Spectroscopic identification of fragment ions of DNA/RNA building blocks: the case of pyrimidine†

Kuntal Chatterjee and Otto Dopfer

Pyrimidine (Pym, 1,3-diazine, 1,3-diazabenzen) is an important N-heterocyclic building block of nucleobases. Understanding the structures of its fragment and precursor ions provides insight into its prebiotic and abiotic synthetic route. The long-standing controversial debate about the structures of the primary fragment ions of the Pym+ cation (C₄H₄N₂⁺, m/z 80) resulting from loss of HCN, C₂H₂N⁺ (m/z 53), is closed herein with the aid of a combined approach utilizing infrared photodissociation (IRPD) spectroscopy in the CH and NH stretch ranges ν(CH/NH) and density functional theory (DFT) calculations. IRPD spectra of cold Ar/N₂-tagged fragment ions reveal that the C₂H₂N⁺ population is dominated by cis-/trans-HCCCHNCH⁺ ions (~90%) along with a minor contribution of the most stable H₂CCCNH⁺ and cis-/trans-HCCCHNH⁺ isomers (~10%). We also spectroscopically confirm that the secondary fragment resulting from further loss of HCN, C₂H⁺ (m/z 26), is the acetylene cation (HCCH⁺). The spectroscopic characterization of the identified C₂H₂N⁺ isomers and their hydrogen-bonded dimers with Ar and N₂ provides insight into the acidity of their CH and NH groups. Finally, the vibrational properties of Pym⁺ in the 3 μm range are probed by IRPD of Pym⁺-(N₂)₁–₂ clusters, which shows a high π-binding affinity of Pym⁺ toward a nonpolar hydrophobic ligand. Its ν(CH) spectrum confirms the different acidity of the three nonequivalent CH groups.

1. Introduction

Nucleobases, the molecular building blocks of the fundamental genetic materials DNA and RNA, are primarily composed of two different aromatic nitrogen heterocycles (N-heterocycles), namely pyrimidine (1,3-diazine, 1,3-diazabenzen, Pym, C₄H₄N₂) and purine. The pyrimidine nucleobases are uracil, thymine, and cytosine, whereas adenine and guanine are purine bases. The ubiquity of these few selected nucleobases involved in the evolution of life on Earth shows a clear example of restricted natural stability upon which life as we know it developed.1–4 Apart from nucleobases, Pym is also a building block of other natural and artificial bioactive molecules (e.g., vitamin B₁ or thiamine, barbituric acid).5,6

The early Earth was exposed to strong solar irradiation (particularly UV), because of the absence of the protecting ozone layer. Therefore, only photochemically stable molecules survived during that time. Interestingly, pyridine and diazine molecules with their short first excited state (nπ*) lifetimes fall in such a photochemically robust category.3–7,11–12 The canonical DNA/RNA bases comprised of these N-heterocycles also exhibit such short-lived excited states because of ultrafast internal conversion to the ground electronic state, and their high photo-stability may explain their abundance in genetic materials.11,13–19

Because of their abundance on Earth, these nucleobases and their building blocks such as Pym have been intensively searched for in extraterrestrial media to understand their possible delivery to Earth.19–23 Although such investigations have failed so far, the presence of these aromatic N-heterocycles in the interstellar medium has received widespread acceptance.24–32 For example, the 6.2 μm feature in the unidentified infrared emission spectrum was suggested to originate from polycyclic aromatic hydrocarbons with at least one N atom in the aromatic skeleton.23 The detection of Pym- and purine-based compounds in carbonaceous meteorites further strengthens the possibility of the extraterrestrial presence of N-heterocycles.33–36 Because of their biological importance, prebiotic synthetic routes for these nucleobases have been well explored.11,18 It has been proposed that such N-containing macromolecules may be synthesized through complex reactions between abundant N-bearing species such as NH₃ or HCN and carbonaceous precursors in interstellar ice grains under the influence of UV photons and cosmic ray analogs (e.g., protons and electrons).39–43 Recent laboratory experiments under interstellar-like conditions demonstrate the formation of uracil and cytosine upon UV irradiation of H₂O:Pym and H₂O:NH₃:Pym ices, respectively.44,45 These experiments triggered theoretical investigations to gain further insight into the involved chemical conversion scheme.46 Similar studies of
CH₃OH:Pym, H₂O:CH₃OH:Pym, and CH₄:Pym ices reveal the generation of thymine, along with numerous amino pyrimidines and their hydroxyl derivatives. Relating photon processing to H₂O:NH₃:purine ices results in the formation of adenine, guanine, and other substituted purine derivatives. Interestingly, apart from photon irradiation of simple H₂O:Pym ices leading to thymine formation, all other photon processing results in the production of RNA nucleobases and thus the hypothesis of RNA being the first type of genetic material used by early life.

