Comparison of electrocatalytic activity of Pt$_{1-x}$Pd$_x$/C catalysts for ethanol electro-oxidation in acidic and alkaline media†

Qiang Zhang,a Ting Chen,a Rongyan Jiangb and Fengxing Jianga,c

In this paper, a comparison of Pt$_{1-x}$Pd$_x$/C catalysts for ethanol-oxidation in acidic and alkaline media has been investigated. We prepared Pt$_{1-x}$Pd$_x$/C catalysts with different ratios of Pt/Pd (x at% = 0, 27, 53, 77 and 100) by the formic acid reduction method. The obtained Pt$_{1-x}$Pd$_x$/C catalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), induced coupled plasma-atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Structural and morphological investigations of the as-prepared catalysts revealed that the metallic particle size increases with increasing Pd content in the catalyst. The electrocatalytic performances and stabilities of Pt$_{1-x}$Pd$_x$/C catalysts were tested by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry (CA) measurements for ethanol oxidation in acidic and alkaline media. The electrochemical measurements demonstrate that Pt$_{1-x}$Pd$_x$/C catalysts exhibit much higher electrocatalytic activity for alcohol oxidation in alkaline media than that in acidic media. The composition of Pt/Pd has a significant impact on the ethanol-oxidation in both acidic and alkaline media. The Pt$_{23}$Pd$_{77}$/C catalyst shows the highest electrocatalytic performance with a mass specific peak current of 2453.7 mA mg$_{PtPd}$$^{-1}$ in alkaline media, which is higher than the Pt$_{77}$Pd$_{23}$/C with the maximum of peak current of 339.7 mA mg$_{PtPd}$$^{-1}$ in acidic media. Meanwhile, the effect of electrolyte, CH$_3$CH$_2$OH concentrations and scan rates was also studied for ethanol-oxidation in acidic and alkaline media.

1. Introduction

Direct ethanol fuel cells (DEFCs) have received considerable interest due to their high energy density, low toxicity and price, and environmentally friendly nature.1,2 Currently, Pt is the most efficient electrocatalyst that has been utilized in DEFCs.3 However, it is still a challenge to realise large-scale commercialization due to their low abundance, high cost, and poor tolerance of reaction intermediates (mainly CO).4,5 Thus, to solve the issue, many researchers have devoted to decreasing the Pt loading by incorporating alternative lower cost metals into the Pt such as Cu,6 Pd,7 Ni,8 Fe,9 etc., and enhancing the CO tolerance by introducing some metal oxides into the catalyst such as CeO$_2$,10 TiO$_2$,11 SnO$_2$,12 RuO$_2$,13 etc. Hence, the catalytic performances and CO resistance of Pt can be boosted by modifying the surface electronic structure of Pt and the bifunctional mechanism between the two metals.14,15 Among various metals, Pd is known to be an excellent candidate to form bimetallic Pt-based catalysts towards ethanol oxidation,16 due its ability to remove CO species adsorbed on Pt and then enhance the activity and the anti-poison ability.17 Moreover, Pd easily forms alloys with Pt due to the similar atom structure,18 and has a lower price than Pt.

Recently, some researchers have been devoted to fabricating various PtPd nanostructures for ethanol oxidation, including alloys,19 nanocubes,20 nanoflowers,21 nanorods,22 nanodendrites23 and core–shell structures.24 For instance, Liu et al.25 prepared a PtPd alloy catalyst supported on graphene for ethanol oxidation in alkaline solutions and found that PtPd with the ratios of 0.46 : 0.54 possessed excellent catalytic activity and durability. Lu and co-workers26 fabricated three-dimensional platinum-palladium hollow nanospheres with a dendritic shell (PtPd-HNSs) through a facile and economic route, which show remarkable activity and durability toward the methanol oxidation reaction (MOR) in acidic media, owing to the coupled merits of bimetallic nanodendrites and a hollow interior. And Alcaide et al.27 revealed that prepared Pd–Pt catalysts with a Pd : Pt atomic ratio of 25 : 75 showed the best performance in direct methanol single fuel cells in acidic media. Shen and co-workers28 reported that Pd/C has a higher catalytic activity and better steady-state performance for ethanol electrooxidation than Pt/C in alkaline media, which probably

aSchool of Science, Shandong Jianzhu University, Jinan 250101, China
bSchool of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China
cDepartment of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China. E-mail: f_x_jiang@live.cn

† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra00483a
due to the fact that OH species formed easily on the Pd surface react with CO-like intermediate species to produce CO₂ and release the active sites. Carvalho et al. prepared carbon-supported Pd, Pt, Pt₃Pd₁, and Pt₃Pd₁ electrocatalysts for ethanol oxidation and compared the electrochemical activities of catalysts in acid and alkaline media. Although many papers about the best ratio of PtPd for ethanol electro-oxidation in acidic or alkaline medium were investigated, the involving comparison of the electroactivity toward ethanol oxidation in both acid and alkaline solution is not available in the literature in details.

Herein, we report Ptₓ₁₋₅Pdₓ/C catalysts with different ratios of Pt/Pd by formic acidic reduction method for ethanol electro-oxidation in acidic and alkaline media. The obtained samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), induced coupled plasma-atomic emission spectroscopy (ICP-AES). The catalytic performance and stability of the composite electrodes for the ethanol oxidation under both in acid and alkaline conditions were explored by cyclic voltammetry and chronoamperometry. In addition, the effect of electrolyte and CH₃CH₂OH concentrations, scan rates were also studied for ethanol-oxidation in acidic and alkaline media.

