under normal operating conditions.44–47 EMD
stems from the deviation of the field strength within the analyte
zone compared to that in the background electrolyte. Local
migration rates become a function of the local concentration of
constituents, resulting in additional broadening and the distortion
of peaks.48,49 Due to this triangulation, peaks in CZE do not con-
verge toward a Gaussian profile and their shapes instead are
described by the Haarhoff–Van der Linde (HVL) function.50–52

Moreover, as EMD and diffusional broadening do not act indepen-
dently, the total variance is not the simple sum of the individual
contributors, meaning that the calculation of the overall zone
spreading is nontrivial and the basis for applying the plate-height
model (the simple addition of variances) in CZE is often feeble
and questionable.49,51

Nonlinear effects in IMS are, fortunately, relatively weak in
comparison to CZE, and the simplicity of plate-height models
can be exploited while preserving accuracy to a satisfying level.

In IMS, where electroneutrality does not hold, coulombic inter-
actions lead to the space charge-driven expansion of ion
clouds. Ionic species interact not only with the drift field (Ed),
but also with each other’s electric field. There are many excel-
lent studies dealing with space charge effects in IMS,53–57

including a recent paper by Eiceman and co-workers,58 who
developed and solved numerically a nonlinear integro-differen-
tial equation to account for the simultaneous dispersive effect
of diffusion and Coulomb repulsion. They found that space
charge effects become important when ion densities exceed
106 cm−3, in accordance with previous findings.53 At large ion
densities, the simulated peaks ceased to be Gaussian and
could be approximated with the Kohlrausch–Williams–Watts
(KWW) function with the stretching exponent γ exceeding 2
(γ = 2 yields a Gaussian distribution). The approach is similar
to fitting peaks in CZE using the HVL function, as mentioned
above.

The disadvantage of such nonlinear theories is the loss of
simplicity and the lack of compatibility with plate-height
models, as the total variance does not appear as the sum of
the variances of individual contributors. From the realization
that – under conditions most IM-MS instruments operate –

Coulomb-driven dispersion is significantly smaller than diffu-
sional broadening (or electromigration dispersion in CZE),
and that the total number of ions in the drift cell can often
only be estimated, a profitable compromise arises. Thus, to
preserve the simplicity of a linear separation system and the
lucrative framework provided by the plate-height model, we
employ here a simpler – albeit less accurate – solution to
account for the expansion of ion clouds due to coulombic
forces, following the approach of Tolmachev et al.56 In case of
interest, the reader is referred to the ESI, section S3† for the
detailed derivations, as only the most important expressions
are presented below.

The variances associated with Coulomb-driven dispersion –

considering spherical ion clouds – can be expressed as:

σL;Clmb
2 ¼ CClmb

3KQ
4πε0

td

� �2=3

¼ CClmb
3Q

4πε0Vd
Ld2

� �2=3

ð8aÞ

σt;Clmb
2 ¼CClmb

3Q
4πε0VdLd

� �2=3

td2

¼CClmb
3Q

4πε0VdKEd
td2

� �2=3
ð8bÞ

In the two above equations, Q is the total charge of the ion
cloud, ε0 is the vacuum permittivity (approximating the per-
mittivity of the buffer gas in the mobility cell), while CClmb is a
dimensionless constant that relates the square of the radius of
the ion cloud to the spatial variance in the plate-height model.
CClmb is not an experimentally determined parameter or a cor-
rection factor with an arbitrary value – it can be obtained by
statistical moment analysis and reflects the distribution of
ions within the cloud (for more details, see ESI, sections S3.2
and S3.3†).
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Based on the above expressions of variances, the Coulomb
limit of theoretical plates and resolving power can be formu-
lated, analogously to eqn (6) and (7) for diffusion:

NClmb ¼ 1
CClmb

4πε0Vd

3Q
Ld

� �2=3

ð9Þ

Rp;Clmb ¼ 1
CClmb8 ln 2

� �1=2 4πε0Vd

3Q
Ld

� �1=3

ð10Þ

The higher the total charge confined behind the surface of the
ion clouds, the lower NClmb and Rp;Clmb will be. It is interesting to
compare the two above expressions with their counterparts for
diffusion. Opposed to their diffusion limited equivalents, the above
equations depend explicitly on the length of the drift cell. Employing
higher drift voltages, on the other hand, increases both the
diffusion- and the Coulomb limit of theoretical plates and resolving
power. Eqn (9) and (10) also depend on the ratio of transport pro-
perties, albeit in a rather invisible way, as in this case the two trans-
port properties in the numerator and the denominator are one and
the same: the ion mobility. Because the transverse velocity of the ion
clouds along themobility cell (vd) and the rate of their free expansion
(vClmb, see ESI eqn (S10)†) depend on K in the sameway, the effect of
ion mobility cancels out. This finding will prove to be relevant when
the effects of electric field inhomogeneities are discussed.

3.3. Intrinsic contributors III. Electric field inhomogeneities

Any deviation from an ideal, homogenous electric field inside
a drift tube results in increased drift times in IMS, meaning
that more time is available for the ions to spread due to
diffusion and space charge effects. Ions behave as if their
mobility (the transport property associated with migration) is
decreased, while the transport properties associated with dis-
persion, such as the diffusion coefficient, remain constant.
Consequently, electric field inhomogeneities lead to decreased
performance and resolving power in DTIMS. Moreover, such
imperfections also cause a systematic error in the determi-
nation of ion mobilities and collision cross sections (Ω).21,35,59

One can introduce the virtual mobility (K ̲) to account for
the deteriorating effect of electric field inhomogeneities inside
the drift cell:

K
K
¼ θ � 1 ð11Þ

Here, θ is a dimensionless factor, quantifying the degree of
inhomogeneity. The more homogeneous the electric field is, the
closer θ gets to 1, and the less the virtual mobility deviates from K.
It is always the virtual mobility that can be directly determined
using DTIMS. When deriving the diffusion coefficient from the
virtual mobility using the Nernst–Townsend relation, it is not poss-
ible to obtain the actual value of D. The result will be the virtual
diffusion coefficient (D̲), which is systematically and erroneously
lower than the actual value of D with the factor θ:

D
D
¼ θ � 1 ð12Þ

It is of course D and not D̲ that determines the rate of
diffusion in the drift cell. Therefore, a correction of the

Nernst–Townsend relation – the fundamental relation between
ion mobility and the diffusion coefficient – is needed in the
presence of electric field imperfections, the correction factor

being θ. This correction expresses a decrease in the
K
D

ratio by

the factor θ, lowering the diffusion limit of plate numbers and
resolving power by θ and

ffiffiffi
θ

p
, respectively. Eqn (5)–(7) can be

extended by θ (by substituting K ̲ for K and keeping D) to
account for imperfections of the electric field, analogously to
the example below:

σL;diff
2 ¼ Ld2

2D
KVd

¼ Ld2
2kT
qVd

θ ð13Þ

Correction of transport coefficients is not unheard-of in
IMS. The Townsend factor (η) is generally used to account for
increased diffusional contribution caused by elevated effective
ion temperatures (when ions are not in thermal equilibrium
with the drift gas due to the excess energy they gain from the
drift field).35,60 In this case the diffusion coefficient is
increased by the Townsend factor, which leads to a decrease in

the
K
D

ratio by η.