The Pym nucleobases inherit certain properties like their geometry and core and valence electronic structure from the parent Pym moiety, which renders this N-heterocycle a subject of demanding attention. Understanding the abiotic origin of such genetic material is of fundamental interest for prebiotic chemistry and astrophysics. Several prudent experimental techniques, such as gas-phase photon or electron ionization (EI) and mass spectrometry, have been employed along with computations to explore abiotic routes of both Pym formation and fragmentation. These studies have established two main fragment ions of the Pym⁺ cation, C₃H₃N⁺ (m/z 53) and C₃H₄⁺ (m/z 26), through the elimination of one and two HCN molecules, respectively. Interestingly, there is a long-standing debate about the molecular structure of the C₃H₃N⁻ fragment. An early mass-spectrometric study using isotope labeling suggested the kinetically favoured HCCHCN⁺ structure (4/5) because this fragmentation channel can eliminate HCN containing C₄ (e.g., H₄C₄N₃), without further structural arrangement. Subsequently, the acrylonitrile cation (H₂CCHCN⁺, 6) was considered, which however was later discarded because of the dissimilarity of its collision-induced dissociation (CID) spectrum and enthalpy of formation (ΔH) from those of the C₃H₃N⁻ ion originating from Pym⁺. Instead, the most stable H₂CCCHNH⁺ isomer of C₃H₃N⁺ (1) with a CCCN backbone was suggested as the major contributing structure of this daughter ion, because it is more stable than 6 and other C₃H₃N⁺ isomers, such as HCCCHNH⁺ (11/12) and HCHCNH⁺ (2/3). However, the generation of 1 from Pym⁺ demands a large activation barrier, as revealed from a detailed computational study of all feasible C₃H₃N⁺ isomers. A photoionization–fragmentation study suggested either 6 or H₂CNCCH⁺ (7). On the other hand, a theoretical study showed effective radical site formation on the N atom upon ionization of Pym that disintegrates into 6 or H₂CCNH⁺ (8) by eliminating HCN. An electron-ionization mass spectrometric study concluded the kinetically favorable HCCCHNH⁺ isomer (4/5) to be the most probable C₃H₃N⁻ structure. A recent mass-spectrometric and computational investigation reported the formation of Pym⁺ by the sequential barrierless addition of two HCN molecules to the acetylene cation (HC⁺, HC=CH⁺), and the suggested intermediate C₃H₃N⁰⁻ ions have again been 4/5. In the reverse direction, the C₃H₄⁻ N⁺ dissociates via HCN elimination into C₂H₅⁻ (m/z 26), which was identified as the acetylene cation (HC⁺) by comparing their ΔH values. Quantum chemical investigations demonstrate an efficient production scheme of the HC⁺ cation from 4/5 by HCN elimination.

So far, the identification of the m/z 53 and 26 fragment ions of Pym⁺ has been solely based on mass spectrometry, thermochemistry, and quantum chemistry. Unambiguous spectroscopic confirmation of the structures suggested for these two important fragment ions of Pym⁺ are lacking. To this end, this work aims at the infrared (IR) spectroscopic identification of these two major Pym⁺ fragments. For this purpose, we employ an EI technique to produce Pym⁺ which dissociates in the source mainly into C₂H₄N⁺ and C₃H₃⁻. We generate the Ar/N₂-tagged clusters of both Pym⁺ and its fragment ions, whose structures are then probed by IR photodissociation (IRPD) spectroscopy. These fingerprint spectra are analyzed with the aid of dispersion-corrected density functional theory (DFT) calculations to unambiguously identify the contributing structural isomers and competing ligand binding sites. This combined spectroscopic/computational approach has previously been applied to various aromatic and nonaromatic cluster ions in our laboratory to unravel their structure and bonding.