Table 1 Comparison of parameters on as-prepared catalysts

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Metal loading (wt%)</th>
<th>Pt : Pd (at/at)</th>
<th>ECSA/m² g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pt</td>
<td>Pd</td>
<td>By EDX</td>
</tr>
<tr>
<td>Pt/C</td>
<td>9.14</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ptₓ₁₋₅Pdₓ/C</td>
<td>6.33</td>
<td>1.33</td>
<td>83 : 17</td>
</tr>
<tr>
<td>Ptₓ₁₋₅Pdₓ/C</td>
<td>5.06</td>
<td>3.15</td>
<td>54 : 46</td>
</tr>
<tr>
<td>Ptₓ₁₋₅Pdₓ/C</td>
<td>3.02</td>
<td>5.60</td>
<td>39 : 61</td>
</tr>
<tr>
<td>Pd/C</td>
<td>—</td>
<td>7.79</td>
<td>—</td>
</tr>
</tbody>
</table>

2. Experimental

2.1 Materials and reagents

H₂PtCl₆·6H₂O, PdCl₂, KOH, HCOOH and H₂SO₄ were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were of analytical grade purity. Carbon black was obtained from Suzhou Baohua Carbon Black Co., Ltd. A deionized water (resistance: 18.25 MΩ cm⁻¹) was used for the preparation of aqueous solution.

2.2 Catalyst preparation

In a typical preparation, the carbon-supported Ptₓ₁₋₅Pdₓ (x = 0, 0.27, 0.53, 0.77, and 1) catalysts were prepared by formic acidic reduction method. Briefly, 0.61 mL H₂PtCl₆ (7.723 mM) and 0.72 mL H₂PdCl₄ solution (22.55 mM) with a corresponding Pt to Pd molar ratio of 25 : 75 were added to 30 mL deionized water and mixed with 50 mg carbon black. This mixture solution was stirred for 30 min and ultrasonicated for 30 min at room temperature. Then, an aqueous solution of formic acidic (2.0 M, 40 mL) was added slowly to the above mixture under rapid stirring. After that, the above obtained solution was heated to 80 °C by an oil bath while stirring and refluxing for 3 h. Finally, the Ptₓ₁₋₅Pdₓ/C catalysts were washed and dried in a vacuum oven at 60 °C. In addition, Pt/C, Pd/C, PtPd (50 : 50)/C and PtPd (75 : 25)/C catalysts were also prepared by a similar way. Here, a theoretical amount of PtPd loading on carbon black was controlled at 10 wt% with a nominal Pt/Pd atomic ratios of 75 : 25, 50 : 50 and 25 : 75. The EDS spectra showed that the Pt and Pd elements in the Ptₓ₁₋₅Pdₓ/C compositions with the atomic ratios of 83 : 17, 54 : 46 and 39 : 61 summarized in Table 1, which were close to the feed ratio of the precursors. In addition, the actual loading and the atomic ratios of Pt : Pd were 73 : 27, 47 : 53 and 23 : 77 according to the measurement of inductive coupled plasma emission spectrometer (ICP) and the data were summarized in Table 1, which is similar to the results of nominal compositions. Based on the results of the ICP data, the as-prepared catalysts were denoted as Pt/C, Ptₓ₁₋₅Pdₓ/C, Ptₓ₁₋₅Pdₓ/C, Ptₓ₁₋₅Pdₓ/C and Pt/C, respectively.

2.3 Characterizations

A S-4700 energy dispersive X-ray spectrometry (EDX) and 710-ES ICP were used to obtain the composition of as-prepared PtPd alloy catalysts. Transmission electron microscope (TEM, JEM-1011, Japanese Electronics Co. Ltd, Japan) was used to characterize the morphology and structure of the as-prepared materials. Power X-ray diffraction (XRD, PANalytical X’Pert PRO MRD system with Cu Kα radiation) spectra were used to analyse the structure characterisation of PtPd alloy catalysts. X-ray photoelectron spectroscopy (XPS) experiments were carried on a K-Alpha instrument (ThermoFisher), and the binding energies were calibrated by C 1s (284.8 eV).

2.4 Electrochemical measurements

In order to perform the electrochemical measurements, it was prepared a dispersion of catalysts, which consists in 10.0 mg as-prepared catalyst powders dispersing in the mixture of 4.0 mL deionized water and 50 mL Nafion solution for 30 min. Then, a 10.0 μL homogeneous catalyst ink was spread on the surface of glass carbon electrode (GCE) and dried at 60 °C. The metallic loading for Pt/C, Ptₓ₁₋₅Pdₓ/C, Ptₓ₁₋₅Pdₓ/C, Ptₓ₁₋₅Pdₓ/C and Pd/C on GCE were about 0.032 cm², 0.028 cm², 0.029 mg cm⁻², 0.031 mg cm⁻², and 0.027 mg cm⁻², respectively.