The additional time the ion clouds spend in the mobility
cell due to imperfections in the electric field does not only
increase their diffusional broadening, but also contributes to
their coulombic force-driven expansion (see eqn (8) and eqn
(S14)†). Thus, correction of eqn (8)–(10) with the factor θ can
also be implemented for Coulomb repulsion. Due to a noni-
deal electric field in the drift cell, td will be determined by the
virtual ion mobility (K ̲) and not by K:

td ¼ Ld2

KVd
ð14Þ

Substituting eqn (14) into eqn (8a) to eliminate td from it
yields:

σL;Clmb
2 ¼CClmb

3Q
4πε0Vd

K
K
Ld2

� �2=3

¼CClmb
3Q

4πε0Vd
θLd2

� �2=3
ð15Þ

Note that the other mobility term already present in the
equation remains unaffected and does not decrease to become
K ̲. It reflects the rate of the Coulomb-driven expansion (pro-
portional to EClmb, see ESI, section S3.1†) and not the trans-
verse motion of the ion clouds along the drift cell. Out of
these two velocities, only the latter one is affected by electric
field inhomogeneities. As a result, the spatial variance corres-
ponding to Coulomb repulsion is increased by a factor of θ2/3,
while the corresponding Coulomb limit of theoretical plates
and resolving power should be divided by θ2/3 and θ1/3, respect-
ively. In both eqn (13) and (15) the reciprocal of θ necessarily
has the same exponent as Ed (or Vd).

The equations above are based on the assumption that all
ions experience the same inhomogeneous electric field. The
situation, however, is more complicated if the homogeneity of
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the drift field varies radially: ions with different trajectories
will experience a different degree of inhomogeneity.35 In other
words, the virtual mobility of the ions will not be a well-
defined value. Instead, it will become a distribution according
to the trajectories of the ions and the variation of the field
inhomogeneity in the radial coordinates. As drift velocities
and drift times depend on K ̲, ATDs will need to be convoluted
with the distribution of the ions’ virtual mobilities, leading to
additional broadening. To quantify this effect, an accurate
knowledge of the spatial map of the electric field would be
required (followed by ion trajectory simulations), making it
impossible to give a general solution. Moreover, the aforemen-
tioned information is usually not available, hindering even the
formulation of a suitable prediction or approximation.

Theory offers a possibility to determine the degree of axial
inhomogeneity if accurate reference mobility and collision
cross section values were available. However, it is very difficult
in practice to separate the effect of electric field inhomogene-
ities from other sources of systematic error. The Mason–
Schamp equation – the fundamental low-field ion mobility
equation – relates ion mobility to the collision cross section of
an ion:23,61–63

Ω ¼ 1
K

18π
μkBT

� �1=2 ze
16n

ð16Þ

Here, Ω is the rotationally-averaged collision integral, also
termed collision cross section, μ is the reduced mass of the
ion-neutral collision complex and n is the number density of
the buffer gas. A systematic, positive deviation of experi-
mentally determined collision cross sections from reference Ω

values may be indicative of the lack of an ideal, perfectly
homogeneous electric field inside the mobility cell:

1
j

Xj
i¼1

Ωexp;i

Ωref;i
ð17Þ

However, it requires the complete absence of other systema-
tic errors, which might not be realistically achievable in prac-
tice. Moreover, as there are no collision cross section reference
values available that represent such high precision and true-
ness as, e.g. their counterparts for mass, field inhomogeneity
effects remain elusive in IMS and IM-MS.

3.4. Extrinsic contributors I. Initial spread of the ion cloud,
the injection pulse-width

So far, we have explored the influence of intrinsic contributors
that lead to dispersion inside the mobility cell. However, the
ion clouds are not infinitesimally narrow at the moment they
enter the drift tube. Similarly to the injected sample plugs in
CZE, they have a finite volume and width that contributes sig-
nificantly to the total variance, and as such, must be taken
into account.64 In column chromatography, band broadening
due to finite injection length can be reduced by focusing the
analytes on the top of the column, employing, for example,
performance optimizing injection sequence (POISe).65

However, as no equivalent of such a method is available for

IMS, the effect of this extrinsic contributor is more
pronounced.

In a simple and generally accepted assumption, the initial
distribution of ions follows the shape and width of the injec-
tion voltage pulse, which is usually applied as a step function
(rectangular, also called uniform distribution). Although not
always entirely valid, this assumption has been considered in
most studies dealing with the role of the injection pulse-width
and will also be employed herein, keeping in mind its limit-
ations. Table 1 summarizes the variances of different initial
distributions. The closer these distributions are to a Dirac
delta-function (representing an infinitesimally narrow distri-
bution where tinj and the corresponding variances are zero),
the closer the overall resolving power approaches the limit
determined by the unavoidable dispersion processes of
diffusion and Coulomb repulsion.

In relation to the injection pulse-width, it is important to
comment on the semi-empirical resolving power theory.35 In
the aforementioned model a dimensionless factor (β) is
obtained by a fitting procedure to correct for the difference
between the theoretical (optimal) width and the actual width
of the injected ion packet. Herein, we present the correct
values of the β coefficient in the ideal cases (i.e. when the
theoretical and actual spread of the initial distribution is the
same), as there has been some confusion regarding this issue
in the IMS and IM-MS communities. Generally, two variants of
the semi-empirical resolving power theory are being used in
the literature. In the first case, β is defined as the proportional-
ity factor between two temporal wh;t

2 values. One corresponds
to the theoretical wh;t

2 of the initial distribution, the other to
the actual, experimentally determined wh;t

2. If the initial distri-
bution is assumed to be Gaussian, the ideal value of β appears
to be 1, representing the case when the actual width equals the
theoretical one.

Table 1 Temporal and spatial variances of various initial distributions

Distribution Temporal variancea Spatial varianceb

Rectangular σt;inj2 ¼ tinj2

12
σL;inj2 ¼ ðKEÞ2 tinj

2

12

Gaussianc σt;inj2 ¼ tinj2

16
σL;inj2 ¼ ðKEÞ2 tinj

2

16

Quadratic σt;inj2 ¼ tinj2

20
σL;inj2 ¼ ðKEÞ2 tinj

2

20

Triangular (isosceles) σt;inj2 ¼ tinj2

24
σL;inj2 ¼ ðKEÞ2 tinj

2

24
a tinj corresponds to the full temporal width of the injection, i.e. to the
time duration of the gating voltage pulse. bDue to the following
relations: σL/L = σt/t and σL = σtv. Here E represents the effective electric
field strength accelerating the ions upon injection into the separation
region. E is essentially equal to the drift field and can be calculated as
the ratio of the drift voltage and the length of the mobility cell,
because the voltage drop along the drift tube is linear. Moreover, the
ions are immediately thermalized and lose their initial velocity they
gained from the injection voltage due to the large number of collisions
they experience with the buffer gas in the mobility cell. c Based on the
convention that for a Gaussian the width at the baseline equals 4σ.
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In the other, more widespread variant of the semi-empirical
model, the theoretical width of the initial distribution is not given
as its FWHM. Instead, it is measured at the baseline, i.e. it corres-
ponds to the gating time (tinj). It is very convenient to use directly
tinj since it is the experimentally controlled time for which the gate
is open and voltage is applied to inject the ions into the drift cell.
Instead of converting it first to wh;t

2, the theoretical tinj
2 is inserted

directly into the appropriate formula to obtain β. Therefore, in this
second variant β is defined as the proportionality factor between
the theoretical tinj

2 and the experimentally determined wh;t
2 of the

initial distribution. Assuming a Gaussian initial distribution, the

ideal value of β appears to be
ln 2
2

(approx. 0.347). However, the

initial distribution of ions is not Gaussian and can be approxi-
mated better by a rectangular distribution, as also pointed out by
the developers of the semi-empirical model.35 Thus, considering a
rectangular initial distribution, the optimal value of β appears as
2 ln 2
3

(approx. 0.462). These values can be easily calculated using

the second column of Table 1 and the relation wh ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
(the

latter value is to be obtained by calculating the FWHM of a
Gaussian with the same variance as the uniform distribution
whose width at the baseline equals tinj). The two above values of β
are in good agreement with those obtained by May et al. employing
the fitting procedure in their carefully executed study to character-
ize the performance of a commercially available DTIM-MS instru-
ment.40 Experimentally determined β coefficients that are even
smaller than the ideal value – obtained for very long gating times
in the aforementioned study – are indicative of untimely depletion
of the ion reserve. It means that the compartment storing the ions
prior to injection (e.g. an ion funnel trap) becomes already empty
before the gating time ends. In other words, the ion number
density drops while the injection voltage is still applied and the
initial distribution of ions does not follow the shape and width of
the injection voltage pulse.

