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Non-muscle-invasive bladder cancer affects millions of people worldwide, resulting in significant discom-

fort to the patient and potential death. Today, cystoscopy is the gold standard for bladder cancer assess-

ment, using white light endoscopy to detect tumor suspected lesion areas, followed by resection of these

areas and subsequent histopathological evaluation. Not only does the pathological examination take days,

but due to the invasive nature, the performed biopsy can result in significant harm to the patient.

Nowadays, optical modalities, such as optical coherence tomography (OCT) and Raman spectroscopy

(RS), have proven to detect cancer in real time and can provide more detailed clinical information of a

lesion, e.g. its penetration depth (stage) and the differentiation of the cells (grade). In this paper, we

present an ex vivo study performed with a combined piezoelectric tube-based OCT-probe and fiber optic

RS-probe imaging system that allows large field-of-view imaging of bladder biopsies, using both modal-

ities and co-registered visualization, detection and grading of cancerous bladder lesions. In the present

study, 119 examined biopsies were characterized, showing that fiber-optic based OCT provides a sensi-

tivity of 78% and a specificity of 69% for the detection of non-muscle-invasive bladder cancer, while RS,

on the other hand, provides a sensitivity of 81% and a specificity of 61% for the grading of low- and high-

grade tissues. Moreover, the study shows that a piezoelectric tube-based OCT probe can have significant

endurance, suitable for future long-lasting in vivo applications. These results also indicate that combined

OCT and RS fiber probe-based characterization offers an exciting possibility for label-free and morpho-

chemical optical biopsies for bladder cancer diagnostics.

Introduction

There are currently 3.4 million people affected by bladder
cancer worldwide,1 with 75% of the newly diagnosed cases
being non-muscle-invasive bladder cancer (NMIBC) and
thereby non-muscle-invasive disease.2 Among the different
types of NMIBC, the five year recurrence rate is 20–80%.3 The
risk of recurrence and repeated surveillance cystoscopy in the
outpatient department (OPD), which is the standard procedure
when suspicious lesions are detected, subsequently jeopar-
dizes the health of the patient.4 The current gold standard in
bladder cancer assessment is cystoscopy, which provides a
visualization of the bladder mucosa by white light endoscopy
(WL). Although the detection rate for muscle-invasive bladder
cancer using WL is very high, 97–100%, the detection of
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NMIBC is still challenging.5 Significant efforts go into develop-
ments to remedy this situation.

Along with the examination by WL, a biopsy is performed
and the resected suspicious tissue is inspected by pathol-
ogists.6 This allows access to clinically relevant information on
the stage and grade of a lesion. The tumor stage classifies the
invasion depth into the bladder wall. The tumor grade, on the
other hand, describes the level of differentiation from healthy
cells.7 Histological diagnosis is defined in accordance with
UICC’s 2017 TNM classification8 and the 2016 WHO classifi-
cation.9 There is a significant need to allow instant diagnosis
during surveillance cystoscopy in the OPD, thus avoiding
admittance to the operating theatre for diagnostic surgery.

In situ diagnostic procedures of stage and grade during
surgery are currently not available, resulting in unnecessary
tissue resection, which can cause significant negative effects
on the patient’s well-being. Photodynamic diagnosis (PDD),
using hexylaminolevulinic acid as a photosensitizing com-
pound for fluorescence guidance, is a promising approach,
which may assist the presented optical diagnostic method.6,10

Moreover, PDD does not provide clinically relevant infor-
mation on stage and grade for immediate treatment decision.
Due to these current shortcomings for the onsite diagnosis of
NMIBC, there is a significant need for real-time assessment of
the tumor stage and grade during cystoscopy.

Autofluorescence and diffuse reflectance have also been
applied in bladder biopsies, demonstrating the capability to
differentiate tumor and healthy bladder tissue with high sensi-
tivities and specificities, where significant changes of trypto-
phan and collagen at 340 nm and 390 nm emission peaks
were reported.11,12 Nevertheless, in order to differentiate
tumor grade in the bladder tissue, more biochemical infor-
mation about the sample that can be associated with the main
molecular changes related to tumor grading is needed.

In recent years, there have been extensive developments in
optical technologies and their translation to clinical diagnostic
applications, e.g. interference-based approaches, such as
optical coherence tomography (OCT), and label-free molecular
specific spectroscopy-based approaches, such as Raman spec-
troscopy (RS). OCT is widely used in ophthalmology to indicate
anatomical changes in the retina by providing cross-sectional
images in depth at micrometer resolution, allowing access to
structural tissue information.13,14 Since the eye is optically
easily accessible, the retina can be examined non-invasively
using a laser beam. However, to acquire information from the
internal organs, OCT has to be extended with an optical endo-
scope. Such endoscopic OCT-based imaging has been reported
for the cardiovascular system, the gastrointestinal tract and
the urinary tract.15–18 These implementations, however, only
achieved B-scans and endoscopic volume images of the
bladder tissue, which are paramount to characterize the tumor
tissue, were not previously presented. A comprehensive over-
view on OCT methodology and applications is given else-
where.19 While OCT can rapidly provide morphological infor-
mation from different depths, it lacks chemical information
on the underlying molecular composition.

