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The isolation and solid-state characterisation of complexes featur-
ing partially coordinated benzene, fluorobenzene and all three
isomers of difluorobenzene are described. Supported by a DFT
analysis, this well-defined homologous series demonstrates the
preference for n2-coordination of fluoroarenes via the HC=CH
sites adjacent to a fluorine substituent.

Partially fluorinated benzenes are chemically robust and
weakly coordinating substrates, for which there is a paucity of
late transition metal n-complexes." Whilst well-defined
examples can be found in the literature they are almost
exclusively limited to half sandwich formulations, where the
arene adopts an n°-coordination mode."* The formation of
n*-arene complexes is notably invoked in C-H bond oxidative
addition of partially fluorinated benzenes to late transition
metals (Scheme 1),** but to the best of our knowledge iso-
lation of mononuclear species of this nature is limited to
coinage metal examples.” Computational studies indicate a
coordination site preference in the order HC=CH > HC=CF
> FC=CF, with the strongest n*-arene complexes formed at
the HC—CH positions adjacent to a fluorine substituent.®
Building on our work employing the high trans-influence
2,2"-biphenyl (biph) ancillary ligand,”® we herein present the
synthesis and solid-state characterisation of rhodium(m)
pincer complexes [Rh(CNC-Me)(biph)(n-arene)]" (Scheme 1;
arene = C4H,, 1a; FCsHs, 1b; 1,2-F,C¢H,, 1¢; 1,3-F,C¢H,, 1d;
1,4-F,C¢H,, 1e) that corroborate this conclusion
experimentally.

To enable systematic synthesis of the target complexes,
[Rh(CNC-Me)(biph)(k'-CICH,CI)]" 2 was ultimately identified
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Isolation and structural characterisation of
rhodium(in) n?-fluoroarene complexes: experi-
mental verification of predicted regioselectivity¥
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Scheme 1 Intermediacy of n?-adducts in the C—H bond activation of
fluoroarenes. [B(3,5-(CF3),CgH3)4]™ anion omitted for clarity.

as the most convenient well-defined precursor and prepared
using a silver-based transmetallation procedure involving
reaction of [Ag(CNC-Me)]" with [Rh(biph)CI(¢Bu,PCH,P{Bu,)]
and halide abstraction in CH,Cl, (80% yield; see ESIT for
solid-state structure, Rh~Cl = 2.5932(7) A).f Dichloromethane
is labile and not retained on dissolution of 2 in CD,Cl, or
neat fluoroarene, with the organometallic displaying time
averaged C,, symmetry at 298 K consistent with formulation
as a five-coordinate complex in solution and rapid pseudoro-
tation of the biphenyl ligand on the NMR time scale (AH* =
75 + 1 kJ mol™, AS* = +80 + 5 ] K™* mol™}, AGhye = 52 +
3 kJ mol™" in CD,Cl,).° In the latter case, selective removal of
CH,Cl, in vacuo and subsequent recrystallisation from the
neat fluoroarene enabled isolation of the corresponding n*-
arene complexes 1b-e in 61-81% yield. Benzene is a poor
solvent for cationic species of this nature, but 1a was pre-
pared in a similar manner using a 1:1 molar mixture of
benzene - 1,2-difluorobenzene in 77% yield. Crystals suitable
for analysis by X-ray diffraction were obtained in all cases
(Fig. 1), with bulk purity confirmed using a combination of
combustion analysis, solid-state '’F MAS NMR spectroscopy
and dissolution in CD,Cl,; with one equivalent of the respect-
ive free arene observed by 'H and '’F NMR spectroscopy
(see ESI).t
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Fig. 1 Solid-state structures of n2-arene complexes la—e (top) and calculated binding energies (kJ mol™, bottom). Solid-state structures drawn
with thermal ellipsoids at 50% probability, minor disordered components (local symmetry equivalent F atom in 1b) and [B(3,5-(CF3),CgH3)4]™ anion

omitted for clarity.

The rigid chelates of the biph and CNC pincer ligands
provide a framework for pseudo-octahedral metal geometries
in 1a-e, where n*-arene coordination [Rh—(C=C) = 2.622(2)-
2.643(2) A] completes the coordination sphere and enables
attainment of 18 VE configurations. The observed selectivity
for coordination of the fluoroarenes via the HC—=CH sites adja-
cent to a fluorine substituent, notably vindicates compu-
tational trends in binding energy previously established for
neutral rhenium cyclopentadienyl fragments® and those
determined as part of this study for 1a-e at the ®B97X-D3/
def2-TZVP(-f) level of theory (Fig. 1). The absolute magnitudes
of the calculated arene binding energies are considerably
lower than the corresponding rhenium systems (69.0-73.8 vs.
87.0-99.3 k] mol™" for the lowest energy regioisomers), con-
sistent with the cationic nature of 1 and reconciling the
entropically unfavourable coordination inferred in solution.
Moreover, the relative binding energies of 1a/c are supported
by the aforementioned (competition) experiment involving dis-
solution of 2 in a 1: 1 molar mixture of benzene - 1,2-difluoro-
benzene, yielding exclusively 1a. DFT-based energy decompo-
sition analysis of the metal-arene bonding interactions using
the ETS-NOCV method, as implemented in ORCA 4.1.2,°
suggests these interactions are dominated by arene to metal
o-donation with only minor metal to arene n-backbonding con-
tributions (see ESI).T The former are sufficient to explain the
observed regioselectivity for all but 1¢, where subtle differences
in n-backbonding are decisive.

In summary, we have exploited a planar NHC-based pincer
ligand and the high trans-influence 2,2-biphenyl ancillary to
prepare an unprecedented homologous series of rhodium(i)
complexes featuring n’>-coordinated benzene and fluoroarenes.
Supported by a DFT analysis, these complexes provide evi-
dence for preferential n*-coordination of fluoroarenes via the
HC=CH sites adjacent to a fluorine substituent; an important
finding relevant to the selective C-H activation of these valu-
able fluoroaryl synthons.
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