The two above-described variants are compatible with each
other, one only needs to be careful when comparing β coeffi-
cients from different studies. They could be defined according
to either of the two systems, meaning that suitable conversion
between the scales might be required before comparing the
performance of instruments.

Even though tinj may be a parameter set by the operator of the
IM-MS device, the third row of Table 1 makes it apparent that
spatial variance depends on other instrumental parameters and on
the nature of the analyte as well.66 The spatial outspread of the
injected ion cloud also depends on the mobility of the ions, the
drift voltage and the length of the mobility cell (the latter two deter-
mining together the electric field strength).

Ninj ¼ Ld2

KVd

� �2Cinj

tinj2
¼ Ld

KEd

� �2Cinj

tinj2
ð18Þ

Rp;inj ¼ Ld2

KVd

1
tinj

Cinj

8 ln 2

� �1=2

¼ Ld
KEd

1
tinj

Cinj

8 ln 2

� �1=2

ð19Þ

Inferred from the variances of the initial ion distributions,
the above equations show the limit of plate numbers and resol-

ving power for the extrinsic contribution of the finite injection.
Cinj is the appropriate constant depending on the density func-
tion describing the injection pulse profile (for a rectangular
pulse, Cinj equals 12, as shown in Table 1).

It is apparent that Ninj and Rp;inj depend explicitly on Ld,
representing the importance of the ion package size relative to
the length of the drift cell. Furthermore, the limit of resolving
power is inversely proportional to the drift voltage/electric field
strength, in strong contrast to the effect of diffusion or
Coulomb repulsion. This latter phenomenon leads to an
important consequence regarding the apparent resolving
power and its dependence on the drift voltage, namely that
f (Vd) = Rp;app is not a monotonically increasing function.
Instead, it has a maximum, corresponding to the operating
condition where resolving power is the highest, while further
increase in the field strength results in lower resolving power
due to the increased contribution of the initial ion package
size.31,39,40

Finally, it is important to point out that among all intrinsic
and extrinsic sources of dispersion, the injection pulse-width
is the only one where the corresponding theoretical plate and
resolving power limits depend on pressure, because they
depend on the absolute value of a single transport property. In
other words, the implicit dependence of Ninj on p is due to its
inverse proportionality to K2. Employing higher buffer gas
pressure lowers the ion mobility, which consequently
decreases σL;inj

2 and increases td, Ninj and Rp;inj. As mentioned
before, Ndiff does not depend on p at all, as the effects of D and
K cancel out (the sum of their exponents is zero in eqn (5)–(7)).
Thus, the positive influence of higher buffer gas pressures on
the resolving power in IMS is largely due to its effect on
the injection pulse-width and the higher drift voltages it
enables.

In the model described above we assumed that the ions’
distribution follows exactly the injection voltage profile. In
most cases a near-perfect rectangular voltage profile (step func-
tion) can be achieved to inject ions into the mobility cell, irre-
spective of the gating mechanism (Bradbury–Nielsen gate, ion
funnel trap, etc.). However, it has been shown that the leading-
and tailing edges of the ion density function do not follow
accurately the shape of a step function, which may lead to
deviations between theory and experimental data.35 Therefore,
the importance of detailed simulations to obtain a more accu-
rate picture (albeit at the cost of sacrificing generality) on ion
injection should be emphasized. Such simulations can be per-
formed considering the specific design of the instrument, as
well as the mass-, mobility- and charge-distribution of the
ions.

3.5. Extrinsic contributors II. Dispersion and separation after
the mobility cell

In IM-MS, mass analysis and ion detection are spatially segre-
gated from ion mobility separation, and take place in different
compartments of the instrument. Therefore, ions require a
finite time to reach the detector after having traversed the
mobility cell. During this time, ion clouds continue expanding
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due to diffusion, Coulomb repulsion or other processes.
Imperfections in ion transmission and distortions originating
from electric field inhomogeneities in this region could
deteriorate the performance of the instrument. Although they
do not concern stand-alone IMS, the problems addressed in
this section are all the more important in IM-MS. Post-cell dis-
persion in IM-MS, when not accompanied by mobility separ-
ation (e.g. transport in the high-vacuum region), is analogous
to extra-column band broadening in HPLC, where solutes also
require a finite time to reach the detector after their elution
from the column.67–71 In an ion funnel, on the other hand,
additional mobility separation takes place,72 making this situ-
ation similar to the serial coupling of multiple columns in
chromatography.73,74 Although not to be confused, these two
different cases of post-cell ion transport can be treated in an
integrated manner, as shown in the present section.

First, let us consider dispersion in an ideal ion funnel,
where T, p and, consequently, the transport properties K and D
have the same values as inside the drift cell. In this case, diffu-
sional broadening can be expressed as below, by defining tfun
as the time the ions spend in the funnel, and substituting into
the Einstein equation (eqn (S1)†):

σL;fun‐diff
2 ¼ 2Dtext ¼ 2D

Lfun2

KVfun
ð20aÞ

σt;fun‐diff
2 ¼ 2Dtextvext�2 ¼ 2D

tfun2

KVfun
ð20bÞ

The equations above are completely analogous to eqn (5a)
and (5b). As in a funnel the longitudinal motion of ions is
driven by a DC field, tfun can be expressed using the length of
this compartment and the corresponding voltage: Lfun and
Vfun, respectively. Coulomb-driven dispersion can be addressed
in an analogous way. When substituting tfun into eqn (8) (and
eqn (S14)†), the variances appear as:

σL;fun‐Clmb
2 ¼CClmb

3KQ
4πε0

tfun

� �2=3

¼CClmb
3Q

4πε0Vfun
Lfun2

� �2=3
ð21aÞ

σt;fun‐Clmb
2 ¼CClmb

3KQ
4πε0

tfunvfun�3
� �2=3

¼CClmb
3Q

4πε0VfunKEfun
tfun2

� �2=3
ð21bÞ

Variances associated with diffusion and Coulomb repulsion
in the funnel are additive, their sum being the contribution of
the funnel to the total dispersion (σfun

2). As mentioned above,
dispersion is not the only aspect of ion transport in a funnel.
The separation of ions continues and it occurs with unaltered
selectivity, i.e. the relative velocity difference of zones is the
same as inside the drift cell. Thus, the residence time in this
region (or the length of the funnel) needs to be accounted for
when calculating the apparent separation efficiency. To

explore this problem, let us borrow from the toolbox of
chromatography.

In gas chromatography and HPLC the apparent effective
plate number (Napp;chrom) that accounts for extra-column band
broadening as well is given as:

Napp;chrom ¼ ðtcol1 þ tcol2 þ tecÞ2
σt;col12 þ σt;col22 þ σt;ec2

ð1� FÞ2

¼ tr2

σt;col12 þ σt;col22 þ σt;ec2
ð1� FÞ2

ð22Þ

In eqn (21) tcol1, tcol2 and tec are the column- and extra-
column residence times, respectively, their sum being the
observed retention time (tr), while σt;col1

2, σt;col2
2 and σt;ec

2 are
the corresponding temporal variances. It is important to
emphasize that the equation above is capable of handling any
given number of columns and extra-column compartments. As
the flow rate in chromatography is constant and bands move
with constant volume velocity, temporal variances could be
replaced by volume variances and the residence times could be
substituted with their volume equivalents (retention volume,
Vr, etc.). It is equivalent to expanding the numerator and the
denominator with the volumetric flow rate. F is a dimension-
less factor, defined as:

F ¼ tns
ttotal

¼ tec
tcol1 þ tcol2 þ tec

¼ tec
tr

ð23Þ

Thus, F expresses the ratio of the nonseparative transport
time (residence time in compartments where no separative
transport takes place, in this case it equals tec) and the total
runtime from injection to detection (here equals tr). Correcting
with (1 − F)2 is mathematically equivalent to including only
those compartments into the numerator where actual separa-
tive transport takes place, i.e. residence time in the columns.
Although in the literature this factor is usually designated as
R,75 we use the F notation to avoid confusion with resolving
power (Rp).