Electrochemical measurements were performed in a classical three-electrodes-cell by a CHI 660B electrochemical
workstation at room temperature. A GCE (3.0 mm in diameter), Pt plate and a saturated calomel electrode (SCE) were used as the working, counter and reference electrodes, respectively. Unless otherwise stated, all the applied potential were referenced to SCE. The electrocatalytic activity of ethanol in acid medium was carried out 0.5 M H₂SO₄ + 1.0 M CH₃CH₂OH by cyclic voltammogram (CV) measurement at the scan rate of 50 mV s⁻¹. Chronoamperometries (CA) tests of samples were recorded at 0.5 V in acid solution while the alkaline oxidation of ethanol was performed in 1.0 M KOH + 1.0 M CH₃CH₂OH by cyclic voltammogram (CV) measurement at the scan rate of 50 mV s⁻¹. The CA curves were performed in the same electrolyte as CV measurement.

3. Results and discussion

3.1 XRD analysis

The crystal structures of as-prepared Ptₓ₋₄₋¢³³³ celibate the 2

in 1.0 M KOH + 1.0 M CH₃CH₂OH by cyclic voltammogram (CV) measurement.

The crystal structures of as-prepared Ptₓ₋₄₋₄₋₄₋₄₋₄₋₄₋₄₋₄₋₄₋₄₋₄₋¢³³³ celibate the 2

normal lattice planes of fcc crystalline Pd [JCPDS no. 46-1043], respectively. Meanwhile, the four peaks of the monometallic Pd at about 40.1°, 46.7°, 68.1°, 82.0° are attributed to the (111), (200), (220) and (311) lattice planes of fcc crystalline Pd [JCPDS no. 46-1043], respectively. For the Ptₓ₋₄₋₄₋₄₋₄₋₄₋¢³³³ celibate the 2

(220) lattice planes of fcc crystalline Pd [JCPDS no. 46-1043], respectively. For the Ptₓ₋₄₋₄₋₄₋₄₋₄₋¢³³³ celibate the 2

the particle size of carbon supported metals increases with the

increasing content of Pd in all samples, of which Pd/C catalyst shows the

largest particle size. The results of dimensions of metallic nanoparticles in TEM analysis were consist with the XRD patterns.

The quick reduction reaction for Pt catalysts could form a large amount of product with a very tiny nucleus in a short time and result in the well-dispersed nanoparticles, while for Pd catalyst could result in the uneven dispersion of nanoparticles. The increase of particle size for Ptₓ₋₄₋₄₋₄₋¢³³³ celibate the 2

alloy and Pd has an effect on the electrochemical active surface area (ECSA) of catalyst. As seen from the Table 1, the small size of particles possess larger ECSA compared to the large particles. The higher ECSA of catalyst is most likely ascribed to the high dispersions of metal nanoparticles with small size on the substrates, contributing to its high electrocatalytic performance for ethanol oxidation.

3.2 TEM analysis

To investigate the morphological and structural feature of the Pt/C, Ptₓ₋₄₋₄₋₄₋¢³³³ celibate the 2

substrates, contributing to its high electrocatalytic performance for ethanol oxidation.

![Fig. 1 XRD patterns of Pt/C, Ptₓ₋₄₋₄₋₄₋¢³³³ celibate the 2

Fig. 1 XRD patterns of Pt/C, Ptₓ₋₄₋₄₋¢³³³ celibate the 2

Fig. 2 TEM images of Pt/C (A), Ptₓ₋₄₋¢³³³ celibate the 2

Fig. 2 TEM images of Pt/C (A), Ptₓ₋₄₋¢³³³ celibate the 2

10136 | RSC Adv., 2020, 10, 10134–10143
3.3 XPS analysis

X-ray photoelectron spectroscopy (XPS) was employed to investigate the surface composition and oxidation states of the as-prepared samples. Fig. 3A shows the Pt 4f XPS spectra of Pt/C, Pt$_{37}$Pd$_{63}$/C, Pt$_{47}$Pd$_{53}$/C and Pt$_{23}$Pd$_{77}$/C. Each curve exhibits two prominent peaks located at 71.10 and 74.41 eV, which can be assigned to the Pt 4f$_{7/2}$ and Pt 4f$_{5/2}$, respectively. Compared to the XPS spectrum of Pt/C, the binding energies of Pt 4f slightly shift to lower values for the other Pt$_{1-x}$Pd$_x$/C catalysts. Meanwhile, the shift of the peak increases with the Pd content. The Pt 4f peaks of Pt/C can be resolved into two doublets, as shown in Fig. 3B. The two prominent peaks with binding energies at 71.3 and 74.5 eV correspond to the metallic Pt, meanwhile, the other two small peaks at 72.0 and 77.1 eV are assigned to Pt oxide, such as PtO$_2$ and PtO. Based on the relative integrated intensity values, metallic Pt is found to be predominant on the Pt/C catalyst. The Pd 3d spectra of Pd/C, Pt$_{37}$Pd$_{63}$/C, Pt$_{47}$Pd$_{53}$/C and Pt$_{23}$Pd$_{77}$/C are given in Fig. 3B. For the Pd/C sample, two peaks at about 335.45 eV and 340.65 eV are associated with Pd 3d$_{5/2}$ and Pd 3d$_{3/2}$, respectively. As shown in Fig. 3D, for Pd/C sample, the spectrum of Pd 3d can be deconvoluted with two doublets, the main peaks located at 335.1 eV and 340.4 eV can be assigned to the Pd 3d$_{5/2}$ and Pd 3d$_{3/2}$ spin orbit states of Pd(0), and the less intense peaks around 336.0 eV and 341.3 eV can be assigned to Pd 3d$_{5/2}$ and Pd 3d$_{3/2}$ peaks of Pd$_n$ species. Notably, by alloying with Pt, the binding energies of Pd 3d for the binary Pt$_{1-x}$Pd$_x$/C catalysts are also found to negatively shift to a lower binding energy compared with pure Pd/C as the Pt content increases. Together, compared with Pt/C and Pd/C catalysts, the same phenomenon of shifts of the binding energy for Pt and Pd to a lower peak value in binary Pt$_{1-x}$Pd$_x$/C catalysts, which suggests a change in the electronic density of Pt and Pd. The above results could be ascribed to the electronic interactions due to the addition of Pd, leading to electron transfer from Pd to Pt (electro-negativity: Pt, 2.28; Pd, 2.20). The XPS analysis results further indicate the formation of PtPd alloys with a shift in binding energy, which is consistent with the previous literature.