Raman spectroscopy, on the other hand, is based on inelas-
tic light scattering between a photon and a molecule, provid-
ing label-free information on the molecular composition of a
sample. RS provides information on molecular changes at a
single cell level,20–23 and has been extensively used for clinical
tissue characterization.24–26 It has been broadly applied in
numerous studies for the diagnosis of cardiovascular dis-
eases,27 biochemical characterization of human cells28 and
organs,29 including the discrimination of brain tumors30,31

and malignant breast tissues,32–34 and extensive research in
cervical cancer,35–37 lung cancer,38 and colon,39 prostate40 and
bladder cancers.41,42 RS has been readily implemented in fiber
optic probes for a variety of pathologies of different organs.43

While each modality has intriguing capabilities, individu-
ally they can cover only a certain but complementary diagnos-
tic aspect. As such, only a combination of both modalities can
harvest the full diagnostic potential, and provide information
on the invasiveness of the tumor, i.e. stage, by taking cross-sec-
tional images of the bladder wall at a micrometer scale, using
OCT, and obtain information about the grade by assessing the
biochemical composition of the superficial tissue, using RS.44

Ko et al. reported on the first multimodal approach of com-
bining OCT and RS to detect and characterize dental dis-
eases.45 Ever since, multimodal optical coherence tomography
and Raman spectroscopy (OCT-RS) has been reported for
imaging ex vivo human breast tissue samples and in vivo
wound healing,46 ex vivo human retina,47 in vivo and ex vivo
skin,48–51 ex vivo atherosclerotic plaque deposition52 and
ex vivo rectal mucosa.53 Furthermore, Ashok et al. combined
OCT and RS to increase the sensitivity and specificity of colon
cancer detection.54 In this study, microscopy-based OCT
achieved a sensitivity, specificity and accuracy of 78%, 74%
and 75%, respectively. RS achieved 89% sensitivity, 77% speci-
ficity and 82% accuracy. Recently, Bovenkamp et al. showed
the ability of microscopic OCT and RS to provide diagnostic
information regarding stage and grade of bladder cancer. For
differentiating the pT2 stage from the pTa stage, they reported
a sensitivity, specificity and accuracy of 80%, 60% and 71%,
respectively. Furthermore, the sensitivity of detecting high
grade lesions with RS was 99%, whereas the specificity was
87%, indicating correct detection of low grade lesions.55

To use these techniques in vivo in the clinics, they need to
be integrated into rigid or flexible cystoscopes to allow in situ
assessment of the bladder wall. As a first step in this direction,
we report on the development of a combined OCT-Raman
system for stage and grade examination of bladder biopsies,
based on fiber-optical probes. The combined system mimics
the optical performance of an endoscopic probe combining
OCT and RS. It gives insight into in vivo conditions and the
expectable outcome with the first performance benchmarks.
Moreover, it allows one to co-register morphological and mole-
cular information of NMIBC, using fiber optical probes, and
enables new opportunities to interpret the data, by the assess-
ment of co-localized molecular and morphological signals.
The developed system was used to characterize a total of 119
biopsies in an imaging fashion that mimics in vivo conditions,
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for the diagnostic evaluation for the detection of NMIBC, and
for the grading of low- and high-grade tissues.

Materials and methods
Biopsy handling

The study was approved by the Ethical Committee at the
Capital Region of Denmark, H-17015549, and a data processor
agreement between the universities in Jena and Vienna and
the Capital Region of Denmark was made (HGH-2018-038.
I-suite nr. 6639). Prior to the operations, the patients gave
their written informed consent to have biopsies for the study
taken. All operations were performed according to the guide-
lines of the Urological Department at Herlev Hospital, Capital
Region of Denmark and the experiments were performed in
accordance with the above approvals obtained. For the experi-
ments, 119 biopsies from 44 patients were obtained during
resection of the bladder tumor in the operation theatre.
Immediately after the procedure, the biopsies were moistened
with a sodium chloride solution and delivered to the imaging
laboratory within 15 minutes. In case a sample could not be
examined within 20 minutes after removal, it was snap-frozen
to −20 °C and imaged on the following 1–2 days. For examin-
ation on the OCT-RS setup, the biopsies were carefully placed
on CaF2 glass slides and positioned on the translational stage
(Fig. 1 and 2). After the combined analysis using OCT-RS, the
biopsies were fixed and stained. The pathologist then staged

and graded the biopsies based on the underlying histology.
The histopathological results are summarized in Tables 1 and
2. The quantity of the extracted malignant biopsies reflects
NMIBC samples. Since pTa and CIS are confined to the urothe-
lium57 and pT1a has only invaded the superficial lamina
propria, they are considered non-muscle-invasive bladder
cancer58 and by that early stage.

Instrumentation

Swept source OCT (SS-OCT) system. The experiments were
performed using a miniaturized imaging device that mimics
an in vivo situation where the measurement would be per-

Fig. 1 Combined multimodal imaging system. The Raman setup con-
sists of a single mode laser, a spectrometer and a PC. Besides a bright
field camera (1), the Arduino board is also connected to the Raman PC.
The Raman probe (2) receives the excitation light from the laser and
guides back the Raman signal to the spectrometer. The swept source
OCT (SS-OCT) setup includes an akinetic laser source, the interfero-
metric optical setup including the photodiodes, driving electronics for
the endoscope and a PC. The OCT probe (3) is optically connected to
the optical setup. Moreover, the OCT probe is electrically connected to
the piezo amplifier. The communication is realized via an Arduino board,
triggering the acquisition and the translation of the two-axis stage,
which is connected to the Raman PC.

