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High-speed particle detection and tracking in
microfluidic devices using event-based sensing†
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Visualising fluids and particles within channels is a key element of microfluidic work. Current imaging

methods for particle image velocimetry often require expensive high-speed cameras with powerful

illuminating sources, thus potentially limiting accessibility. This study explores for the first time the potential

of an event-based camera for particle and fluid behaviour characterisation in a microfluidic system. Event-

based cameras have the unique capacity to detect light intensity changes asynchronously and to record

spatial and temporal information with low latency, low power and high dynamic range. Event-based

cameras could consequently be relevant for detecting light intensity changes due to moving particles,

chemical reactions or intake of fluorescent dyes by cells to mention a few. As a proof-of-principle, event-

based sensing was tested in this work to detect 1 μm and 10 μm diameter particles flowing in a microfluidic

channel for average fluid velocities of up to 1.54 m s−1. Importantly, experiments were performed by

directly connecting the camera to a standard fluorescence microscope, only relying on the microscope arc

lamp for illumination. We present a data processing strategy that allows particle detection and tracking in

both bright-field and fluorescence imaging. Detection was achieved up to a fluid velocity of 1.54 m s−1 and

tracking up to 0.4 m s−1 suggesting that event-based cameras could be a new paradigm shift in

microscopic imaging.

Introduction

Event-based cameras emerged in the 1990s as neuromorphic
vision sensors mimicking biological retinas.1 Unlike frame-
based cameras, event-based cameras respond to, and only
record, brightness changes (log intensity depicted as log(n) in
Fig. 1), asynchronously and independently for each pixel.
When a change in brightness is detected at a given pixel, the
event information is transmitted, that is, its (x, y) location on
the pixel array, its time stamp and the sign/polarity of the
change (increase (+1 in Fig. 1C) or decrease (−1 in Fig. 1C)).

Using current event-based cameras (available for under 5k
USD), events are detected with microsecond resolution. Since
only events are transmitted, event-based cameras offer low
latency, low power (ca. 10 mW) and high dynamic range
(>120 dB).2 These “silicon retinas” have become increasingly
popular for high-speed robotic vision, e.g., for ball

detection,3–5 gesture recognition,6,7 3D mapping8 or for
unmanned aerial vehicles9 and predator robots.10 They have
also been used for tracking macroscopic objects such as
vehicles11 or stars/satellites12,13 (see the recent survey14 which
discusses applications and challenges of event-based
sensing). Importantly, and to the best of our knowledge,
application to the “micro-world” has been limited to the work
proposed in ref. 15 for micro-robotics, demonstrating tracking
of microparticles in a Petri dish or for imaging neural
activity.16 In ref. 17, particle tracking in a fluid–solid system
has also been tested in a 5 cm inner diameter pipe with 950
μm particles. The potential of event-based sensing for
microfluidic applications remains consequently untapped.

Due to their characteristic microscopic scale, microfluidic
systems primarily rely on imaging technologies (such as
microscopes and cameras) to monitor fluids and particles
inside a channel. Imaging modalities offer considerable
flexibility and find applications in quality control (e.g.,
detection of dust/bubble), performance evaluation (e.g.,
mixing, separation, detection) or in better understanding
localised phenomena but limitations remain. As an example,
the role of imaging in inertial microfluidics is considered.

Inertial focusing devices have been widely used by the
community for their unique capabilities to focus and
separate particles based on size, shape and/or
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deformability.18 Despite advances in the field of
computational inertial microfluidics,19 prototypes are often
tailored to a targeted application following long design/test/
optimise iterations to empirically explore the capabilities of
new channel designs. Accurately imaging fluid and particle
behaviour has become essential to assess the underlying
physical phenomena and inform further design changes.
Imaging inside inertial focusing devices (and microfluidics
channels in general) typically relies on either long-exposure
fluorescence or high-speed imaging (Fig. S1†).