3.4 Electrochemical properties of Pt$_{1-x}$Pd$_x$/C

Fig. 4 shows cyclic voltammetry (CV) for Pt/C, Pt$_{37}$Pd$_{63}$/C, Pt$_{47}$Pd$_{53}$/C, Pt$_{23}$Pd$_{77}$/C and Pd/C catalysts in 0.5 M H$_2$SO$_4$ (A) and 1.0 M KOH (B) aqueous electrolytes. It can be seen that both the Pt/C and Pd/C show well defined CV shapes similar to those reported in previous literatures in acidic and alkaline electrolytes. The CV curves for Pt$_{1-x}$Pd$_x$/C catalysts show slight variation in shape characteristics took to evolve from a typical pure Pt/C to one typical for pure Pd/C as the increase of Pd content. At the high potential range (>0.23 V in H$_2$SO$_4$ and >−0.55 V in KOH), the peaks in the CV curves are ascribed to the oxidation and reduction of metal nanoparticles (Pt, Pd, and Pt$_{1-x}$Pd$_x$ alloy). The peaks associated with the typical features characteristic of hydrogen adsorption and desorption are observed in the CV curves for all-prepared catalysts at a low potential range (<−0.06 V in H$_2$SO$_4$ and <−0.62 V in KOH). However, the hydrogen absorption/desorption peak in the low potential region on Pd/C catalyst is weaker in comparison to Pt/C and Pt$_{1-x}$Pd$_x$/C in alkaline media, indicating that the Pd nanoparticles are more easily associated with OH at a low potential region. Relative to Pt/C, the hydrogen absorption/desorption peak of the Pt$_{1-x}$Pd$_x$/C sample appeared to be depressed, which is due to the changes in the crystal lattice and electronic properties. It is worth to note that the CV curves at a lower potential (<−0.17 V) presents a high peak current density on the Pt$_{37}$Pd$_{63}$/C and Pd/C in 0.5 M H$_2$SO$_4$ solution, which is due to the absorption/desorption of the large quantities of hydrogen in bulk Pd. The similar phenomena for Pt–Pd alloys have already been observed by Lukaszewski et al. and Seweryn et al. In acidic media, it is noted that the CV curves for all catalysts present an obvious double layer region (0.06−0.23 V) as well. However, no obvious double layer region is appeared in CV curves of alkaline media just like that in acidic media, since the adsorption of OH may even start in the hydrogen desorption region leading to the formation of metal oxides immediately after the hydrogen desorption. The ECSA of Pd and/or Pt-based electrocatalysts was estimated by the oxide reduction peak according to the following equation:

\[
\text{ECSA} = Q_0/(Q_c M)
\]
where Q is the coulombic charge (in 1×10^{-6} C), determined by integrating the current peak of Pd (or Pt) oxide reduction divided by the scan rate; Q_0 is the conversion factor, commonly taken as 424×10^{-6} C cm$^{-2}$, corresponding to PdO (or PtO) reduction; and M is the metal loading (mg) on the GC surface. By integrating the coulombic charge associated with oxide reduction peak from the CV curves, the SC_{α} of the catalysts follows the sequence: Pt/C (27.07 m2 g$^{-1}$) > Pt$_{73}$Pd$_{27}$/C (25.35 m2 g$^{-1}$) > Pt$_{47}$Pd$_{53}$/C (23.12 m2 g$^{-1}$) > Pt$_{23}$Pd$_{77}$/C (21.98 m2 g$^{-1}$) > Pd/C (16.89 m2 g$^{-1}$). It can be seen that the ECSA value decreases gradually as the increase of Pd content. This result shows that the larger ECSA value for pure Pt/C catalyst is attributed to the smaller particle size for pure Pt nanoparticles than Pt$_{1-x}$Pd$_x$ alloys and pure Pd, which is consistent with the results of XRD and TEM. To evaluate the catalyst anti-CO poisoning ability, we further carried out CO stripping experiments. Fig. S1 in the ES† shows the CO stripping voltammetry on the Pt$_{1-x}$Pd$_x$/C catalysts. The onset potential (E_{onset}) and peak potential (E_{CO}) of CO oxidation are used to evaluate the anti-CO poisoning ability of catalysts. The E_{onset} and E_{CO} are observed at 0.27 and 0.61 V on the Pt$_{73}$Pd$_{27}$/C catalyst, which are both lower than those on the Pt$_{47}$Pd$_{53}$/C (0.32 and 0.63 V) and Pt$_{23}$Pd$_{77}$/C (0.39 and 0.67 V) catalysts. The E_{onset} and E_{CO} of Pt$_{73}$Pd$_{27}$/C are the most negative among the Pt$_{1-x}$Pd$_x$/C catalyst, which indicate that the CO adsorption on Pt$_{73}$Pd$_{27}$/C can be more oxidized easily and removed.