Fig. 2 Image acquisition workflow. (a) A certain region of interest (ROI)
is chosen out of the bright field image. Starting the acquisition leads to
the translation underneath the OCT endoscope. (b) Bottom: The calcu-
lated number of scans is performed consecutively. (c) Bottom: The
biopsy is translated to the Raman probe and the ROI is scanned, pixel by
pixel, to achieve a Raman map. After choosing the ROI, the data acqui-
sition is fully automated. (b) Top: Single OCT stack, which has a size of
500 × 500 pixels. It includes non-informative pixels due to the remap-
ping described in OCT data acquisition. (c) Top: Single Raman point
measurement, showing the acquired spectrum at this position.

Table 1 Description of the collected biopsies. PUNLMP: papillary
urothelial neoplasm of low malignant potential. PUNLMP is not yet a
cancerous lesion and possesses a very limited probability of pro-
gression.56 The number of patients is indicated in brackets. The patient
with PUNLMP is added to the non-tumor group

Non-tumor PUNLMP Cancerous Total

66 (22) 3 50 (22) 116 (44)

Table 2 Detailed description of the tumor samples. The number of
patients is indicated in brackets. Since one patient can exhibit different
stages or grades of cancerous lesions, the number of samples is higher
than the number of patients with cancerous lesions

Stage Grade

CIS pTa pT1a High Low

1 (1) 48 (22) 1 (1) 12 (6) 38 (19)
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formed using a fiber-optic probe. The OCT system (see Fig. 1)
used an akinetic swept source laser (Insight Photonic
Solutions, Inc., Lafayette, Colorado)59 with a central wave-
length of 1304 nm, a bandwidth of ∼90 nm (at 0 dB level) and
a sweep frequency of ∼173 kHz. The OCT system60 was based
on a Mach–Zehnder interferometer configuration, with an
output power of 11 mW at the tip of the endoscope. A system
sensitivity of 104 dB was achieved, which is reduced to 99 dB
in combination with the fiber-optic probe. The detailed
description of the system incorporating the endoscopic probe
can be found elsewhere.61 For OCT imaging, a piezoelectric
tube-based forward viewing endoscope with a diameter of
3 mm and a rigid length of 15.6 mm was used. The optical com-
ponents were arranged in a Fourier-plane configuration to allow
telecentric scanning across the tissue plane.62 The field of view
(FOV) was adjusted at stable scanning behavior to a diameter of
1–1.4 mm. The piezoelectric tube was driven at a quasi-reso-
nance frequency of 510 Hz and scanned the attached optical
fiber in a spiral pattern. The measured axial and lateral resolu-
tion was 12 µm and 28 µm in air, respectively. The confocal
parameter was ∼950 µm. The working distance was ∼500 µm.

OCT data acquisition. For the three-dimensional remapping
of the OCT data acquired with the piezoelectric tube-based
scanning probe, a positional calibration was performed prior
to the measurements. During this step, the scan pattern was
imaged onto a position-sensitive device (PSD – SpotOn Analog
SPOTANA-9L, Duma Optronics Ltd), the parameters were opti-
mized for an optimal scan pattern, and a look-up table (LUT)
was created. To reconstruct the volumetric OCT stacks with a
size of 500 × 500 pixels, an algorithm in combination with the
LUT was used to remap the spiral-shaped scan pattern onto a
square-Cartesian grid. Due to the circular scan pattern, the
final 3D-volume had a cylindrical shape. The time for an entire
spiral – rising and collapsing – was 2 seconds, which can be
reduced to less than a second by changing the resonance fre-
quency of the scanned fiber. However, the data during the
rising spiral was recorded for an OCT stack, and the acqui-
sition rate was 0.5 Hz. The OCT volume scan consisted of 510
consecutive circles (B-scans) with 340 A-scans per B-scan.
Because the FOV of one single spiral was not large enough to
image an entire biopsy with a size between 1 mm2 and
15 mm2, subsequent scans were performed in a raster scan
pattern. These stacks were stitched together in a post-proces-
sing step to obtain an image of the entire biopsy (Fig. 2b). The
OCT data were acquired in such a way that the round FOVs
were overlapping with the neighboring FOVs. To stitch the
individual OCT FOVs, the volume scans were aligned by rotat-
ing the 3D stacks and cropping, in order to create rectangular
stacks. These were combined in the same order the data were
acquired.