Long-exposure fluorescence consists of imaging fluorescent
particles over an extended period of time (long enough to be
representative of the particle/fluid behaviour) and of building
corresponding composite images (by stacking/integrating
several images). This approach is particularly well suited to
inertial devices with clear visualisation of “streaks”
representing fluorescent particles that are focused at specific
locations inside the channel. By mapping the intensity profile,
an estimation of the focusing efficiency can be obtained. Long-
exposure has been used with a wide range of particles (e.g.,
beads,20–24 cancer cells,25 bacteria26–28 or fungal cells29 to
mention a few) and has enhanced our understanding of the
impact of channel geometry on focusing.21,22,30,31 Advantages
of this imaging approach include compatibility with standard
fluorescent microscopes equipped with conventional cameras
and relatively little data processing. Importantly however, the
information extracted is reduced to global (i.e., population)
behaviours. Moreover, high particle concentrations are usually
required to ensure detectable fluorescent signals, hindering an
in-depth understanding of single particle behaviour.

On the other hand, high-speed imaging unveils other
aspects of inertial focusing devices such as the formation of
trains of particles,32 the measurement of migration
velocities33 or the number of focusing positions.30 In
contrast to long-fluorescence imaging, studies exploiting
high-speed imaging for in-depth quantification are scarcer.
One reason might be the requirement of bespoke and

expensive imaging systems to limit motion blur. Typically,
imaging can be performed with a high-speed camera
synchronised with a high-power, pulsed illumination source
to reach exposure times in the order of 1–10 μs.33–36

Although products have been commercialised e.g., by
Dolomite, Fluigent or PreciGenome to offer plug-and-play
solutions to the community, such products are often limited
to brightfield imaging. In the presence of mixed
populations, as often occurs in microfluidic systems,
detecting and differentiating particles without fluorescent
signals can be a challenge. New approaches are emerging to
unlock the potential of high-speed data acquisition;37–41

however, micro-particle image velocimetry (μPIV) remains
the most widely accessible technique for high-speed
fluorescence imaging. In μPIV, the illumination is provided
by high-power, pulsed lasers to record pairs of images with
a short time delay. μPIV set-ups or similar have been used
for inertial focusing systems to access particle or fluid
velocities.32,33,42–46 Access to μPIV can be challenging due to
high capital cost; commercialised μPIV set-ups are also
often limited to one wavelength, thus requiring iterative
measurements for mixed populations (one measurement per
fluorescent population).

In this work, we investigate the potential of event-based
cameras as a cost-effective alternative to particle detection
and tracking in microfluidic devices that 1) is compatible
with standard microscopes, 2) does not rely on high-power
pulsed illumination sources, 3) is significantly less data-
consuming and less expensive than traditional, frame-based
cameras and 4) is attractive for both bright-field and
fluorescence imaging. As proof-of-principle, particle detection
and tracking were performed in a spiral microfluidic channel
in both fluorescence and bright-field modes for 1 μm and 10
μm-diameter beads. For the first time, this work reveals the
unique capabilities of event-based sensing for overcoming
some of the commonly encountered challenges in
microfluidics imaging.

Fig. 1 Event-based detection of a particle over time. A. Represents the light flux reaching a given pixel when a fluorescent particle passes through
the pixel field of view (B). C. When the light intensity change (with respect to the last recorded event) exceeds a user-defined threshold, the
camera records a new event whose polarity encodes the sign of the intensity change.
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Materials and methods
Bead preparation

Red fluorescent polystyrene beads, 10 μm or 1 μm in
diameter (Magsphere) were diluted in filtered phosphate-
buffered saline (PBS) supplemented with 0.1% v/v Triton
X-100 to a final concentration of 1 × 104–5 × 105 beads per
mL. Beads concentrations were determined using a
haemocytometer.