2. Experimental methods

IRPD spectra of mass-selected Pym⁺-(N₂)ₙ clusters (n = 1–2) and the Ar/N₂-tagged clusters of Pym⁺ fragments, i.e. C₃H₃N⁺-Lₙ (n = 0, n = 1 for Ar, n = 1–3 for N₂) and C₂H₄⁻-Lₙ (L = Ar/N₂), are acquired between 2900 and 3600 cm⁻¹ in a tandem quadrupole mass spectrometer coupled to an EI source and an octopole ion guide. Briefly, the investigated ions and their clusters are produced in a pulsed supersonic plasma expansion utilizing electron and chemical ionization close to the nozzle orifice. Electrons are emitted from two tungsten filaments close to the nozzle orifice. The expanding gas mixture is produced by seeding the vapor of Pym (Sigma-Aldrich, > 98%, used without further purification) heated to 333 K in N₂ or Ar carrier gas (10 bar). The desired parent cluster ions are mass-selected in the first quadrupole and irradiated in the adjacent octopole ion guide with a tunable IR laser pulse (νIR) emitted from an optical parametric oscillator laser pumped by a nanosecond Q-switched Nd:YAG laser operating at 10 Hz. The IR laser pulses are characterized by a bandwidth of 1 cm⁻¹ and energies of 1–5 mJ. Resonant vibrational excitation leads to the elimination of all weakly bound ligands. The C₃H₃N⁻ monomer spectrum is recorded in the HCN loss channel. The resulting daughter ions are mass-selected by the second quadrupole and monitored with a Daly detector as a function of νIR to derive the IRPD spectrum of the parent cluster. The photofragmentation spectra are linearly normalized for energy fluctuations of the laser pulses recorded with a pyroelectric detector. To obtain the IRPD yield, the background contribution arising from metastable decay (laser-off signal) is subtracted from the laser-on signal by triggering the ion source at twice the laser repetition rate. The observed widths of the vibrational transitions are mainly due to the unresolved rotational structure, lifetime broadening, sequence hot bands involving low-frequency intramolecular modes (νCHCNH⁺ + νₛ ≈ νₖ), and possible overlapping contributions from various structural isomers.
Low-energy collision-induced dissociation (CID) spectra at \(\sim 10 \text{ eV}\) collision energy in the laboratory frame are recorded by introducing \(10^{-3} \text{ mbar} \text{ N}_2\) into the octopole to confirm the composition of the ions and their clusters. IRPD spectra of Pym\(^{-}\)Ar\(_2\) clusters can not be recorded with this setup because of the mass overlap of Pym\(^{-}\) with the much more abundant isobaric Ar\(_2\) ion (m/z 80). A typical mass spectrum of the EI ion supersonic expansion source using N\(_2\) carrier gas is quite similar to the published standard EI spectrum of isolated Pym (apart from signals arising from N\(_2\) and H\(_2\)O impurity),\(^{50}\) with dominant peaks at m/z 80 (Pym\(^{-}\)), 53 (C\(_2\)H\(_2\)N\(^+\)), and 28 (C\(_2\)H\(_2\)), strongly suggesting that that the ionization and fragmentation processes are rather similar under both conditions (Fig. S1 in the ESI\(^{†}\)). This scenario is supported by a previous energy-resolved ionization study of Pym,\(^6^6\) which concludes that Pym\(^{-}\) cations generated in higher electronic states undergo rapid internal conversion into the lowest electronic state before statistical dissociation occurs on the ground state potential. The CID spectra of mass-selected Pym\(^{-}\) and C\(_2\)H\(_2\)N\(^+\) ions show the exclusive loss of HCN (Fig. S2, ESI\(^{†}\)).

3. Computational methods

Various structural isomers of the C\(_3\)H\(_3\)N\(^+\) ion and conceivable ligand binding sites of Ar and N\(_2\) to Pym\(^{-}\), C\(_2\)H\(_2\)N\(^+\), and C\(_2\)H\(_2\)\(^+\) are explored at the B3LYP-D3/aug-cc-pVTZ level of DFT theory to analyze their experimental IR spectra.\(^8^1\) This dispersion-corrected functional accounts well for the electrostatic, induction, and dispersion forces of the investigated clusters.\(^3^0–3^2,7^4–7^7\) Fully relaxed potential energy surface calculations are performed during the search for stationary points, and their nature as minima or transition states are verified by harmonic frequency analysis. Harmonic intramolecular vibrational frequencies are scaled with 0.96221, obtained by fitting the \(\nu_{\text{CH/CH}}\) frequencies of Pym and H\(_2\)O to their experimental values in a parallel study of H\(^+\)Pym-(H\(_2\)O)\(_z\). Computed scaled IR stick spectra are convoluted with Gaussian line profiles with FWHM = 10 cm\(^{-1}\) to facilitate convenient comparison with the experimental spectra. All relative energies (\(E_o\)) and equilibrium dissociation energies (\(D_o\)) are corrected for harmonic zero-point vibrational energy to derive \(E_0\) and \(D_0\) values. Gibbs free energies (\(G\)) are reported for \(T = 298.15\) K. Cartesian coordinates and energies of all relevant structures are listed in the ESI\(^†\). The atomic charge distribution and second-order perturbation energies (\(E^{(2)}\)) of the donor-acceptor orbitals involved in the hydrogen bond (H-bond) interaction are calculated using natural bond orbital (NBO) analysis.\(^6^2\) Only doublet electronic states are considered.\(^6^7\)