In analogy to column chromatography, for IM-MS it can be
written that:

Napp ¼ ðtd þ tfun þ tnsÞ2
σt;diff 2 þ σt;Clmb

2 þ σt;inj2 þ σt;fun2 þ σt;ns2
ð1� FÞ2

¼ ta2

σt;cell2 þ σt;fun2 þ σt;ns2
ð1� FÞ2

ð24Þ

Here, Napp is the apparent effective plate number in
DTIM-MS. The sum of the temporal variances that arise from
injection, diffusion and Coulomb repulsion inside the drift
cell is σt;cel1,

2 while ta is the observed arrival time. The mobility
cell and the funnel correspond to the columns (multiple drift
cells could also be considered76). The residence time in the
compartments where no mobility separation takes place (tns) is
the analogue of the extra-column residence time (tec). The tem-
poral variance associated with this region, σt;ns

2, is the equi-
valent of σt;ec

2. It can include dispersion in the low- and high-
vacuum regions of IM-MS instruments, such as the ring-elec-
trode or multipole ion guides. These are nontrivial to estimate
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and no attempt will be made here to explore them: when calcu-
lating the extra-cell dispersion, only contribution from the
funnel will be considered. In IM-MS F appears as:

F ¼ tns
ttotal

¼ tns
ta

¼ ta � ðtd þ tfunÞ
ta

ð25Þ

For the instrument employed in this study, tns is the time spent
in the low- and high-vacuum regions of the instrument between the
funnel and the detector. As the relative velocity difference of ions
does not reflect their mobility here, the length of these regions and
the time spent here are not utilized for ion mobility separation.
Whereas tfun can take up a significant portion of the arrival time,
generally in the range of 5–25% in today’s commercially available
and custom-built devices, tns is generally less significant. The model
given above to obtain the apparent effective separation efficiency is
general: considering dispersion in every compartment, while
accounting for migration only in those where actual separative trans-
port takes place. Therefore, it can be adapted to any specific design
(i.e. RF-confining drift cells), not only to instruments equipped with
an exit funnel. This formalism proves to be very helpful when relat-
ing peak-to-peak resolution to the number of theoretical plates and
selectivity, which will be explored in a subsequent publication.

3.5.1. Nonuniform separation fields: velocity-corrected
effective spatial variance and effective separation length. As
zone spreading in time units is constant across compart-
ments,73 it is straightforward to express Napp employing temporal
variances. Spatial variances, however, are often more meaningful
in separation science: the total temporal variance decreases mono-
tonously with increasing zone velocity, whereas the total spatial var-
iance has a minimum that carries important information. The
present sub-section aims to explore the possibilities of expressing
Napp in IM-MS using spatial quantities. This matter in question is
strongly linked to the nonuniformities of the separation field. The
connecting piece is the fact that the linear velocity of ion clouds
usually differs in the mobility cell and in the post-cell compart-
ments. Therefore, the two aforementioned problems are discussed
in conjunction below. A separation field can be considered nonuni-
form when the rate of zone spreading (the local HETP, dσL

2/dL)
varies along it.73,75 It occurs, for example, due to inhomogeneities
of the electric field in electrophoretic methods or due to the lack of
a homogeneous column packing in chromatography. Another
source of nonuniformity is the serial coupling of multiple compart-
ments where zone velocities are different. When a zone travels
across the border of two such regions, it contracts or expands in
length accordingly, its width in time remaining unaffected:

σt ¼ σL1
v1

¼ σL2
v2

ð26Þ

Here, σL1 and σL2 are the spatial standard deviations, while
v1 and v2 are the zone velocities in the first and second com-
partment, respectively. The distances between the zones also
expand or contract accordingly, meaning that it is not possible
to improve the separation efficiency this way. To express the
apparent plate number using spatial variances, one needs to
incorporate this relation into the appropriate equations.

In the simplest case, the linear velocity of the ion clouds is
constant across compartments, meaning that no velocity-cor-
rection is needed. If we also assume the funnel being the only
post-cell compartment (also means that F is zero), the appar-
ent plate number is given by:

Napp ¼ ðLd þ LfunÞ2
σL;cell2 þ σL;fun2

ð27Þ

For eqn (27) to be true, the DC field needs to be the same in
the two regions of the instrument (Ed = Efun). In this very specific
case, the separation field can be considered uniform (if inhomo-
geneities of the electric field are not considered), and the exit
funnel serves as the linear extension of the drift cell.77 A uniform
separation field means that the local HETP is constant and does
not vary from point to point or between compartments.

Even though the relative velocity difference of zones in an ideal
exit funnel is the same as in the drift cell, the absolute velocities and
the electric field strength are practically always different in the two
compartments. Eqn (27) yields a correct solution when the zone vel-
ocities are equal, but gives systematically erroneous results when
they are not. The larger the difference in the zone velocities, the
larger the error appears. Thus, when the DC field and the velocities
in the two compartments differ significantly (Ed ≠ Efun), a correction
of eqn (27) is required according to eqn (26):

Napp ¼
Ld þ Lfun

vd
vfun

� �2

σL;cell2 þ σL;fun2
vd2

vfun2

ð28Þ

This situation results in a nonuniform separation field
where the local HETP varies between compartments, similarly
to the case of serially coupled columns in chromatography.73

When the HETP is not constant, an apparent (not average)
plate height can be defined to characterize the whole separ-
ation. For j compartments, the general solution can be given
as the following, upon relating the velocity in each of the j
regions (vi) to the drift velocity (vd):

Napp ¼

Pj
i¼1

Li
vd
vi

 !2

Pj
i¼1

σL;i2
vd2

vi2

� � ð1� FÞ2 ¼

Pj
i¼1

Li
vi

 !2

Pj
i¼1

σL;i2

vi2

� � ð1� FÞ2

¼

Pj
i¼1

ti

 !2

Pj
i¼1

σt;i2
ð1� FÞ2

ð29Þ

The general form of the apparent plate height can be
expressed as:

HETPapp ¼
Pj
i¼1

Li

Napp
ð30Þ

In eqn (29) the denominator contains the sum of the vel-
ocity-corrected effective (VCE) spatial variances, while the
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numerator is the sum of the velocity-corrected effective (VCE)
separation lengths (left); this expression simplifies upon elimi-
nating vd

2 from the numerator and the denominator (middle),
yielding the ratio of ta and the sum of the temporal variances
(right) corrected with F, as expected. Eqn (28) and (29) also
show that, in order to achieve the highest possible resolving
power in IM-MS and utilize the separation potential of the exit
funnel, one needs to carefully adjust the zone velocities in this
post-cell compartment. Low ion velocities in the funnel mean
that plenty of time is available for the ion clouds to spread in
this compartment due to diffusion and space charge effects,
and lead to large VCE spatial variances. On the other hand,
very high zone velocities in the funnel might help prevent
unwanted zone spreading, but the separation in this compart-
ment will also be negligible as the VCE separation length of
the funnel decreases. The following relations are true for the
two VCE quantities:

LVCE;i ¼ tivd ð31aÞ

σL-VCE;i2 ¼ σt;i
2vd2 ð31bÞ

LVCE and σL-VCE
2 are directly related to the corresponding

temporal quantities through the drift velocity, and not through
the average velocity or the specific velocity of the ions in the
individual compartments of the instrument. They express how
broad the zones and how long the compartments would be in
space if the zones were moving with vd in each compartment
(with the temporal variance remaining unaltered). The overall
voltage drop along the whole separation field could be con-
veniently used if the separation field was uniform. By introdu-
cing the VCE quantities, it becomes possible to handle nonu-
niform separation fields in a simple manner as well. Let us
realize that the VCE length of the drift cell is the same as its
actual length, and the spatial variances that are related to pro-
cesses inside the mobility cell are also unaffected – only quan-
tities associated with post-cell regions are modified to allow
for an integrated treatment. It is also important to point out
that – unlike the actual lengths – the sum of the VCE separ-
ation lengths is not constant: it is a function of the applied
drift voltage. Therefore, HETPapp is related to Napp through the
actual length that is independent of Vd (see eqn (30)).