3.5 Ethanol electro-oxidation

3.5.1 Ethanol electro-oxidation in acidic medium. The electrocatalytic activity toward ethanol oxidation on as-prepared catalysts were investigated by cyclic voltammograms (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA) in both acidic and alkaline solutions. Initially, Fig. 5 shows the results of electrochemical measurements for ethanol oxidation in acidic media. The main steps for the oxidation of ethanol were described as follows. The current for ethanol oxidation on Pt-based catalysts mainly originated from the C1 and C2 pathway (Scheme 1). The final reaction product is supposed to the acetic acid in acid medium. Moreover, there are other possible species that can be formed during the ethanol electro-oxidation, including reduced species.

![CV curves (A) and LSV curves (B) of ethanol oxidation on different electrodes in 0.5 M H$_2$SO$_4$ + 1.0 M CH$_3$CH$_2$OH. Inset image in panel A is the histograms of calculated mass activity of first forward scan peaks (P_{f1}) on different electrocatalysts for ethanol oxidation.](image-url)

The typical CV curves for ethanol electro-oxidation on Pt$_{1-x}$Pd$_x$/C catalysts in acidic media are presented in Fig. 5A, featuring three well-defined current peaks, two on the forward and the other on the reverse potential scan signed as P_{f1} (at \sim0.655 V), P_{f2} (at \sim1.037 V), and P_{r} (at \sim0.374 V), respectively. The first oxidation peak (P_{f1}) is ascribed to the dehydrogenation of ethanol, whereas the second peak (P_{f2}) refers to the oxidation process involving with surface-adsorbed oxygen-like species. It can be seen in inset of Fig. 5A, that the catalyst with the Pd content less than 50% presents slightly higher electrocatalytic activities (shown as the peak current densities at P_{f1}) than pure Pt/C. Nevertheless, the electrocatalytic performance decreases obviously when the Pd content is more than 50% in Pt$_{1-x}$Pd$_x$/C, and the electrocatalytic activity is close to zero on pure Pd/C. However, for the formation of reverse scan peak (P_{r}) is still unclear. Consequently, the ratio of the two forward peak current density (j_{f1}/j_{f2}) could be used to quantify the capacity of catalysts for the ethanol oxidation. As seen in Table 2, the j_{f1}/j_{f2} ratio were calculated to be 0.809 for Pt$_{33}$Pd$_{67}$/C catalyst, which is higher than Pt$_{73}$Pd$_{27}$/C (0.798), Pt$_{47}$Pd$_{53}$/C (0.769) and Pt/C (0.748). The results indicate that the Pt$_{1-x}$Pd$_x$/C catalysts with high Pd loading can enhance the ability to break the C–C bond in ethanol and thus achieve complete oxidation of ethanol to CO$_2$.

Also, it can be found in Fig. 5B that the onset potential (E_{op}) of ethanol electro-oxidation on as-prepared catalysts is shifted to the positive direction as the increase of Pd content in Pt$_{1-x}$Pd$_x$/C compared to pure Pt/C, in agreement with the results by Seweryn et al. and Lopes et al. The result indicates that, as in the case of ethanol oxidation in acid media on Pt, the cleavage of the C–C bond is rather difficult on the Pt catalyst. Likewise, the oxidation of ethanol on the Pt$_{1-x}$Pd$_x$/C ($x > 0.5$) is more

![Scheme 1 C1 and C2 pathway of ethanol oxidation on Pt-based catalysts.](image-url)

Table 2 Comparison of parameters of measurements on catalysts in acidic medium

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>E_{op} (V)</th>
<th>E_{f1} (V)</th>
<th>j_{f1} (mA mg$^{-1}$)</th>
<th>j_{f2} (mA mg$^{-1}$)</th>
<th>j_{f1}/j_{f2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/C</td>
<td>0.332</td>
<td>0.655</td>
<td>403.3</td>
<td>538.9</td>
<td>0.748</td>
</tr>
<tr>
<td>Pt${33}$Pd${67}$/C</td>
<td>0.358</td>
<td>0.679</td>
<td>482.1</td>
<td>627.1</td>
<td>0.769</td>
</tr>
<tr>
<td>Pt${47}$Pd${53}$/C</td>
<td>0.385</td>
<td>0.674</td>
<td>463.1</td>
<td>580.3</td>
<td>0.798</td>
</tr>
<tr>
<td>Pt${73}$Pd${27}$/C</td>
<td>0.421</td>
<td>0.674</td>
<td>349.6</td>
<td>432.1</td>
<td>0.809</td>
</tr>
<tr>
<td>Pd/C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
difficult than on pure Pt/C, which is probably attributed to that the dissociative chemisorption of ethanol requires the existence of several adjacent Pt ensembles and the presence of atoms of the second metal around the Pt active sites could block ethanol adsorption on Pt sites due to the dilution effect.62,64