Microfluidic setup

A spiral device was fabricated by lithography (Epigem, UK)
and consisted of a channel in an Archimedean spiral, with a
rectangular cross section of 360 μm (width) × 60 μm (height).
The channel had one inlet, four outlets and six loops with a
radius of curvature varying from 0.9 mm to 4.2 mm (Fig. 2).
The full design of the spiral is provided in the ESI† (Fig. S2).
Samples were injected into the spiral channel via the inlet
with a mid-pressure syringe pump (neMESYS 1000N, Cetoni,
Germany) and polytetrafluoroethylene tubing with an internal
diameter of 0.5 mm. The tubing was connected to the chip
via cheminert nuts (1/4″−28 for 1/16″ outer diameter).
Applied flowrates in this work ranged from 0.05 to 2 mL
min−1 corresponding to average fluid velocities in the interval
0.04–1.54 m s−1 and Reynolds numbers in the interval 4–159;
the Reynolds number is defined as Re = ρUDh/μ, where ρ is
the fluid density, μ is the fluid viscosity, U is the velocity of
the fluid and Dh the hydraulic diameter of the channel.

Prior to any measurement, and in between samples, 5 mL
filtered PBS was flushed through the syringe three times, and
then through the spiral at 1.5 mL min−1, to clean the system.
Experiments were performed in triplicate.

Imaging setup

Particles flowing in the spiral were characterised by capturing
video footage (15 seconds duration, from triplicate
experiments) using two separate cameras. As depicted in Fig. 2,
an event-based camera (CSD3SHCD, Prophesee) consisting of a
480 × 360 pixels CMOS vision sensor, 20 μm × 20 μm event-
based pixels and >10k frames per second (fps) typical
equivalent frame rate, was mounted on a Zeiss Axioskop 2
fluorescence microscope (Zeiss, Germany) to visualise the spiral
at 10× magnification. Prophesee player software (version 1.4.1-
1935316) was used to adjust the camera settings and to record
videos. A picture of the experimental setup with the event-
based camera is available in Fig. S3.†

To validate data from the event-based camera, a DinoLite
camera (Dino-Lite) with a resolution of 1280 × 1024 pixels
and a frame rate of 30 fps was mounted on a clamp stand
and positioned above the spiral channel, and images
recorded at ∼50× magnification, 30 fps using DinoCapture
2.0 software.

Data analysis was performed using a bespoke data
processing pipeline implemented in Matlab, which is
detailed in the following section.

Event-data collection and pre-processing

As mentioned above, event-based cameras do not provide series
of frames but, instead, lists of time-tagged events. Thus, pre-
processing steps are usually required prior to information
extraction. As explained in Fig. 1, events are recorded when the
intensity change exceeds a user-defined threshold. If this
threshold is set too small, a large number of events are
recorded, including signal events but also spurious events
considered as “nuisance events”. For extremely low threshold

Fig. 2 Imaging in inertial focusing devices. A. Illustration of the optical setup. Experiments were performed with a standard fluorescent
microscope, with the event-based camera mounted via a C-mount port. B. Picture of the event-based camera used in this work. The camera is
circa 5.7 cm in width, 4.8 cm in height and 3.6 cm in depth. C. Schematic of the spiral channel used for focusing experiments with images
recorded in the region of interest (ROI).
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values, this can lead to read-out issues whereby not all the
events can be properly recorded and transmitted. Conversely,
using a large threshold value reduces the number of
background events but also the number of signal events,
potentially hindering the detection of particles generating
intensity changes. Consequently, this threshold has to be set
carefully. Here, the trade-off between accurate particle
detection and low background noise was found via visual
inspection using the camera software for each Reynolds
number and illumination mode. Note that, in the bright-field
mode, the intensity changes are weaker than in the
fluorescence mode, leading to lower thresholds in practice.

In principle, object detection can be performed directly
from the stream of detection events. However, here, we have
adopted more traditional image processing tools to perform
the detection task, especially given the small size and simple
shape of the beads considered in this work. One of the main
advantages of event-based cameras is that this frame-based
representation can be obtained after the data acquisition,
and the frame rate, as well as the integration time, can be
user-defined. Each pixel is subject to a dead time, i.e., a
period of time after each detection, during which that pixel is
not able to record subsequent events. This dead time varies
depending on the overall number of events recorded in the
array but is typically lower than 50 μs with the camera used
here. Thus, integration periods smaller than this value are
not recommended. In the context of event-based cameras, we
identify the integration period as the temporal window used
to aggregate events and build a frame. Conversely, and as will
be illustrated in Fig. 3, the longer this integration period, the
blurrier the reconstructed frames. Here exposures in the 100
μs–1 ms range were used, depending on the expected particle
velocity and illumination mode, to find the best visual trade-
off between satisfactory particle detection and motion blur.