Raman system. The acquisition of the Raman spectra was
performed by collecting the Raman signal with an in-house
developed Raman fiber-optic probe, which was connected to a
spectrometer (Acton Series LS785, Princeton Instruments) with
a spectral resolution of 5 cm−1. The spectrometer was
equipped with a back-illuminated deep-depletion charge-

coupled device (BI-DD-CCD) (PIXIS 100BR_eXcelon, Princeton
Instruments) with a 1340 × 100 imaging array and 20 × 20 µm
sized pixels. The excitation fiber of the Raman probe was
coupled to a 785 nm single-mode excitation laser (Fergy-Laser,
Princeton Instruments) with an output power of 70 mW at the
end of the fiber probe. This power could be safely used in
in vivo applications. The excitation light from the optical fiber
was coupled out from the fiber probe using a lens, and after
passing through a narrow-band clean-up filter and a dichroic-
longpass filter focused onto a spot size of 100 µm. The gener-
ated Raman signal was collected using the same lens, and after
passing through the dichroic-longpass filter and an additional
longpass filter focused onto a multimodal collection fiber, with
a diameter of 200 µm, which was coupled to the spectrometer.
The biological sample was scanned pixel-by-pixel resulting in a
two-dimensional hyperspectral Raman map (Fig. 2c).

Combined OCT and Raman setup. The measurements of
morpho-molecular tissue information of a biopsy were per-
formed sequentially. To achieve the data sampling from the
same sample locations, the fiber-optical probes were mounted
on an in-house designed holder with a known positional offset
between the OCT and the Raman probe, and were mounted
above a translational stage (MLS203, Thorlabs). Since the
device controlling software for OCT acquisition and Raman
acquisition was running on two separate computers, and the
translational stage was controlled by the Raman unit, a trigger-
based communication was established between the systems,
using an Arduino UNO board (Board model UNO/R3). This
allowed the sending of triggering events between the two
systems to initiate an acquisition for both modalities from the
same region of interest (ROI). Both systems incorporated self-
built LABVIEW software for acquisition and driving of the
imaging systems. Fig. 1 shows the combination of the Raman
and SS-OCT setups. The automated imaging procedure can be
described as given below.

First, a region of interest on the biopsy was selected by
using a bright field image acquired with a standard camera
(DCC1645C, Thorlabs) (Fig. 2a). Based on the specific FOV
covered by the OCT probe, the software calculated the required
number of tiles in x and y for the OCT measurement. The
number of points for the Raman acquisition was kept constant
to 30 × 30 points. After the start of the data acquisition pro-
cedure, the biopsy was moved below the OCT probe, and an
OCT stack was acquired. After the acquisition of the first tile
was performed, the OCT software sent a trigger through the
Arduino board, indicating that the OCT stack was acquired,
and the Raman computer executed a command to translate
the biopsy to the next location. This was repeated until the
entire ROI on the biopsy was sampled. After all OCT frames
were acquired, the biopsy was automatically moved below the
Raman probe, followed by a scan of the identical ROI as in
OCT. The acquisition time for each imaging modality
depended on the biopsy size: for example, imaging a biopsy
with a size of ∼4 mm2 took 1 minute for the acquisition of
nine (3 × 3) OCT stacks and 13 minutes for 900 (30 × 30)
Raman-point measurements. The goal of the study was to

Paper Analyst

1448 | Analyst, 2020, 145, 1445–1456 This journal is © The Royal Society of Chemistry 2020

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
D

ec
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 9

/2
1/

20
24

 6
:4

6:
25

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9an01911a


sample the entire biopsy to allow for a comprehensive charac-
terization of the underlying morpho-molecular changes occur-
ring in malignant tissues. For the measurements in an in vivo
setting, the acquisition time for OCT imaging and single point
Raman spectroscopy is less than 5 s each.

Data analysis

OCT texture analysis. Texture analysis has been shown to be
a suitable approach to perform an automated image classifi-
cation for OCT images63 and has been successfully used to
differentiate benign and malignant biological tissues.64

Consequently, this method was chosen to analyze the OCT
images.54,55 The texture analysis approach described by
Bovenkamp et al. was used in the present study.55 In contrast
to the reported procedure, the single OCT stacks were divided
into 25 × 25 equally sized fragments and only the middle 5 × 5
subframes were used for the texture analysis. This excluded
the border area of the single scanned FOVs only containing
zero pixels due to the circular shape of the scanning pattern
(Fig. 2b). Furthermore, the outermost circles might be under-
sampled at a large FOV or distorted due to slight changes in the
resonance frequency of the scanner during operation. Because
OCT measurements were performed on biopsies placed on the
CaF2 glass slide, some of the OCT stacks contained high glass
reflections. Therefore, only a subset of OCT stacks per biopsy
was chosen. The stacks, containing glass reflections, exhibit
texture feature artifacts not found in stacks that contain infor-
mation about the biopsy only. These features were used to
exclude the glass stacks, which are not relevant for classifying
malignant and benign tissues. As a result, the classification was
built on 80 features per observation and 29 006 observations in
total. The classification was carried out using a fine Gaussian
support vector machine (SVM) with a 20% holdout validation.

Spectral analysis of Raman data: pre-processing. Before any
analysis of the Raman data was performed, all spectra were
identically pre-processed. The spectra were first corrected for
cosmic spikes, using an algorithm developed by Ryabchykov
et al.65 The wavenumber calibration was performed based on a
reference spectrum of 4-acetamidophenol. Subsequently, the
measured spectra were de-noised by using the first 8 PCA com-
ponents. The spectra were corrected for dark current followed
by an intensity calibration, using the spectra of a National
Institute of Standards and Technology (NIST)-standardized
white light source (Kaiser HCA accessory). The measured
intensity lamp spectra were fitted to the reference spectra of
the lamp and a transfer function was estimated to calibrate the
intensity of the measured spectra. The baseline correction was
performed using asymmetric least squares (AsLS) and
extended multiplicative signal correction (EMSC).66 As the last
two steps of the pre-treatment workflow, all Raman spectra
were further treated using the Savitzky–Golay filter and area
normalized within the regions from 600 to 1750 cm−1 and
2800 to 3000 cm−1. These regions were afterwards used to con-
struct the classification models, using partial least squares
linear discriminant analysis (PLS-LDA) to classify between

tumor and non-tumor. All computations were performed using
the statistical programming language R and Python.