3.6. Comparing plate-height models: analogies between
different separation methods

Plate-height models are the most widespread models in the
broad field of separation science, serving as a unified language
across the techniques. They owe their popularity to their sim-
plicity, predictive potential and their flexibility, i.e. to the fact
that upon the satisfaction of a few criteria (nonlinear effects
being weak and zones converging toward a Gaussian profile),
plate-height models can be applied to virtually any differential
migration method.

Formal analogies between the plate-height model of linear
DTIM-MS and that of column chromatography are apparent,
with independently acting dispersion phenomena determining
zone broadening in both techniques. Although the statistical

framework (addition of variances) and figures of merit (N,
HETP) are essentially the same, the underlying physical prin-
ciples are of course fundamentally different. The main contri-
butors to band broadening in column chromatography are
eddy dispersion, axial diffusion and resistance to mass
transfer.6,78,79 In DTIM-MS, on the other hand, axial diffusion,
Coulomb repulsion, electric field inhomogeneities and the
injection pulse-width were identified as major dispersion pro-
cesses. By combining the effect of these phenomena, it is poss-
ible to formulate a plate-height equation similar to the Van
Deemter equation in chromatography, with separate terms
corresponding to each contributing factor (section 4.1, Fig. 2).

Another aspect of DTIM-MS that has its analogue in chrom-
atography is that of nonuniform separation fields, discussed
in section 3.5.1. Although the origin of nonuniformity in
DTIM-MS (changes in the electric field across compartments)
are different from that in chromatography (gas compression
effects and coupled columns), they both lead to changes in
zone velocities and require analogous solutions.73

Plate-height models have also been established and
employed for zone electrophoresis.14,80,81 As some dispersion
processes found both in zone electrophoresis and ion mobility
spectrometry act similarly, certain equations in the plate-
height models of the two methods resemble each other,
diffusion being a prominent example. In contrast to linear
DTIM-MS, however, nonlinear effects are often so dominant in
condensed phase electrophoretic systems that the validity of
linear plate-height models may be limited.44–46

4. Results and discussion
4.1. Total peak broadening and the plate-height equation in
ion mobility-mass spectrometry

Having addressed the various dispersion processes in IM-MS
individually, in this section we aim to synthesize the findings
to obtain a formula that is similar in nature to van Deemter’s
plate-height equation for chromatography. This equation may
aid instrument design and development, as well as the optim-
ization of measurement conditions to improve the perform-
ance of IM-MS separations. When multiple processes contrib-
ute to dispersion and broadening, the variances are additive.
Therefore, the total variance generated during the whole
IM-MS analysis – from injection to detection – can be
expressed in the form below, using either temporal variances
or spatial variances with velocity-correction. The variances
σdiff

2 and σClmb
2 may also include θ to account for the effects of

electric field inhomogeneities:

σtotal
2 ¼

X
i

σi
2 ¼ σinj

2 þ σdiff
2 þ σClmb

2 þ σfun
2 þ σns

2

¼ σcell
2 þ σfun

2 þ σns
2

ð32Þ

It is important to mention at this point that in the macro-
scopic model presented in this study a single-species experi-
ment was implicitly assumed, meaning that the effect of inter-
conversion on peak widths was excluded. Although intercon-
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version between different conformers or other isomeric
species may influence the appearance of the ATDs, this
phenomenon should not be confused with broadening due to
physical processes. Therefore, when discussing their impact
on peak shapes, one has to make a clear distinction between
physical (dispersion due to diffusion, coulombic forces, etc.)
and chemical (interconversion dynamics, ion-neutral reac-
tions) processes, and treat them separately. The effect of the

latter ones is addressed briefly as follows. The situation in ion
mobility spectrometry is very similar to that in dynamic elec-
trophoresis and dynamic chromatography.82–88 If interconver-
sion takes place on a time-scale significantly faster than the
time-scale of the separation, the peaks that would correspond
to the separate conformers/isomers will merge into a single
feature with no additional broadening.89,90 Fast-interconvert-
ing ions will drift with a velocity that is the weighted average of
the drift velocities of the individual conformers/isomers. On

the other hand, if the time-scale of interconversion is signifi-
cantly longer than the time-scale of IMS analysis, the different
conformers should be treated as distinct species that can be
separated using IMS, provided their mobilities are different
and the resolving power of our method is sufficiently high.
Finally, if the time-scale of interconversion dynamics is com-
parable to the time-scale of separation, the coalescence of
peaks will be incomplete. The aforementioned incomplete
coalescence due to dynamic chemical phenomena, however,
should not be confused with broadening due to physical
processes.

Both the Van Deemter equation (based on a macroscopic
view of the elution process) and the Giddings equation (based
on a microscopic/stochastic theory of chromatography)
describe band-broadening as a function of mobile phase vel-
ocity, expressing separation efficiency using plate heights.6,19

Plotting HETP as a function of the mobile phase velocity
results in the well-known characteristic curves for chromato-
graphy, whose minima correspond to the conditions where the
highest resolving power is achieved.79 The velocity of a band in
chromatography (vband) is determined by the mobile phase
linear velocity (vmobile) and the retention factor of the solute
(k):

vband ¼ 1
1þ k

vmobile ð33Þ

The drift velocities in IMS are determined by the electric
field strength and the ion mobility (vd = KEd = KVd/Ld). In this
formal analogy Ed corresponds to vmobile, while K has a similar

role to that of
1

1þ k
. Therefore, the resolving power and other

figures of merit in IMS and IM-MS are often represented as a
function of the electric field strength or, more conveniently, as
a function of the drift voltage.

The total velocity-corrected effective spatial variance can be
rewritten in the following simple form, highlighting the role of
the drift voltage:

σL‐VCE;total
2 ¼ ðAþ BÞVd2 þ C

Vd
2=3

þ D
Vd

ð34Þ

In the above formula the A-term corresponds to dispersion
in the funnel, the fraction outside the square brackets account-
ing for the velocity-correction (employing the relation v = KV/
L). The dependence of the funnel’s contribution on Vd does
not mean that the actual spatial or temporal variances associ-
ated with this compartment are influenced by the applied drift
voltage. It only means that its relative contribution increases
with decreasing drift times, as its contribution is weighted
with the factor vd

2/vfun
2. The B-term reflects the influence of

A ¼ 2D
Lfun2

KVfun
þ CClmb

3Q
4πε0Vfun

Lfun2
� �2=3

" #
Lfun

VfunLd

� �2

B ¼ 1
Cinj

Ktinj
Ld

� �2

C ¼ CClmb
3Q
4πε0

Ld2θ
� �2=3

D ¼ Ld2
2kBT
q

θ

Fig. 2 Graphical representation of the plate-height equation in IM-MS.
The apparent effective plate height (HETPapp) and the contribution of
the various dispersion processes are highlighted with different colours,
as indicated. Decreasing the drift voltage below the optimal value (Vd;

opt) results in increased broadening and in decreased signal-to-noise
ratio. Operating the instrument above Vd;opt leads to an improved S/N
ratio in exchange of larger HETPapp.