The effect of the concentration of electrolyte (H\textsubscript{2}SO\textsubscript{4}, CH\textsubscript{3}CH\textsubscript{2}OH) and the scan rates on the peak current density at the electrodes was investigated. As shown in Fig. 6, the oxidation peak current density is closely related to the concentration of electrolyte solution and scan rates. For all catalysts, it can be observed that the peak current density increases with the concentration of H\textsubscript{2}SO\textsubscript{4} at the initial stage and then declines gradually to a stable value (Fig. 6A). In acid media, the current density on the Pt\textsubscript{23}Pd\textsubscript{77}/C catalyst is always higher than that on the other catalyst. And the forward peak current density reaches the maximum at the concentration of 0.1 mol L-1 of H\textsubscript{2}SO\textsubscript{4}. Electroactivity of the all the samples for the ethanol oxidation was further examined at different ethanol concentrations, as shown in Fig. 6B. For the Pt/C and Pt\textsubscript{x}Pd\textsubscript{3-x}/C catalysts, the peak current density increases as the ethanol concentration increases. The increase in the current density with ethanol can be clarified by the adsorption reaction of ethanol and its further oxidation.65,66 For the Pt\textsubscript{1-x}Pd\textsubscript{x}/C (x > 0.5) catalyst, when the ethanol concentration reaches 3.0 mol L-1, the forward peak current density reaches the maximum and a saturation of the current response is observed at the ethanol concentration of 3.0 mol L-1. This indicates that oxidation rate of the electrode surface is related to the concentration of ethanol, and the active sites of the electrode reach the saturation at the ethanol concentration of 3.0 mol L-1. Subsequently, the peak current shows a decrease gradually with higher ethanol concentrations, which may be due to the accumulation of absorbed species on the surface of catalyst. The oxidation peak current densities increase as the scan rate increased in acid media. As depicted in Fig. 6C, the peak current densities are proportional to the square root of the scan rate (\(v^{1/2}\)). The above results suggest that the process of ethanol electrooxidation on all samples is under diffusion controlled process. This implies that the reaction between catalysts and ethanol relies on the rate of diffusion of ethanol in order to reach the catalysts.

3.5.2 Ethanol electro-oxidation in alkaline medium. Fig. 7 shows the relevant electrochemical measurements on as-prepared catalysts for ethanol oxidation in 1.0 M KOH + 1.0 M CH\textsubscript{3}CH\textsubscript{2}OH solution. As shown in Fig. 7A, the CV curves only present two well-defined oxidation peaks (\(P_i\) in the forward scan and \(P_r\) in reverse scan). The forward scan peak (\(P_f\)) is related to the oxidation of freshly chemisorbed species issued from alcohol adsorption, whereas the other peak (\(P_r\)) in the reverse scan is ascribed to the removal of the incompletely oxidized carbonaceous species formed during the forward scan.32 The electrocatalytic activities for EOR of pure Pd and Pt\textsubscript{1-x}Pd\textsubscript{x}/C alloy catalysts are remarkably higher than that of pure Pt in alkaline media. This result is quite in agreement with the previous reports.67 As we known, both Pt-based and Pd-based catalyst exhibits much higher electrocatalytic activity for alcohol oxidation in alkaline media than that in acidic media.63 Furthermore, the activity of Pd for ethanol electrooxidation in alkaline media is higher than that of Pt, which is mainly attributed to the higher oxophilic characteristics of Pd/C and the relatively inert nature of Pd/C on C–C bond cleavage.68,69 Simultaneously, during the whole process, the Pt\textsubscript{3}Pd\textsubscript{7}/C exhibits the highest oxidation peak current density of 2453.7 mA mg-1, which is 3.15, 1.73, 5.41 and 1.46 times as large as those of Pt\textsubscript{1}Pd\textsubscript{3}/C (778.4 mA mg-1), Pt\textsubscript{2}Pd\textsubscript{5}/C (1421.6 mA mg-1), Pt/C (453.2 mA mg-1), and Pd/C (1676.4 mA mg-1), respectively. Compared to various Pt or Pd-based catalysts reported in previously literatures previously literatures (summarized in Table S1 in the ESI†), it is noteworthy that the mass activity of the Pt\textsubscript{3}Pd\textsubscript{7}/C catalyst is also obviously higher.