Note that within a frame or integration period, several events
can be recorded by the camera at a given pixel. In that case,
only the most recent event is considered to generate the
frame. The frame rate is also user-defined and can be set
independently from the per frame integration time, e.g., it is
possible to consider overlapping integration windows. Again,
setting this parameter can depend on the expected speed of
particles to be tracked. Low frame rates can lead to large
distances travelled by the particles between two frames and
can jeopardize the tracking task, especially when multiple
particles are present in the field of view simultaneously (a
challenging data association problem). High frame rates
make the tracking task easier, but might unnecessarily
increase the number of frames to be processed. In this work,
the frame rate has been set to 20k fps, to ensure the particles
are visible in a sufficient number of frames to estimate their
velocity (>40 frames).

Results

As presented in Fig. 2, the passage of spherical particles
through a spiral channel with a rectangular cross-section
(360 μm × 60 μm) was analysed with an event-based camera.
Particle detection and tracking were performed near the
outlet of the spiral (1200 μm × 1500 μm region of interest
(ROI) in Fig. 2C).

Based on previous work with similar designs,47–49 10 μm
rigid spherical beads were expected to focus towards the
inner wall of the spiral channel for Reynolds numbers above
∼50 in the region of interest of the channel, while 1 μm
particles were expected to remain unfocused. It can also be
noted that according to ref. 50, no secondary Dean vortices
are expected for the Reynolds numbers in the range of
interest (Re < 160). With an average fluid velocity in the

Fig. 3 Raw data for 10 μm particle visualisation inside the spiral channel at Uf = 0.04 m s−1 (Re = 4) in fluorescence mode for an integration time
of 100 μs (A) and 750 μs (B). C. Example of raw data for bright-field imaging with the event camera and an integration time of 750 μs. Red arrows
denote the position of particles in the channel, red pixels correspond to pixels detecting an increase in brightness and blue ones to a decrease. D.
Reconstructed long-exposure intensity image. The scale bars (in the bottom right corner of each subplot) correspond to 200 μm; the inner and
outer walls are defined in A.
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spiral of Uf = 0.5 m s−1 at Re = 50, a light source with a very
short pulse duration (∼10 μs) would normally be necessary
for single particle detection to circumvent motion blur. In
this work, only a standard lighting source (Zeiss HBO100
Mercury vapor short-arc lamp) from a fluorescent microscope
was used with the event-based camera.

Visualisation and detection of microparticles

As visible in Fig. 3A and B (and ESI† Video), 10 μm fluorescent
particles can be clearly seen at a low fluid velocity (Uf = 0.04 m
s−1, Re = 4) using the event-based camera. The motion of
particles in bright-field mode (Fig. 3C) was also
demonstrated, although the contrast was generally lower than
in the fluorescence mode. Fig. 3A–C highlight one specific
characteristic of event-based cameras, namely the possibility
to define, after the data recording, the integration period and
frame rate for visualisation/analysis purposes, as discussed
above. Although not all event-based cameras provide this
feature, the camera used in this work also records
information allowing the reconstruction of grey scale images
(but at a much lower time resolution than the event-data
processed here). This feature was used to create a long-
exposure intensity image (in bright-field mode) for calibration
purposes and to identify the location of the channel in the
field of view. An example is depicted in Fig. 3D.

It is interesting to note from Fig. 3 that the trails
produced by moving particles (e.g., the negative (blue) events
for fluorescent particles in Fig. 3A and B) are usually longer
than the events created when the particles first become
visible in a given pixel. As presented in Fig. 4A, this
phenomenon is due to the fact that only the most recent
event is kept at each pixel when constructing the frames.
Depending on the selected integration period, the
reconstructed image consequently has more negative (blue)
events than positive (red) ones for fluorescent particles (and
more positive events for bright-field reconstructed images).