91 Note that Vd cannot be increased
infinitely without generating discharges (practical limitation) or exceed-
ing the low-field limit where the underlying equations break down
(theoretical limitation of linear DTIMS). Calculations were performed
employing eqn (35) and the following input parameters (identical to
those used for the corresponding experiment, shown in Fig. 3): He
buffer gas, p = 3 mbar, Ld = 805.5 mm, Lfun = 144 mm, T = 294.8 K, tinj =
150 μs, tfun = 1.627 ms and DTΩHe = 139 Å2 (trisaccharide Na+ adduct).
Rectangular injection profile (Cinj = 12), ion clouds with a charge of Q =

100 000e (CClmb =
1

3
, rectangular distribution) and a completely homo-

geneous electric field (θ = 1) were considered.
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the injection pulse-width, while the C- and D-terms are associ-
ated with the contribution of Coulomb repulsion and
diffusion inside the drift cell, respectively. In the instrument
employed in the present study, the post-cell residence time
mostly represents the time spent in the funnel, and the funnel
is assumed to be the only post-cell compartment in the calcu-
lations. This simplification means that tns and F equal zero
and ta = td + tfun. The drawback of eqn (34) is that the velocity
corrected effective length of the separation field also depends
on Vd and the minimum of this function does not correspond
to the point where the resolving power is the highest.
Therefore, it is more meaningful to plot HETP as the function
of Vd.

HETPapp ¼ σL‐VCE;total2

LVCE;total2
ðLd þ LfunÞ

¼
ðAþ BÞVd2 þ C

Vd
2=3

þ D
Vd

Ld þ Lfun
vd
vfun

� �2 ðLd þ LfunÞ
ð35Þ

Eqn (35) is the apparent effective plate height in DTIM-MS,
the analogue of the plate-height equations in chromatography
and the central expression of the plate-height model presented
in this study. The function above shows the contribution of
the individual dispersion processes in an additive form, as rep-
resented in Fig. 2. Analogously to HETPapp, the apparent
effective plate number and -resolving power can be expressed
as:

Napp ¼ ðLd þ LfunÞ
HETPapp

;
LVCE;total2

σL‐VCE;total2

¼
Ld þ Lfun

vd
vfun

� �2

ðAþ BÞVd2 þ C
Vd2=3

þ D
Vd

ð36Þ

Rp;app ¼ Napp

8 ln 2

� �1=2

¼ð8 ln 2Þ�1=2
Ld þ Lfun

vd
vfun

ðAþ BÞVd2 þ C
Vd

2=3
þ D
Vd

� �1=2
ð37Þ

HETPapp, Napp and Rp;app can be calculated from each other
with ease. In case of stand-alone IMS eqn (34)–(37) simplify
significantly, as Lfun is zero and the separation field becomes
uniform. The aforementioned simplified equations can be
found in the ESI, section S4.† Section S4 also contains a
straightforward method to find the plate-height function’s
minimum where separation is optimal (Vd;opt and HETPopt),
and the expression of HETPapp, Napp and Rp;app using temporal
variances. In the IMS and IM-MS communities, resolving
power is generally favored over theoretical plates and plate
height, probably due to its attractive feature of being directly
proportional to peak-to-peak resolution. Therefore, to make
the results and findings of this study comparable to those

present in the literature, the next section utilizes resolving
power as a measure of separation efficiency.

4.2. Comparison of theory and experiments: evaluation of
the plate-height model

To evaluate the accuracy of the plate-height model and its
capability to predict the effect of different experimental para-
meters and the nature of the analyte on the resolving power in
IM-MS, a series of measurements were performed using a
custom-built instrument (see Fig. 1 and section 2.2). The
buffer gas pressure, the injection pulse-width and the collision
cross section of the investigated ions were varied in a systema-
tic manner, followed by the comparison of the experimentally
obtained data and the results of calculations, as presented in
Fig. 3.

In all three cases the plate-height model exhibits satisfac-
tory agreement with experimental results despite its simplicity,
being able to reproduce and predict the observed trends and
the influence of the various parameters on the resolving power
of IM-MS. Although the buffer gas pressure is not present
explicitly in eqn (37), the harmony between theory and experi-
ment makes the implicit dependence evident. Fig. 3c high-
lights that the behavior of distinct ions in IM-MS might be
very different, even under the same experimental conditions.
This underlines the importance of method optimization in
applications where analytes span over a wide range of mobility,
such as in the various omics fields. The slightly different be-
havior of the protonated 12-crown-4 ion (DTΩHe = 74 Å2) that
leads to suboptimal agreement is arguably due to the excep-
tionally high mobility of this ion under the conditions
employed. The trapping entrance funnel storing the ions prior
to injection may become already empty before the gating time
ends, and the width of the ion packet does not follow the
width of the injection pulse, shifting the experimentally
obtained curve’s maximum toward higher Vd values.
Furthermore, in Fig. 3c the experimentally obtained trace
corresponding to the aforementioned species does not overlap
at low drift voltages with the traces corresponding to the two
other ions. Such lack of overlap in the diffusion dominated
region might be indicative of additional peak broadening due
to dynamic chemical phenomena.

Although agreement between experiment and theory is sat-
isfactory, it cannot be considered perfect. The potential
sources of the slight discrepancy (overestimation of the resol-
ving power by the plate-height model) can be manifold.
Additional broadening due to the finite speed of amplifiers
and the finite response time of the detector, underestimation
of dispersion outside the mobility cell (the contribution of the
low- and high-vacuum regions was not considered) can all con-
tribute to the difference. Imperfect description of the initial
spread of the ion clouds by the simple equations presented in
section 3.4 is another plausible reason. It also explains the
moderate, but systematic shift of the experimentally obtained
curves’ maxima (Vd;opt) to lower values along the x-axis (except
for the crown ether, as discussed above). It is in accordance
with the fact that the values determined for the β coefficient in
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the semi-empirical model are often larger than ideal.35 These
findings again underline the importance of ion trajectory
simulations to characterize the injection mechanism of a given
instrument. The equivalent of Fig. 3 using plate heights
instead of resolving power, as well as an analogous compara-
tive analysis with tetrabutylammonium iodide ions can be
found in the ESI, sections S5.† In contrary to the semi-empiri-
cal resolving power theory, the plate-height model is a predic-
tive concept, as it is based on first principles rather than on a
fitting-procedure. Having tested its accuracy, the next section
explores the predictive power of the model.

4.3. Predictive potential of the plate-height model

In the present section, the impact of key experimental vari-
ables and analyte characteristics (such as the collision cross
section or the charge-state of the ions) on resolving power in
IM-MS are highlighted through four examples. For the calcu-

lations, hypothetical analytes were used to emphasize the gen-
erality of the plate-height model and its applicability to ions
spanning over a wide range of size and charge. Calculations
were performed using conditions generally applied or realisti-
cally achievable with today’s commercially available or
research-grade instruments. The electric field in the funnel
was held constant at 10 V cm−1. For the calculations, the
dimensions of the custom-built DTIM-MS instrument
(described in the Experimental section) were considered.
Dispersion in regions following the exit funnel was neglected.