The onset potential of ethanol electro-oxidation (Table 3) is obtained on as-prepared catalysts in alkaline media based on the LSV curves in Fig. 7B. The pure Pd/C and Pt\textsubscript{1-x}Pd\textsubscript{x}/C show a lower onset potential compared to pure Pt/C. It can be found that the onset potential for ethanol electro-oxidation on Pt\textsubscript{2}Pd\textsubscript{7}/C and Pt\textsubscript{1}Pd\textsubscript{3}/C shift negatively 125 mV and 118 mV in comparison with that on pure Pt/C, respectively. More than 100 mV reduction on the onset potential for anodic reaction indicates the significant enhancement in the kinetics of the ethanol oxidation reaction (EOR).
The effect of the concentration of electrolyte (KOH, CH₃CH₂OH) and the scan rates on the peak current density at the electrodes was investigated in alkaline media. Fig. 8A shows the peak current density on the different electrodes (Pt/C, Pd/C and Ptₓ₋₇px/C) in a 1.0 M ethanol solution containing various concentrations of KOH solutions ranging from 0.010 to 3.0 M. For all catalysts, it can be observed that the peak current density increases with the concentration of KOH at the initial stage and then declines gradually to a stable value in alkaline media, which is consist with the acid media (Fig. 7A). The above results show that the kinetics of the ethanol oxidation were improved by the greater availability of OH⁻ ions in solution and/or a higher OH⁻ coverage of the electrode surface.⁶⁷ For Pt/C, Ptₓ₋₇px/C and Ptₓ₋₇px/C catalysts, the forward peak current density reaches the maximum at the concentration of 0.2 mol L⁻¹, while the other catalyst appears at the concentration of 1.0 mol L⁻¹ in alkaline media. At the initial stage, the increase of the KOH concentration not only accelerate the dehydration process but also lead to a higher coverage of the reactive Pd-OH_ads, which facilitates the ethanol oxidation by the removal of the adsorbed ethoxi in alkaline medium. However, at higher KOH concentrations, excessive hydroxyl coverage on the catalysts will be dominant, thereby confining the adsorption of ethanol with inadequate coverage of ethoxi.⁵⁸

As a result, the imbalance in the coverage of hydroxyl and ethoxi will lead to the decrease in the peak current density of ethanol oxidation. To investigate the effect of CH₃CH₂OH on the catalytic performance, different concentration of CH₃CH₂OH ranging from 0.01 to 5.0 mol L⁻¹ was applied (Fig. 8B). In alkaline media, for Pt/C and Ptₓ₋₇px/C catalysts, the peak current reaches the maximum value at the ethanol concentration of 1.0 mol L⁻¹. The increase in the peak current density with the concentration of ethanol between 0.1 M and 1 M can be explained by the adsorption reaction of ethanol and its further oxidation. The increase of ethanol concentration can promote the formation of the adsorbed ethanol, thereby yielding an increase in the oxidation peak density of ethanol.⁶⁹ While, ethanol concentrations higher than 1.0 M, adsorption of ethanol on the catalyst reaches to the saturated state, leading to the reduction of the ethanol oxidation current. However, for Pd/C electrode, the peak current is enhanced with increasing the ethanol concentration. And it is worth mentioning that the peak current can not reach a maximum value when the concentration of ethanol reaches to 5.0 mol L⁻¹, which is attributed to the intrinsic property of Pd in alkaline media, in agreement with the results by Zhao et al.⁷⁰ The result indicates that the increase in the coverage of adsorbed ethoxi as the ethanol concentration increase yields an increase in the oxidation current of the EOR. The peak current densities of the catalysts via varying the scan rates were investigated 1.0 M KOH + 1.0 M CH₃CH₂OH (Fig. 8C). The oxidation peak current densities increase as the scan rate increased in alkaline media. The peak current densities are proportional to the square root of the scan rate (𝑣₁/₂) during the whole process of electrooxidation of ethanol in alkaline media. The correlation coefficient of Pt/C, Ptₓ₋₇px/C, Ptₓ₋₇px/C, Ptₓ₋₇px/C and Pd/C is 0.9905, 0.9993, 0.9925, 0.9778, 0.9902, respectively. Accordingly, the ethanol electrooxidation is dominated by the diffusion-controlled process in alkaline media.⁷⁰

3.5.3 Stability of catalyst

As the long-term stability of catalyst has been recognized as another important factor for fuel cells,⁷¹,⁷² we also evaluated the long-term stability of as-prepared catalysts through repeated CV scan for 100 cycles and CA for 3600 s in both acid and alkaline solution. Fig. 9A and C exhibits the forward oxidation peak (P₁) current density for ethanol electro-oxidation as a function of cyclic scan number in acid and alkaline media, respectively. In acid media, the peak current density on Ptₓ₋₇px/C and Ptₓ₋₇px/C is about 19.4% and 13.2% higher than pure Pt/C at the 10th cycle, respectively. In contrast, the lower peak current density was observed on Ptₓ₋₇px/C compared to Pt/C. A similar phenomenon has been observed by Wang et al.⁷³ and Zhang et al.⁷⁴ on Pd@Pt for ethanol electro-oxidation. For the enhancement of peak current density, it is directly related to the electronic structure of PtPd alloy.⁷⁵ Pd as an oxyphilic metal in Ptₓ₋₇px alloy accelerates the oxidative removal of CO_ads species by the addition of a large number of active oxygen-containing species (such as PdO/PdO), but too low a Pt atom content decreases the probability of finding the neighboring Pt atoms for ethanol chemisorption and hinders ethanol oxidation.⁷⁴ Also, it can be seen that the electrocatalytic activity suffers from the loss in the order of