Fig. 3 also shows that moving fluorescent particles induce
a local increase of light flux, while particles in bright-field
mode are characterized by a local reduction of the light flux.
Consequently, fluorescent particles first produce positive
events and then negative events, depicted in red and blue,
respectively, in Fig. 3A and B. Conversely, particles in bright-
field first produce negative events and then positive events
(Fig. 3C). This detail is essential to process data appropriately
and differences between bright-field and fluorescence
imaging are further highlighted via the simulated data
presented in Fig. 4B.

In bright-field mode, static particles typically appear as
dark rings.51 The darker edges and lighted centre can create
a characteristic pattern on the reconstructed images (see
simulated images in Fig. 4B, left panels), especially for

Fig. 4 A. Example of image reconstruction from recorded asynchronous events. In this example, a single pixel records first a positive event and
then a negative one (top panel). The events are mapped onto temporal frames based on a user-defined integration window (mid panel). This gives
access to a sequence of reconstructed images that can then be analysed using image processing tools. The event camera only keeps information
corresponding to the last event, leading to “trails” (higher number of negative (blue) events in this example) on the reconstructed image (bottom
panel). B. Simulation of moving particle between times t1 and t2 in bright-field and fluorescence modes and corresponding events. The third row
from the top illustrates how the (simulated) reconstructed event frames are expected to look like (for a sufficiently short time delay t2–t1) and short
integration time. The displacement of the particles is further highlighted by the dashed yellow lines. C. Reconstructed images obtained from
measurements of 10 μm particles slowly moving (∼0.0003 m s−1) in the spiral channel for an integration time of 10 ms and 100 ms. As in
Fig. 3A and B, the longer the integration time, the longer the trails.
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slowly moving particles. Despite not being visible in Fig. 3C
due to the high velocity of the particles, this pattern was
observed at higher magnification (20×) and lower particle
velocity (∼0.0003 m s−1), as reported in Fig. 4C. It can also
be noted that for slow-moving objects, the length of the tail
could be used to estimate the particle velocity from a single
image, i.e., without the need for advanced tracking
algorithms. However, Fig. 3 shows that the length of the tail
of high-velocity particles cannot be accurately measured due
to the low signal-to-noise ratio in that case.

Consequently, in the following sections, only the positive
events are used to detect particles in fluorescence, and
respectively, negative events to detect particles in bright-field
mode. More precisely, the frames of positive or negative
events are first denoised using morphological transforms
(e.g., erosion and dilation) to remove isolated events. The
particles are then extracted by identifying groups of spatially
connected events whose size falls into a predefined range.
The position of the particle is then computed as the position
of the centroid of each region. Note that here, all the
particles used had the same apparent size, but the size/shape
of the connected regions could be used in the future to
classify particles and potentially enhance the tracking results.

Quantification of focusing behaviours in fluorescence and
bright-field modes

In addition to demonstrating that particles can be detected
at low fluid velocity, we investigated whether detection was
possible for the range of velocities which are usually
considered for focusing experiments with such microfluidic
designs (0.04 ≤ Uf ≤ 1.54 m s−1 tested here, corresponding to
4 ≤ Re ≤ 159). The spatial distribution (expressed as the
distance to the spiral channel inner wall) of particles detected
next to the outlet of the channel, in a region of constant
cross-section (before the opening), was recorded (Fig. 5A). For
visualisation purposes, violin plots were used as a
comprehensive representation of the spatial distribution of
particles. A wide horizontal spread of these plots (normalised
by the number of detected particles in each case)
corresponds to a large number of particles detected within a
narrow region of the channel (characteristics of focusing).

Particles were successfully detected in fluorescence mode
for Uf ∈ [0.04, 1.54] m s−1. The focusing of beads close to the
inner wall is clearly visible when the fluid velocity increases,
as expected for this microfluidic design.48 Note that each
distribution has been derived from at least 1000 particles and