4.3.1. Injection pulse-width. One of the most important
experimental parameters to be optimized to improve resolving
power is the injection pulse-width, shown in Fig. 4. Although
the gating function and the distribution of the resulting ion
packet must not be confused, we assumed the latter one to
follow exactly the shape and width of the former in our calcu-
lations, as done in most studies on the subject. The ability of

Fig. 3 Resolving power in IM-MS – experiment vs. theory. The effect of (A) the buffer gas pressure, (B) the injection pulse-width and (C) the col-
lision cross section of the ions on the apparent effective resolving power (Rp;app) is highlighted. Experiments were performed in positive ion mode
on a custom-built DTIM-MS instrument (Ld = 805.5 mm, Lfun = 144 mm) with He as buffer gas at ambient temperature (T = 295.0 ± 0.2 K). The fol-
lowing measurement conditions were used as a starting point with the corresponding curve presented in every graph (red, yellow and blue trace in
A, B and C, respectively): p = 3 mbar, tinj = 150 μs and DTΩHe = 139 Å2 (trisaccharide Na+ adduct). Each of the three aforementioned experimental
parameters was varied systematically as follows. (A) Buffer gas pressure varied in three steps: 3 mbar, 4 mbar and 5 mbar. (B) Injection pulse-width
varied in three steps: 50 μs, 100 μs and 150 μs. (C) Collision cross section (influencing the mobility of the ions) varied in three steps: DTΩHe = 74 Å2

(protonated 12-crown-4), 139 Å2 (trisaccharide Na+ adduct) and 270 Å2 (TBAI trimer). Calculations were performed according to eqn (37), consider-
ing a rectangular injection profile (Cinj = 12), ion clouds with a charge of Q = 100 000e (CClmb = 1/3, continuous uniform distribution) and a comple-
tely homogeneous electric field (θ = 1).
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the ion injection system to achieve a narrow initial distribution
is essential to get sufficiently close to the fundamental resol-
ving power limit determined by diffusion and Coulomb-driven
dispersion inside the drift cell and the exit funnel. This limit –
corresponding to the hypothetical, ideal situation where the
ions are introduced as a Dirac delta-pulse – is shown in Fig. 4b
as a dashed black line. In case of stand-alone IMS, the afore-
mentioned limit would increase monotonously with increasing
Vd. However, the presence of an exit funnel where the electric
field is held constant restricts the maximally achievable resol-
ving power. To ease this restriction, Efun could be increased
accordingly. A representative part of the continuum below the
dashed line (where the B-term equals 0) is sampled in ten
equidistant steps in the regime between 25 μs and 250 μs injec-
tion pulse-width. Increasing tinj leads to increasing B-terms,
but no other term is affected by a change in this experimental
parameter. The narrower the initial distribution of ions, the
higher the drift voltage where the curves start deviating from

the dashed line, as both Vd;opt and Rp;app;opt increase. The
same conclusions can be drawn by analyzing the functions
showing HETPapp as well, keeping in mind that lower values
correspond to more efficient separations. Significantly shorter
injection times (down to 1 μs) than those highlighted in Fig. 4
were achieved recently by Kirk et al. employing a tristate ion
shutter.92 This novel gating mechanism made it possible to
reach resolving power values as high as 140 in a high kinetic
energy (HiKE) stand-alone IMS setup operated at high reduced
electric field strengths in the drift region (120 Td), without dis-
criminating against ions with low mobility. These results
demonstrate the immense potential of extremely short injec-
tion pulses to improve the resolving power of IMS, without
having to utilize longer drift cells or multiple passes.93–95 In
other words, they allow for a decrease in the initial size of the
ion cloud relative to the effective drift path, without increasing
the latter one.

4.3.2. Buffer gas pressure. The other most important
experimental parameter to be optimized – assuming the
length of the mobility cell to be fixed – is the buffer gas
pressure inside the drift tube and the exit funnel. The influ-
ence of this factor on HETPapp and Rp;app is highlighted in
Fig. 5. Higher pressures can significantly increase the apparent
effective resolving power in IM-MS. It needs to be emphasized
again that the buffer gas pressure does not appear explicitly in
eqn (34)–(37), only implicitly by influencing the absolute value
of K (see the B-term and section 3.4). In Fig. 5b, both Vd;opt
and the maximally achievable apparent effective resolving
power (Rp;app;opt) increase with increasing pressure: the
maxima of the curves are shifted upwards and to the right.
The shift of Vd;opt and Rp;app;opt to higher values is due to the
decreasing B-term at elevated pressures. The other three
terms – similarly to the case of the injection pulse-width – are
completely unaffected by the pressure. Identically to those in
Fig. 4, the black dashed lines in Fig. 5 show the limit of Rp;app

and HETPapp as determined by diffusion and Coulomb-driven
dispersion (B-term equals zero). Importantly, the aforemen-
tioned fundamental limit is entirely independent of the buffer
gas pressure: the limiting functions are identical to each other,
irrespective of the value of p. It is not surprising considering
the complete lack of influence of p on the A-, C- and D-terms.
The dashed lines are also necessarily identical to those in
Fig. 4.

The functions corresponding to higher pressures start
deviating from this fundamental limit at higher drift voltages.
This phenomenon is completely analogous to that observed
upon decreasing the injection pulse-width, as the effect of
increasing p and decreasing tinj is the same: lower B-terms
meaning narrower initial ion packets in space. Thus, Rp;app
does not grow infinitely with increasing pressure at a given
drift voltage. It can only increase until the limit set by the
pressure-independent contributors is reached, i.e. where the
finite size of the injected ion packet is negligible. It is demon-
strated by the overlapping regions of the curves at low drift vol-
tages, where the initial spread of the ion cloud is still insignifi-
cant, with diffusion and space charge effects being dominant

Fig. 4 Influence of the injection pulse-width on the plate height and
resolving power in IM-MS. (A) The apparent effective plate height
(HETPapp) and (B) the apparent effective resolving power (Rp;app) as a
function of the drift voltage. Different colours correspond to different
tinj values as indicated. The black dashed lines correspond to an infinite-
simally narrow injection pulse, i.e. a Dirac delta-function. Calculations
were performed according to eqn (35) and (37), respectively, with the
same input parameters: He buffer gas, p = 4 mbar, T = 298.15 K (25 °C),
Ld = 805.5 mm, Lfun = 144 mm, DTΩHe = 200 Å2, m = 1000 u, z = 1.
Injection pulse-width was varied from 25 μs to 250 μs in 10 equidistant
steps as highlighted in the figure. The electric field strength in the funnel
was held constant at 10 V cm−1. Rectangular injection profile (Cinj = 12),

ion clouds with a charge of Q = 100 000e (CClmb =
1
3
, continuous

uniform distribution) and a completely homogeneous electric field (θ =
1) were considered.
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in determining zone spreading. In conclusion, the buffer gas
pressure exerts its effect on resolving power mostly through
influencing the initial spatial spread of the ion cloud. The
same conclusions can be drawn by analyzing the functions
showing HETPapp as well, keeping in mind that lower values
correspond to more efficient separations. Although not shown
in Fig. 5, higher pressures inside the mobility cell also enable
the application of higher drift voltages by reducing the prob-
ability of discharges and expanding the low-field limit toward
higher drift fields.

4.3.3. The collision cross section and the charge-state of
ions. As mentioned in the detailed description of the theore-
tical model and shown in section 4.2, the ion mobility has a
significant impact on Vd;opt, HETPapp;opt and Rp;app;opt in
IM-MS. Since the mobility of an ion is always characteristic to
a given buffer gas, different gases can influence not only the

selectivity, but also the resolving power of ion mobility separ-
ations. Employing buffer gases where the ions’ mobility is
lower has a similar effect to increasing the buffer gas pressure.
For example, the observed resolving power is often higher
using nitrogen as drift gas in comparison to helium, when
otherwise identical conditions are employed. The two most
important ion-related features that influence mobility are the
collision cross section (also specific to a certain drift gas) and
the charge-state, whose effects on the resolving power are high-
lighted in Fig. 6 and 7, respectively. The reduced mass has, in
general, much less influence, although it plays an important
role in the separation of isotopologues96 or when the mass of
the buffer gas atoms/molecules is comparable to that of the
ions.23

Fig. 6 highlights the influence of the collision cross section
on HETPapp and Rp;app, considering a set of singly-charged
ions with DTΩHe ranging from 50 Å2 to 500 Å2. Because dis-
persion due to diffusion and coulombic forces depend on the
ratio and not on the absolute value of transport properties,
terms A, C and D are unaffected by a change in the collision
cross section. The B-term – corresponding to the initial ion
cloud size – is the only among the four that depends on the
actual absolute value of a single transport property: K.
Therefore, Vd;opt and Rp;app;opt increase monotonously for
larger ions within a given charge-state.