4. Results and discussion

The IRPD spectra of Pym\(^{-}\)-(N\(_2\))\(_n\) \((n = 1–2)\), C\(_3\)H\(_3\)N\(^+\)–L, and C\(_2\)H\(_2\)\(^+\)–L (L = Ar/N\(_2\)) recorded between 2900 and 3550 cm\(^{-1}\) covering the CH and NH stretch range. The positions, widths, and vibrational and isomer assignments of the transitions observed (A–F) are listed in Tables 1–3. The IRPD spectra of the clusters are monitored in the monomer ion fragment channel, while the spectrum of bare C\(_3\)H\(_3\)N\(^+\) is recorded in the HCN loss channel. The CID spectra of mass-selected Pym\(^{-}\) and C\(_2\)H\(_2\)N\(^+\) ions show the exclusive loss of HCN (Fig. S2, ESI\(^{†}\)).

4.1 Pym, Pym\(^{-}\), and Pym\(^{-}\)-(N\(_2\))\(_n\) \((n = 1–2)\) clusters

Pym has a planar equilibrium structure with C\(_{2v}\) symmetry in its \(^1\)A\(_v\) ground electronic state (Fig. 2), as revealed from electron diffraction and microwave, IR, and Raman spectroscopy.\(^9,8^3–8^8\)
Table 1 Positions, widths (fwhm in parentheses), and suggested vibrational and isomer assignments of the transitions observed in the IRPD spectra of Pym·-(N₂)₂ clusters (Fig. 2) compared to frequencies calculated at the B3LYP-D3/aug-cc-pVTZ level. All values are given in cm⁻¹. For comparison, spectral data of Pym⁺ are provided.

<table>
<thead>
<tr>
<th>Exp. (cm⁻¹)</th>
<th>Calc. a (cm⁻¹)</th>
<th>Vibration</th>
<th>Isomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pym</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3074 b</td>
<td>3076 (9, a₁)</td>
<td>νₓCH (ν₁₁)</td>
<td>Pym</td>
</tr>
<tr>
<td>3050 b</td>
<td>3043 (13, a₁)</td>
<td>νₓCH (ν₂₀₀)</td>
<td>Pym</td>
</tr>
<tr>
<td>3039 b</td>
<td>3032 (18, b₂)</td>
<td>νₓCH/CH₃CH₂H (ν₇₀₈)</td>
<td>Pym⁺</td>
</tr>
<tr>
<td>3002 b</td>
<td>3029 (14, a₁)</td>
<td>νₓCH/CH₃CH₂H (ν₂)</td>
<td>Pym⁺</td>
</tr>
<tr>
<td>Pym⁺</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3124 ± 2 a</td>
<td>3117 (20, a₁)</td>
<td>νₓCH (ν₁₁)</td>
<td>Pym⁺</td>
</tr>
<tr>
<td>3112 ± 2 a</td>
<td>3103 (15, a₁)</td>
<td>νₓCH (ν₂₀₀)</td>
<td>Pym⁺</td>
</tr>
<tr>
<td>3045 ± 2 a</td>
<td>3031 (49, b₂)</td>
<td>νₓCH/CH₃CH₂H (ν₇₀₈)</td>
<td>Pym⁺</td>
</tr>
<tr>
<td>3045 ± 2 a</td>
<td>3031 (13, a₁)</td>
<td>νₓCH/CH₃CH₂H (ν₂)</td>
<td>Pym⁺</td>
</tr>
<tr>
<td>Pym⁺·N₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 3125 (20)</td>
<td>3119 (18, a₁), 3117 (18, a')</td>
<td>νₓCH (ν₁₁)</td>
<td>Pym⁻·N₂(π), Pym⁻·N₂(C₄/π)</td>
</tr>
<tr>
<td>A2 3111 (16)</td>
<td>3103 (14, a'), 3103 (15, a')</td>
<td>νₓCH (ν₂₀₀)</td>
<td>Pym⁻·N₂(π), Pym⁻·N₂(C₄/π)</td>
</tr>
<tr>
<td>B 3046 (15)</td>
<td>3032 (45, a''), 3032 (29, a')</td>
<td>νₓCH/CH₃CH₂H (ν₇₀₈)</td>
<td>Pym⁻·N₂(π), Pym⁻·N₂(C₄/π)</td>
</tr>
<tr>
<td>C 3001 (20)</td>
<td>3008 (200, a')</td>
<td>νₓCH/CH₃CH₂H (ν₂)</td>
<td>Pym⁻·N₂(C₄/π)</td>
</tr>
<tr>
<td>Pym⁺·(N₂)₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 3128 (8)</td>
<td>3120 (17, a₁), 3119 (17)</td>
<td>νₓCH (ν₁₁)</td>
<td>Pym⁻·(N₂)₂(π/π), Pym⁻·(N₂)₂(C₄/π)</td>
</tr>
<tr>
<td>A2 3112 (10)</td>
<td>3103 (13, a₁), 3103 (14)</td>
<td>νₓCH (ν₂₀₀)</td>
<td>Pym⁻·(N₂)₂(π/π), Pym⁻·N₂(C₄/π)</td>
</tr>
<tr>
<td>B 3048 (16)</td>
<td>3033 (41, b₂), 3033 (27)</td>
<td>νₓCH/CH₃CH₂H (ν₇₀₈)</td>
<td>Pym⁻·(N₂)₂(π/π), Pym⁻·N₂(C₄/π)</td>
</tr>
<tr>
<td>C 3003 (14)</td>
<td>3011 (187)</td>
<td>νₓCH/CH₃CH₂H (ν₂)</td>
<td>Pym⁻·N₂(C₄/π)</td>
</tr>
</tbody>
</table>