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>E_{sp} (V)</th>
<th>E_p (V)</th>
<th>J_t (mA mg⁻¹)</th>
<th>J_b (mA mg⁻¹)</th>
<th>jf/j_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/C</td>
<td>−0.576</td>
<td>−0.294</td>
<td>453.2</td>
<td>516.8</td>
<td>0.877</td>
</tr>
<tr>
<td>Ptₓ₋₇px/C</td>
<td>−0.582</td>
<td>−0.281</td>
<td>778.4</td>
<td>1104.1</td>
<td>0.705</td>
</tr>
<tr>
<td>Ptₓ₋₇px/C</td>
<td>−0.694</td>
<td>−0.276</td>
<td>1421.6</td>
<td>1875.5</td>
<td>0.758</td>
</tr>
<tr>
<td>Ptₓ₋₇px/C</td>
<td>−0.701</td>
<td>−0.254</td>
<td>2453.7</td>
<td>2615.9</td>
<td>0.938</td>
</tr>
<tr>
<td>Pd/C</td>
<td>−0.608</td>
<td>−0.273</td>
<td>1676.4</td>
<td>2157.5</td>
<td>0.777</td>
</tr>
</tbody>
</table>
Pt_{73}Pd_{27}/C (18.6%) < Pt_{47}Pd_{53}/C (21.4%) < Pt/C (28.9%) < Pt_{23}Pd_{77}/C (34.8%). While in alkaline solution, it should be noted that the oxidation peak current density for the first cycle on Pt_{73}Pd_{27}/C is about five and eight times higher than that on pure Pt/C and Pd/C catalysts, respectively (Fig. 9c). During the first 10 cycles, the oxidation peak current density drastically decreases on pure Pt/C and Pt_{1-x}Pd_{x}/C catalysts due to the accumulations of poisonous carbonaceous species. Contrastingly, the peak current density of pure Pt/C catalyst shows a rapid increase in the first 20 cycles and then decreases gradually with successive scans. The Pt_{23}Pd_{77}/C catalyst exhibits the highest oxidation peak current density with a higher j_{p1}/j_{0.938} during the whole process. After 100 cycles, the oxidation peak current density of Pt_{23}Pd_{77}/C catalyst retains ca. 40.7% relative to the maximum value of 5238.94 mA mg^{-1}. However, the values for the current density of the Pt_{47}Pd_{53}/C, Pt_{73}Pd_{27}/C and Pt/C catalysts are 26.85%, 22.06%, and 31.52%, respectively.

Fig. 9B shows chronoamperometric experiments at a fixed potential of 0.5 V to further determine the stability of as-prepared catalysts. A decay of current density normalized by the mass of Pt_{1-x}Pd_{x} can be observed at the CA curves for all the catalysts, indicating that the catalyst surface is prone to poisoning by an accumulation of ethanolic residues. At 3600 s, the electrocatalytic activity is the highest on Pt_{73}Pd_{27}/C, followed by Pt_{47}Pd_{53}/C, Pt/C, Pt_{23}Pd_{77}/C and Pd/C catalysts. The result is consistent with the repeated CV scan mentioned above, further confirming that the Pt_{23}Pd_{77}/C catalyst has a better long-term stability than others in acidic media. From the zoomed curve of Pd/C (inset in the Fig. 9b), it further indicates that Pd/C catalysts shows no obvious catalytic performance in acid medium. Furthermore, the electrochemical stability of as-prepared catalysts for EOR was investigated by CA at −0.5 V for 3600 s in alkaline medium, and the typical results are shown in Fig. 9D. The polarization current density for EOR shows a rapid decay on Pt_{1-x}Pd_{x}/C catalysts in the first 300 s. The decline of the peak density is attributed to the charging current or the catalyst poisoning during the process of the EOR. Also, the final current density indicates a decreasing electrocatalytic stability for EOR on as-prepared catalysts following in the order of Pt_{23}Pd_{77}/C > Pd/C > Pt_{47}Pd_{53}/C > Pt_{73}Pd_{27}/C > Pt/C, in consonance with the results of repeated CV scan. Nonetheless, it also means that the electrocatalytic activity of catalyst not only concerns the ECSA, but also more concerns the surface composition. Moreover, these results demonstrate that the Pt/Pd ratio in Pt_{1-x}Pd_{x}/C alloy significantly affects the electrocatalytic activity and stability of Pt_{1-x}Pd_{x}/C for EOR in alkaline media, which coincides well with the previous work.

4. Conclusions

In summary, the Pt_{1-x}Pd_{x}/C catalysts with different Pt/Pd ratios prepared by formic acidic as reducing agent have been investigated to compare the electrochemical performance of ethanol oxidation in acidic and alkaline solutions. The electrocatalytic activity toward ethanol oxidation on as-prepared catalysts were investigated by CV, LSV, and CA in both acidic and alkaline solutions. Compared with acidic media, Pt_{1-x}Pd_{x}/C catalysts exhibit much higher electrocatalytic activity for alcohol oxidation in alkaline media, which is mainly attributed to the higher oxophilic characteristics of Pd/C and the relatively inert nature of Pd/C on C–C bond cleavage. The ratio of Pt/Pd has a significant impact on the ethanol-oxidation in acidic and alkaline media. The Pt_{73}Pd_{27}/C and Pt_{23}Pd_{77}/C catalysts shows the highest electrocatalytic performance with a mass specific peak current of 2453.7 and 339.7 mA mg_{PtPd}^{-1}, respectively, and long-term stability in acidic and alkaline media. Moreover, the electrochemical performance of ethanol oxidation in both acidic and alkaline solutions is easily influenced by electrolyte and CH_{3}CH_{2}OH concentrations, scan rates.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51762018) and National Natural Science Foundation of China grant (No. 21603122).

Notes and references