Classification model and cross-validation of Raman data

The classification was performed using a PLS-LDA algorithm,
which combines partial least squares and linear discriminant
analysis using a 5-fold cross-validation. A hierarchical
approach to create and validate each model was adopted,
where the first layer model system ML1 focusses on classifying
between tumor and non-tumor, and the second layer model
system ML2 uses the tumor predictions to differentiate low-
and high-grade tumors (Fig. 3).

The created models were validated by applying k-fold parti-
tioning of the data, where each layer has a specific partition
according to the existent data for each variable of classifi-
cation. For the first classification layer (ML1), 10 iterations for
each partitioning were performed. The generated ML1-models
were validated by the test data. In order to test all spectra of
each biopsy, 10% of the created models were selected ran-
domly. For each spectral point, a mean of the predictions was
calculated, and this prediction map per pixel is displayed in
the flowchart (Fig. 3). The mean prediction maps were used to
select the spectra predicted as tumor and non-tumor. The
second layer classification model system (ML2) used the
tumor-defined areas of the biopsies. A mean spectrum per
biopsy was calculated for those areas. The resulting data was

Fig. 3 Flowchart of all main steps employed to create and validate the
first- and second-layer model systems ML1 and ML2, respectively.
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k-fold partitioned and a set of training and testing biopsies
was selected. The ML2 was created with the training data set
that results from 16-fold partitions and was validated with the
testing biopsies; 10 iterations of 16 different partitions were
employed to create and validate ML2 (Fig. 3). The described
method has previously been reported in Cordero et al.67

Multivariate curve resolution alternating least squares
(MCR-ALS) for collagen distribution of Raman data

Initially, the pure components for each biopsy were deter-
mined by using an orthogonal projection approach (OPA)
algorithm. This function extracts the initial ‘pure’ components
of the set of spectra based on spectral dissimilarity of the data
set. It is important to note that the pure component spectra
can contain contributions from other substances and can
deviate to some degree to pure component spectra of the
native substance. The OPA estimates the dispersion matrix of
the mean spectrum of the data set: the higher the dissimilar-
ity, the purer the component. The estimated pure components
of tumor and non-tumor spectra were correlated to the litera-
ture.41 It was found that for non-tumor biopsies, there are
most of the relevant bands of collagen 1 spectrum, which can
be linked to the dominant presence of collagen in non-tumor
spectra. All the non-tumor biopsies were used to find the col-
lagen pure component, which was calculated by employing the
OPA function, which provides the first estimation of pure com-
ponents of the dataset. Afterwards, the mean standard devi-
ation of the OPA pure collagen obtained from each biopsy was
used to further calculate the MCR concentrations, where ALS
complement the MCR function fitting the concentrations to
improve the estimations of the pure components. The
MCR-ALS algorithm used the extracted mean collagen pure
component and consequently calculates the relative concen-
tration at each measured location of each biopsy. The concen-
tration matrix indicates how intense the presence of collagen
in the biopsy is and was calculated for each biopsy.

Results and discussion
Correlation of OCT to histopathological images

To visually compare the morphological information obtained
from OCT with the histopathological information, OCT and the
corresponding histopathology for two different biopsies are
shown in Fig. 4. In the non-tumor case (Fig. 4a), the layered
appearance of the bladder wall is visible by OCT. The thin dark
top layer in the OCT image is correlated to the mucosa, delimit-
ing the bladder from the inner lumen. The second bright layer
corresponds to the connective tissue, also referred to as lamina
propria. Besides nerves and blood vessels, the bright appearance
in the OCT images indicates a strong scattering tissue constitu-
ent, such as collagen fibers. The deepest visible layer in the OCT
image is the muscularis propria, the muscle layer. It has a clear
demarcation from the lamina propria and appears rather dark.
In Fig. 4b, the corresponding OCT and histopathological image
of a pTa lesion is shown. Here, the thickened urothelium is

clearly visible. Whereas the pTa staged tumor has not infiltrated
the lamina propria, the demarcation between the urothelium
and lamina propria is still intact.

These correlations show the ability of the presented endo-
scopic OCT probe to identify early stage lesions due to mor-
phological changes in the mucosa of the bladder wall. The
used OCT probe design is thereby suitable to detect NMIBC.
Even though some biopsies can be distinctly correlated, in
general, the correlation between OCT and histopathological
images is difficult and was not feasible for all biopsies. For
example, the biopsy-collection procedure relies on forceps,
which mechanically stresses the biopsy. Additionally, the
biopsy can get twisted during transportation from the oper-
ation theatre to the OCT-RS setup. Furthermore, the fixation
process for histopathological slicing includes formalin, which
can cause the biopsy to shrink, inducing discrepancies in
dimensions. For example, in renal and intestinal biopsies,
shrinkage between 11% and 33% was reported,
respectively.68,69 For quantitative classification of the OCT
data, texture analysis was carried out.