Fig. 7 shows how the apparent effective plate height and
resolving power change across charge-states in the case when
the collision cross section is kept constant. In order to
examine the impact of mobility independently from space
charge effects, the total charge of the ion clouds was fixed at
100 000e. The appearance of Fig. 7 is strikingly different from
that of Fig. 4–6. First, curves corresponding to ions with
different charge-states do not overlap at low Vd. The lack of
overlap is the consequence of the fact that ions of different
charge-states are characterized by different D-terms. Unlike
tinj, p or Ω, the charge-state of ions has as an influence on the
diffusion limit of resolving power as the K/D ratio is a function
of z. A second apparent difference is that instead of running
parallel, the curves tend to intersect each other at certain drift
voltages. Besides having a strong effect on the D-term (and
also on the A-term as it incorporates diffusion in the funnel), z
influences the B-term and the initial spread of the ion packet
too. As a consequence, Vd;opt decreases systematically when the
charge-state increases. The intersections stem from the simul-
taneous influence of the aforementioned antagonistic effects:
decreasing D- and A-terms (the total charge of the ion cloud,
i.e. the C-term is kept constant) and an increasing B-term as
the charge-state increases. As the drift voltage is increased, the
trace of an ion with lower charge-state intersects, then sur-
passes the curves corresponding to highly-charged species,
when the beneficial effect of a narrower initial ion packet bal-
ances and – ultimately – overcomes the detrimental effect of
increased diffusional broadening. The differences between the
appearance of Fig. 7 and 4–6 stem from the fact that the ions’
charge-state is the only factor that has an influence on mul-
tiple terms, unlike tinj, p and Ω, which only affect the B-term.

Fig. 5 Influence of the buffer gas pressure on the plate height and
resolving power in IM-MS. (A) The apparent effective plate height
(HETPapp) and (B) the apparent effective resolving power (Rp;app) as a
function of the drift voltage. Different colours correspond to different
pressure values as indicated. The black dashed lines (identical to those
in Fig. 4) correspond to the fundamental limit of resolving power and
plate heights, determined by diffusion and Coulomb repulsion. This limit
is completely independent of the applied pressure. Calculations were
performed according to eqn (35) and (37), respectively, with the same
input parameters: He buffer gas, T = 298.15 K (25 °C), tinj = 150 μs, Ld =
805.5 mm, Lfun = 144 mm, DTΩHe = 200 Å2, m = 1000 u, z = 1. Pressure
was varied from 2.5 mbar to 7 mbar in 10 equidistant steps as high-
lighted in the figure. The electric field strength in the funnel was held
constant at 10 V cm−1. Rectangular injection profile (Cinj = 12), ion

clouds with a charge of Q = 100 000e (CClmb =
1
3
, continuous uniform

distribution) and a completely homogeneous electric field (θ = 1) were
considered.
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Fig. 7 also shows the dependence of the maximally achiev-
able resolving power on z in IM-MS. First, the maximum
increases upon moving from z = 10 down to the doubly-
charged species, then it drops significantly as z is further
decreased from 2 to 1. It needs to be mentioned that under
different operating conditions or considering smaller/larger
ions, the trend may be different. The dependence of the
maximum of Rp;app on the charge-state of ions is the conse-
quence of Coulomb repulsion and the nonuniformity of the
separation field in DTIM-MS. Note that the electric field
strength in the exit funnel is fixed at a defined value, which
influences the achievable resolving power of distinct ions
differently. Interestingly, in stand-alone DTIMS, where the sep-
aration field is uniform, the maximally achievable resolving
power does not depend on the charge-state of the ions if space

charge effects are also neglected (see ESI, section S4, eqn
(S28)–(30),† and a theoretical study by Kirk et al.39).

Finally, both Fig. 6 and 7 show the difficulties posed by
samples containing analytes that span over a wide mobility-
range. Optimizing the ion mobility separation to achieve
sufficient resolving power for as many ions as possible is an
important aspect of targeted and nontargeted omic analyses
utilizing IM-MS.33,97–100

5. Conclusion and outlook

A plate-height model of IM-MS was developed and verified
against a comprehensive set of experiments. This first-prin-
ciples analytical model is based on the linear addition of var-
iances that correspond to independently acting dispersion pro-
cesses, in contrast to the FWHM-centered approaches pre-
sented so far in IMS literature. Using the variance-based

Fig. 6 Influence of the ions’ collision cross section on the plate height
and resolving power in IM-MS. (A) The apparent effective plate height
(HETPapp) and (B) the apparent effective resolving power (Rp;app) as a
function of the drift voltage. Different colours correspond to different
DTΩHe values as indicated. Calculations were performed according to
eqn (35) and (37), respectively, with the same input parameters: He
buffer gas, p = 4 mbar, T = 298.15 K (25 °C), tinj = 150 μs, Ld = 805.5 mm,
Lfun = 144 mm, z = 1. DTΩHe was varied from 50 Å2 to 500 Å2 in 10 equi-
distant steps as highlighted in the figure. Although the influence of m on
K is negligible in these cases, the masses of the ions were also varied
mimicking an isotropic growth pattern to achieve more realistic con-
ditions: m = 150 u, 350 u, 650 u, 1000 u, 1400 u, 1850 u, 2350 u, 2900
u, 3500 u and 4150 u (in the order of increasing collision cross sections).
The electric field strength in the funnel was held constant at 10 V cm−1.
Rectangular injection profile (Cinj = 12), ion clouds with a charge of Q =

100 000e (CClmb =
1

3
, continuous uniform distribution) and a completely

homogeneous electric field (θ = 1) were considered.

Fig. 7 Influence of the ions’ charge-state on the plate height and resol-
ving power in IM-MS. (A) The apparent effective plate height (HETPapp)
and (B) the apparent effective resolving power (Rp;app) as a function of
the drift voltage. Different colours correspond to different charge-states
as indicated. Calculations were performed according to eqn (35) and
(37), respectively, with the same input parameters: He buffer gas, p =
4 mbar, T = 298.15 K (25 °C), tinj = 150 μs, Ld = 805.5 mm, Lfun =
144 mm, DTΩHe = 500 Å2 and m = 4150 u. The charge-state was varied
from z = 1 to 10 as highlighted in the figure (the polarity being irrele-
vant). The electric field strength in the funnel was held constant at 10 V
cm−1. Rectangular injection profile (Cinj = 12) and a completely homo-
geneous electric field (θ = 1) were considered. The total number of ions
was varied so that the charge of the ion clouds be fixed at Q = 100 000e

(CClmb =
1

3
, continuous uniform distribution).
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concept, optimal values of the β coefficient in the semi-empiri-
cal resolving power theory could be rationalized (section 3.4).
Moreover, the introduction of velocity-corrected effective
spatial variances offers a straightforward way to describe separ-
ations in nonuniform fields, for example in the presence of
ion funnels (section 3.5.1). To the best of our knowledge, this
is the first general solution provided for the aforementioned
problem in IM-MS.

In the plate-height equation of DTIM-MS, four different
integrated terms were established and rendered to the indi-
vidual dispersion processes that determine the resolving
power of the technique (see eqn (34)). This simple and
concise formalism was conceived in analogy to the traditional
A-, B- and C-terms in the Van Deemter equation for chrom-
atography. Table 2 provides a brief overview of the most
important aspects of the dispersion processes, described
within the formalism of the plate-height model to show the
corresponding integrated terms. The effect of the drift
voltage on zone spreading, the role of transport properties
and the influence of the most important instrumental para-
meters and analyte characteristics are highlighted. These also
reveal the possibilities to minimize dispersion and maximize
resolving power.

In summary, the plate-height model can be easily
implemented in spreadsheets, allowing for the calculation of
zone spreading without ion trajectory simulations and the
solution of nonlinear differential equations using numerical
methods. Besides its simplicity, it offers a suitable nomencla-
ture and a range of useful definitions and metrics – estab-
lished originally for chromatography – to describe IMS and
IM-MS separations, and to compare them to other separation
techniques. Elements of the aforementioned toolbox, such as
peak-to-peak resolution or peak capacity, will be addressed in
subsequent studies, extending the plate-height concept for
IM-MS.
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