Fig. 5 A. Distribution of particles detected in one video recorded with an event-based camera using fluorescence microscopy for average fluid
velocities in the interval 0.04–1.54 m s−1 (corresponding to Re = 4, 8, 16, 40 and 159). B. Distribution of particles detected with an event-based
camera using bright-field microscopy for average fluid velocities in the interval 0.04–0.15 m s−1. Inset. For Uf = 0.15 m s−1 (light blue plots), three
replicates (blue, red and black) are superimposed for both fluorescence and bright-field imaging. All the distributions depicted in this figure are
normalised such that they do not depend on the particle concentration. Thus, all the violin plots (except in the inset which presents a different
vertical scale) have the same area. Although the average fluid velocity Uf is used in the x-axis for differentiation purposes, a wide horizontal spread
corresponds to a large number of particles detected within a given distance to the inner wall.
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that similar distribution profiles can be plotted at any
x-location along the channel imaged (cf. Fig. 3D for definition
of x axis), or mapped onto the entire section of the channel
imaged (the channel length that is imaged with the current
set-up is circa 1.5 mm).

For comparison purposes, similar experiments were
performed in bright-field mode. Due to a lower contrast
between beads and background, reliable detection was only
possible up to Uf = 0.15 m s−1 (Fig. 5B). To measure the
similarity between the distributions obtained in Fig. 5A and B,
we computed their percentage overlap. For Uf = 0.04, 0.08 and
0.15 m s−1, the overlap between the distributions plotted in
Fig. 5A and B was 88%, 79% and 77%, respectively. The
distributions of fluorescence and bright-field modes are
generally in good agreement and the increasing discrepancy
with increasing Re can be partly explained by a degradation of
the detection performance in bright-field mode.

Being able to detect particles for fluid velocities up to 1.54
m s−1 without a pulsed light confirms the potential of event-
based cameras for particle detection in microfluidic
channels. Note that 1) results for both fluorescence and
bright-field modes were highly reproducible as demonstrated
for three replicates (cf. blue inset, Fig. 5B; overlap >94% for
replicates in fluorescence mode and >89% in bright-field
mode) and 2) detection at higher fluid velocities might
possibly be achieved upon further optimisation of the
hardware/software (see discussion in Conclusion).

As a control, long-exposure fluorescence imaging was used
for all the average fluid velocities considered (cf. Fig. 6A) – in
this case, images were recorded at 30 fps and stacked over a
15 second period. Fluorescence intensity distributions were
then estimated in a measurement window similar to the one
used in Fig. 5. As visible in Fig. 6B, the intensity distributions
follow patterns and trends similar to those obtained using the
event-based camera, with focusing occurring at the inner wall
of the spiral channel with increasing Reynolds numbers. The
horizontal spread of the fluorescence distribution at Uf = 1.54
m s−1 does not appear as sharp as the particle distribution,
which might be due to pixel saturation and the likely non-
linear relationship between the particle and light intensity
densities. This limitation due to the fluorescence imaging set-
up is confirmed by the similarities in results obtained with
the event-based camera and a high-speed camera for Uf = 1.54
m s−1 (Fig. S4†). Only one main mode is also observed in
fluorescence imaging, while two streams of focusing seem to
be detected with the event-based camera at lower velocities
(visible at ∼215 μm, ∼193 μm and ∼138 μm along the y-axis
for Uf = 0.08, 0.15 and 0.39 m s−1 in Fig. 6B). Multiple focusing
streamlines in inertial devices have been previously reported
in the literature, especially for higher volume fractions.47,52

However, the particle concentration used here was kept the
same for event-based and fluorescence imaging experiments.
Although the exact nature of this observed second mode
remains unclear; its observation for both event-based

Fig. 6 A. Composite images of 10 μm fluorescent beads flowing near the outlet of a spiral channel at Uf = 0.15, 0.39 and 1.54 m s−1 (Re = 16, 40
and 159 respectively). The dashed lines correspond to the channel walls, the yellow rectangles are regions where the intensity distributions have
been estimated and the arrow highlights the focused stream of beads at Uf = 1.54 m s−1. Scale bars: 200 μm. B. Intensity distributions estimated in
the measurement windows (yellow rectangles in A) and depicted as distances to the channel inner wall in blue. Particle densities obtained from
the event-camera are superimposed in red. All the distributions depicted in this figure are normalised such that all the violin plots have the same
area. Although the average fluid velocity Uf is used in the x-axis for differentiation purposes, a wide horizontal spread corresponds to a large
number of particles detected within a given distance to the inner wall.
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fluorescence and bright-field modes in Fig. 5 seems to
confirm that this is not an artefact from the cameras or from
the data processing pipeline.