Texture analysis of the OCT data

The classification was performed on 116 non-tumor and
tumor biopsies. The stacks were labeled with histopathological
results obtained for the biopsies and the results of the texture
analysis are summarized in Table 3. Sensitivity indicates the
correct detection of tumor in accordance with the histopatho-

Fig. 4 OCT image correlation to histopathological images. (a)
Representative example of a non-tumor bladder wall. The green line
indicates the mucosa/urothelium layer, the blue line shows the lamina
propria and the red line is the muscularis layer. The red arrow points to a
vessel, the yellow arrow indicates fat accumulation and the black arrow
indicates mechanical rupture. (b) Representative example of a pTa low
grade tumor bladder wall. Here, the mucosa/urothelium is thickened
(green line). The white arrow indicates a region of less intensity, because
the lamina propria (blue line) is highly scattering. The visible edge in (b)
is a stitching artefact. The corresponding histopathological images are
not co-localized to the OCT B-scans. The OCT insets are maximum pro-
jections of 10 B-scans. Scale bars: 250 µm.
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logical result. An accuracy of 73.4% was achieved. Bovenkamp
et al. focused on the differentiation of advanced tumor
stages.55 In contrast, in this study, we concentrated on the
detection of NMIBC lesions, as the number of available
samples for pTa(1) was small, i.e. one single sample. We have,
therefore, not separately included the two samples, staged as
pT1a and CIS, in the texture analysis, since the statistical basis
for a significant classification outcome is not given. Since the
advanced stages of muscle-invasive bladder cancer are visually
detectable, it is of higher clinical relevance to detect NMIBC by
OCT. From the four texture features, the contrast texture prop-
erty at 45, 90 and 135 degrees contributed the most (92%) to
the differentiation between healthy and diseased tissues.
While malignant tissues always showed lower contrast values,
benign tissues showed a higher contrast. This is understand-
able, as malignant tissues are characterized by structural loss
of the bladder wall anatomy as soon as cancer progresses. This
observation confirms the preliminary results of Bovenkamp
et al. on a larger study cohort. The results for accuracy are com-
parable to other publications using microscopes for OCT
image acquisition and texture analysis for cancer
classification.54,55 The deviation is primarily due to the use of
a fiber-probe-based scanning approach, where compromises

with respect to the optical performance are made. But on the
other hand, there is clear evidence that the optical perform-
ance of the probe is sufficient for NMIBC. Furthermore, the
remaining glass reflection artifacts from the substrate can
additionally reduce the performance. This, however, should be
of no concern for in vivo measurements. Nevertheless, the per-
formance of the texture analysis was further compromised,
because the classification of the histopathological results pro-
vides only a single label for the entire biopsy corresponding to
the highest pathologic severity observed. The OCT images, on
the other hand, are spatially resolved, and contain a variety of
regions. For instance, a pTa staged biopsy may contain areas of
healthy bladder wall, which does not influence the histopatholo-
gical outcome. In contrast, the classification is sensitive to these
transitions and the heterogeneity of the lesion within one par-
ticular biopsy. The sensitivity for pTa, for instance, increases to
90%, if two blinded experts, familiar with OCT images of the
bladder wall, are classifying the OCT images. If the decision was
inconclusive between the two experts, the pathologically more
severe statement was taken to label the biopsy. The heterogen-
eity of the biopsy can be a significant factor that reduces the
accuracy of the OCT texture analysis (see Fig. 7).

Raman analysis

For Raman spectroscopy, a two-layer model system was created
and validated to distinguish tumor from non-tumor tissues,
followed by grading of tumor regions. The first model level
differentiates tumor and non-tumor with an accuracy of 92%.
As described in the first section, the two-layer model was
created with a different set of spectra, summarized in the flow-
chart shown in Fig. 3. For the second modeling step ML2,
which differentiates low-grade from high-grade, an accuracy of
77% was achieved. Fig. 5a shows the mean spectrum of all

Table 3 Performance of OCT and Raman spectroscopy (RS): texture
analysis differentiating non-tumor from NMIBC (OCT), the model level 1
(ML1) separating tumor (T) from non-tumor (NT) and the model level 2
(ML2) discriminating high grade (HG) from low grade (LG)

OCT (%) RS – T/NT (%) RS – HG/LG (%)

Accuracy 73.4 92 77
Sensitivity 78 95 81
Specificity 69 88 68
Confidence interval (72.9–73.9) (92.2–92.6) (73–81)

Fig. 5 Relation between the mean and the mean coefficients of ML1. (a) Mean spectra of non-tumor (black) and low grade (blue) and high grade
(red) tumor. (b) Mean coefficients of ML1 resulted from the tumor/non-tumor classification. The red bands are characteristic lipid bands and the
grey bands are typical collagen bands. One can observe that the lipid bands are related to the positive coefficients for tumor and the collagen bands
to the negative coefficients for non-tumor biopsies.
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non-tumor (black) and low- (blue) and high-grade (red) tumor
biopsies, in which the lipid and collagen bands are high-
lighted. The mean coefficient of the model system layer 1
(ML1) is shown in Fig. 5b. The same bands are also high-
lighted, illustrating the relation between negative coefficients
and the spectral bands for collagen at 856 cm−1, 937 cm−1 and
1265 cm−1, which indicate the C–C vibrations and amide II of
collagen,70 respectively. The collagen bands and the negative
LDA coefficients show a clear relationship between the con-
stituent and the non-tumor class. The marked lipid bands at
1300 cm−1, 1656 cm−1 and 2854 cm−1 correspond to the CH2

deformation, twist vibration, CvC and the symmetric stretch-
ing of lipids, respectively.70,71 As can be seen from the com-
parison, there is a relation between the main lipid bands,
positive LDA coefficients, and the tumor class. These obser-
vations are consistent with previous findings,41,72 where non-
tumor tissues are mainly characterized for having a dominant
presence of collagen. The two-layer model (ML1 and ML2)
performance is summarized in Table 3: ML2 can identify the
true positive LG easily than the true negative HG, with an
achieved sensitivity of 81% to differentiate low-grade tumour
from high-grade tumor. The achieved specificity of 68% to
differentiate the grading indicates that the models need more
spectral information of the true negative HG in order to
better distinguish the main differences between tumor
grading. As Fig. 5a shows, low and high grade mean spectra
have very little variations and more HG-biopsies are required
to allow the models to classify properly between the two
classes.

MCR analysis and collagen distribution. The classification
models show a distinct relation between the collagen presence
in non-tumor and tumor samples; therefore the collagen distri-
bution can be related to the mean predictions of model ML1.
As previously described, each biopsy has a set of spectra that
has a mean prediction obtained from model ML1, which
allows providing information on the heterogeneity or hom-
ogeneity of a biopsy. An MCR algorithm is applied to use the
extracted pure components of collagen for the non-tumor
biopsies to find the constituent distribution in the biopsy by
estimating the concentration of the component for each spec-
trum of the biopsy.

Fig. 6a shows the mean and standard deviation spectra of
the homogeneous non-tumor (black) and tumor (red) biopsy
and the extracted MCR collagen component (green) from all
non-tumor biopsies, as described in the previous sections.
Fig. 6b displays the mapping of the mean prediction (left) and
the collagen distribution (right), showing how the presence of
collagen dominates in the biopsy that is predicted as a homo-
geneous non-tumor tissue. This is consistent with Fig. 6c,
where the mapping of a heterogeneous non-tumor biopsy
shows that the areas predicted as tumor (red areas) have less
presence of collagen (darker green) in comparison with the
areas predicted as non-tumor (black areas). In the same way,
Fig. 6d and e show the mapping of mean prediction and col-
lagen concentrations in homogeneous and heterogeneous
tumor biopsies, respectively.

The homogeneous tumor biopsy shows a distinct difference
when compared to the homogeneous non-tumor biopsy, where
the dark colored area indicates a low presence of collagen.
Similarly, the areas predicted as non-tumor in Fig. 6d are
brighter than the areas predicted as tumor for the hetero-
geneous tumor tissue. This contrast is depicted easily by com-
paring the prediction and collagen distribution maps in Fig. 6.
The black area of the prediction map (left) is non-tumor and is
lighter colored in the collagen distribution map (right). The
correlation between the prediction maps and the collagen dis-
tribution maps provides an insight into the relation between
one of the main bladder tissue constituents and the tumor
regions of the analyzed tissue.

OCT-Raman combination

The combination of RS and OCT opens a new means to better
comprehend the essential basis of the data. Even though both
modalities are based on different physical origins, i.e. OCT
depends on the light scattering due to changes of the index of
refraction in the tissue, and RS relies on the molecular
vibrational bonds in the sample, both origins are inherently

Fig. 6 Mean-sd (standard deviation) spectra and the corresponding
collagen pure component: (a) mean and standard deviation of non-
tumor spectra of the homogeneous non-tumor biopsy (black), homo-
geneous tumor biopsy (red) and extracted pure collagen from non-
tumor biopsies (green). Mean prediction and MCR collagen concen-
tration for (b) homogeneous non-tumor, (c) heterogeneous non-tumor,
(d) heterogeneous tumor and (e) heterogeneous tumor biopsies. The
minimum collagen concentration value is 0.043 and the maximum value
is 0.052.
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coupled. The collected imaging data of the two complementary
modalities were acquired in a co-registered manner, offering
the possibility to correlate molecular and morphological fea-
tures from the same locations.

The correlation was performed, first by stitching the OCT
stacks and applying an in-house developed algorithm to
compute the surface curvature of the biopsy, which allowed for
the flattening of the surface. After the curvature correction, the
mean of the biopsy in the z-dimension was calculated, and the
obtained image was employed to compute a mask for locations
belonging to the biopsy and locations outside the biopsy. The
RS data were pre-treated as described in the Materials and
methods section, and the mean prediction Raman map was
employed to correlate the OCT and RS data. The RS mean pre-
diction map was interpolated to account for the size difference
between the Raman map and the OCT image. Furthermore,
because the OCT scan covered more area than the RS map, the
RS map was used as a mask for the OCT image. Transparency
was applied to the RS map in order to provide visual infor-
mation of both the OCT image and the Raman map.