Particle tracking and velocity mapping

In this section, the potential of event-based imaging for
particle tracking was investigated. Only results in
fluorescence mode are reported here but tracking was also
achieved in bright-field mode for all the fluid velocities
reported in Fig. 5B.

Depending on the concentration of particles, a varying
number of particles can be observed simultaneously in the
field of view. Consequently, algorithms for multiple target
tracking (MTT) can be used. Although it might be possible to
identify particles from the complete set of generated frames,
in practice, it is computationally intractable, given the high
frame rates considered (20m frames for a 10 s experiment).
In all experiments performed, the number of particles
simultaneously present was relatively low (less than 10) and
the particles presented similar trajectories and velocities.
Thus, a standard online approach to MTT was adopted,

which updated the particle tracks sequentially as each frame
was processed. Following the particle detection steps
described above, the data association problem was solved
using a variant of the Munkres algorithm.53,54 This problem
consisted of deciding which detected particles were
associated with existing tracks (from previous frames) and
which were new particles. Once the data association was
performed, the actual tracking of each particle was
performed using a standard Kalman filter55 assuming a near-
constant velocity model (for each track). The algorithm also
included a track ending mechanism, which terminated tracks
for particles that had not been seen over a given period. This
made the algorithm more robust against missed particles
(which might not be detected in a few frames during the
detection process).

Fig. 7A presents an example of four tracks identified in the
channel at Uf = 0.04 m s−1 (Re = 4), leading to the estimated
particle velocities plotted in Fig. 7B. The estimated average
particle velocity of 0.05 m s−1 is in accordance with Uf. A slight
decrease in particle velocity can be observed when approaching
the outlets (x > 1000 μm), as expected due to the opening of
the channel. Particle velocity profiles were then plotted as a

Fig. 7 A. Example of tracks for four randomly picked 10 μm particles flowing in the spiral at Uf = 0.04 m s−1 (one colour per track). Dashed lines
correspond to the microfluidic channel. Each track contains approximately 800 positions. B. Corresponding estimated particle velocity (raw data)
as a function of the x-position in the channel. C. Particle velocity profile as a function of the distance to the inner wall for Re = 4–40 (Uf = 0.04–
0.39 m s−1) and D. corresponding probability density functions (P.D.F). Plots in C are based on particles tracked in the blue region of interest
highlighted in A. Colormap highlights particle density, with dense regions in purple (linear colour maps L17 in ref. 56).
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function of the distance to the inner wall for different Reynolds
numbers. As presented in Fig. 7C, successful tracking was
achieved up to Uf = 0.39 m s−1 (Re = 40); the colormap
highlights in purple regions where many detected particles
present similar velocity and distance to the inner wall, for a
given Reynolds number. For Re < 40, an approximately
constant velocity is measured for all the particles tracked
(>1000 for each experiment). For particles detected closer to
the inner wall, especially at Re = 40 with a high number of
particles tightly focused in the region near y = 45 μm, a
decrease in particle velocity is observed. This behaviour in
particle velocity is further confirmed by the probability density
functions displayed in Fig. 7D. For Re > 40, the high speed of
the particles induced large particle displacements between
successive frames and the read-out limitations of the camera
made it more challenging to track particles (low probability of
detection) and estimate their velocity.

The results in Fig. 7 confirm that event-based cameras can
be used to track individual particle behaviours in the size
range of commonly used biological cells. With a particle
velocity of 0.4 m s−1, a recording rate of 30 fps (which is the
typical recording rate of normal cameras57) would allow the
particle to be seen at most twice in the region of interest (1.5
mm). With a recording rate of 20k fps, these results confirm
that event-based cameras can be used for tracking based on
high-speed data acquisition. Although the aim of this work is
to demonstrate the compatibility of event-based sensing with
stand-alone microscopes, it can also be noted that
performances could be improved by coupling the camera
with a stronger illumination source.

In order to map fluid patterns, smaller sizes would
typically be used for μPIV experiments. Experiments were
consequently also conducted with 1 μm fluorescent particles
at Uf = 0.04 m s−1, still using only the illumination from the
microscope. With the current set-up, one pixel of the 480 ×
360 pixels CMOS vision sensor corresponds to a ∼3.3 μm ×
3.3 μm field of view. As presented in Fig. 8A, a subpixel
detection was possible in fluorescence mode, with 1 μm
particles successfully detected across the channel. The
estimated probability density function of particle velocity is
displayed in Fig. 8B. It can be noted that only particles with
lower velocities (<0.03 m s−1) were successfully detected and
tracked. Due to the small size of the particles, the
fluorescence-induced intensity change was lower than with

the previously tested 10 μm particles, causing a lower signal-
to-noise ratio while the particle passing time was shorter.
Importantly, the fact that 1 μm beads could still be detected
and tracked illustrates further the potential of event-based
sensing for μPIV experiments in microfluidic devices; a
higher detection performance could be reached by either
increasing the magnification or working with sensors with a
higher number of pixels (cf. ref. 2 for a descriptive review of
existing cameras available and characteristics).

For both 10 and 1 μm particles, no information was
obtained on the z-position of particles detected with the
current data processing strategy; a similar approach to ref. 33
using velocimetric reconstruction for obtaining the z-position
could potentially be used with event-based data too.

Conclusions

Event-based cameras offer unique advantages to track high-
speed phenomena thanks to their sensors acting as silicon
retinas. Although the benefits of this technology have been
already demonstrated for robotics, its potential for biological/
microscopic applications remains largely untapped. In this
work, the performance of an event-based camera for
detecting and tracking micrometric particles in a microfluidic
channel was evaluated. Inertial focusing devices, due to their
high working Reynolds numbers, are often recognised as
challenging systems for individual particle tracking. Current
approaches typically rely on high power, pulsed illumination
sources and expensive micro-PIV setups to track fluorescent
particles. The present work demonstrates that event-based
cameras can offer an alternative to such state-of-the art
imaging setups. Particle detection was possible for a wide
range of fluid velocities, up to Uf = 1.54 m s−1, simply by
using a standard fluorescence microscope (and lighting),
both in bright-field and fluorescence modes. As opposed to
micro-PIV setups, the event-based camera is not limited to
one wavelength; any particles that are excitable in the visible
spectrum with the microscope can potentially be detected.
Although more challenging to accurately track, the velocity
profile of particles down to 1 μm was also measured with the
tested set-up. Since the application of event-based cameras to
the microfluidic world is still new, specific challenges/
limitations also need to be considered. The field of event-
based cameras is fast evolving with always faster and more

Fig. 8 Tracking results of 1 μm fluorescent particles at Uf = 0.04 m s−1. Probability density functions (P.D.F.) of A. tracked particles as a function of
the distance to the spiral inner wall and B. corresponding particle velocities. Plots A and B are based on particles tracked in the blue region of
interest highlighted in Fig. 7A.
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sensitive sensors being developed. For instance, efforts are
currently being made to increase the fill-factor and reduce
the pitch of event-based detectors, and at the same time to
produce larger arrays to improve the spatial resolution.
However, it is important to mention that as opposed to the
camera tested here, most products do not directly offer grey
scale “reconstructed image”. This might cause significant
difficulties for setting up the system (e.g., for the focus) since
only moving/blinking objects are visible on the display. This
could be tackled by engineering new tools to help with the
calibration either in the setup itself or computationally.58

Finally, the drastic changes in data – from images to events
– imposes the development of a new framework for processing.
Importantly, it has been demonstrated here that data can be
analysed to extract relevant information (e.g., particle focusing
position, particle velocity) and can also be directly compared to
images (e.g., comparison with composite image from
fluorescent imaging). This, in addition to their high sensitivity
to intensity changes, compatibility with standard microscopes,
high speed capabilities, low consumption and lower costs
compared to standard high-speed cameras, makes event-based
cameras unique candidates to change our way of characterising
the microscopic world.
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