Fig. 7 shows the transition of tumor to non-tumor area
using the combined information of both modalities. To better
visualize the data, images were displayed for both modalities
indicating a healthy bladder wall structure within a cancerous
lesion. An OCT cross-sectional and en-face image of a biopsy,
which was histopathologically diagnosed as pTa low-grade
tumor is shown in Fig. 7a. The overlaid Raman information of
the tumor margin, where the red shade is the predicted tumor
fraction and the black shade is the predicted non-tumor frac-
tion as established by the ML1 model, is shown in Fig. 7b. The
bright features of the lamina propria appear in the OCT

image, which indicates a pronounced transition between the
urothelium and the lamina propria in the healthy bladder wall
and are well correlated to the regions that were predicted as
non-tumor tissues by RS. To better visualize the information,
cross-sectional images of the indicated regions marked by the
colored lines are framed in green and yellow. The cross-sec-
tional images are maximum projections of 10 scans around
the indicated position. This combination of both modalities
enables a better comprehension of the underlying signal
origin and enables further localized pathological analysis of
the biopsies with localized diagnosis to provide more detailed
histopathological labels. This can lead to increased accuracy
given by computer-assisted classification of tumor and non-
tumor areas, providing a strong indication that the combi-
nation of optical label-free modalities can provide a compre-
hensive, localized diagnostic value.

Although biopsy handling and the pathological examin-
ation, such as biopsy torsion or discrete biopsy labels, influ-
ence the performance, the achieved accuracies of 73% and
77% for OCT and RS, respectively, are promising for future
in vivo tests, allowing the determination of the stage and grade
simultaneously in vivo. Here, artefacts from sample handling
will become completely negligible, additionally improving the
accuracy.

Conclusions

In summary, we have demonstrated that fiber-probe based
OCT and RS are suitable to provide clinically relevant infor-
mation for detection and grading of NMIBC biopsies. Here, a

Fig. 7 Heterogeneity of a pTa low grade labelled biopsy. (a) OCT scan: Red arrows indicate loss of transition between the urothelium and the
lamina propria showing a pTa stage cancer. (b) OCT-RS combination: Model system ML1 highlights tumor (red) and non-tumor (black) areas and it is
overlapped to the OCT image (en-face and B-scans). The blue arrows point to regions of present lamina propria. The lamina propria appears bright
in the OCT image and RS predicts the non-tumor tissue (black color within the stripes above the B-scans). The purple framed image indicates the
en-face image. Cross-sectional images are framed in green and yellow. Locations within the 3D stack are marked with colored lines. Cross-sectional
images are maximum projections of 10 scans around the shown position. Scale bars: 250 µm.
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forward looking, piezoelectric tube-based OCT probe is used
for a comprehensive characterization of bladder cancer lesions
for the first time, providing volumetric morphological infor-
mation of entire biopsies. The presented OCT probe provides
sufficiently high optical performance to determine small mor-
phological structures in depth. Raman spectroscopy, on the
other hand, demonstrates clear spectral differentiation of
tumor and non-tumor, and low- and high-grade lesions in the
bladder tissue based on the biomolecular composition. By
developing an imaging platform that combines both modal-
ities using forward-viewing fiber-optical probes, it was possible
to acquire morphological volumetric images of biopsies and to
create co-localized and co-registered hyperspectral molecular
maps for the sample, providing comprehensive diagnostic
information for the penetration and grade of bladder cancer at
an early stage. By performing the study using fiber-optic
probes and a large number of samples, it was possible to
evaluate the relevant parameters of the probes for the in vivo
application of OCT and RS. For example, it was possible to
show that the piezoelectric tube-based OCT probe is mechani-
cally stable to conduct a reproducible measurement of more
than 100 biopsies with more than 1000 individual stack acqui-
sitions over an extended period of time. Probe parameters,
such as the outer dimension, meet the restrictions given by
surgical instruments for in vivo applications, including
additional sheathing for biocompatibility and safety. The para-
meter evaluation reveals adequate power levels and perform-
ance for visualization of the clinically relevant data for both
modalities. The presented axial and lateral resolution for OCT
and a sensitivity of 99 dB are sufficient. The FOV should be as
big as possible, but a diameter of 1 mm is enough to identify
and characterize relevant lesions. The excitation power of
70 mW and 11 mW used by RS and OCT, respectively, are well
within the limit for maximum permissible exposure on skin
and suitable for in vivo applications. The required acquisition
times of 0.5 s and 2 s for RS and OCT, respectively, are suitable
for interoperative handling by urologists during bladder exam-
ination. Comparing OCT and RS, one can see that OCT can
acquire information from a larger FOV faster, allowing for the
detection of cancerous lesions. RS, on the other hand, provides
higher sensitivity, specificity and accuracy for differentiating
tumor from non-tumor tissues, and additionally allows the
grading of tumors. As such, OCT can be used as a red-flag
technology and RS can be used to provide diagnostic infor-
mation. Moreover, the results serve substantially as the next
step towards in vivo testing of the OCT-RS combination. The
presented findings pave the way for the development of multi-
modal, endoscopic probes enabling OCT and RS to supply the
clinicians with clinically important, localized information in
real time, which is until now only accessible after histopatholo-
gical examination.
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