a Vibrational symmetry species and IR intensities (in km mol⁻¹) are listed in parentheses. b Ref. 9, 88 and 91. c Extrapolated from the Pym⁻·(N₂)₂ data.

Our calculated geometric and vibrational parameters agree well with available experimental data, demonstrating the reliability of our chosen computational approach (Table 1 and Table S1, ESI†). Information about the electronic and vibrational properties of the ground electronic state of the Pym⁺ cation comes from photoelectron and photoionisation spectroscopy, and calculations. Our ionization of Pym into its 1B₂ doublet ground electronic state (C₄v) occurs by removal of an electron from the highest occupied in-plane b₂ orbital of Pym, which is a linear combination of the nonbonding lone pair orbitals of the N atoms and the bonding σ orbitals of the aromatic skeleton (Fig. S3, ESI†). In line with the shape of this HOMO, the N1–C2 (N3–C2) and N1–C6 (N3–C4) bonds elongate (by 6 mÅ), as expected, in contrast to the significant deformation of the heavy atom skeleton, the C–H bonds are much less affected by ionization, with changes of −1.2, −2, and −4 mÅ for C₅–H, C₄/6–H, and C₂–H, respectively. As a result of these modest geometry changes, the previous photoionization spectra do not reveal any experimental information about the ν₇₀₈ frequencies of Pym⁺ due to vanishing Franck–Condon factors. Our computations predict that ionization slightly contracts the C–H bonds leading to an increase in average ν₊CH frequency (Δν₊CH = +74, +27, −1, +2 cm⁻¹ for ν₊CH, νₓCH, νₓCH/CH₃CH₂H(a), νₓCH/CH₃CH₂H(s)) and a slight increase in IR intensity (Fig. 3). The predicted adiabatic ionization energy is comparable to the previously measured value (IE = 73 568 vs. 75 261 cm⁻¹), and also our computed frequencies agree well with available measured ones (Table S2, ESI†). The positive charge resides mainly on the peripheral hydrogens (Fig. S4, ESI†). All efforts to record an IRPD spectrum of bare Pym⁺ in the HCN loss channel failed because of (i) high metastable decay background, which exceeds by far the achieved IRPD yield and/or (ii) the high energy required for dissociation (∼200–300 kJ mol⁻¹), 51,57–59,68

Cluster formation of Pym⁺ with N₂ occurs mainly through two different ligand binding motifs, namely π-bonding to the aromatic ring and linear CH···N₂ ionic H-bonding (Fig. 2). The latter class leads to three different planar isomers (C₄v or C₃v) because of the three nonequivalent CH groups. The highest D₀ value of the Pym⁺·N₂(π) dimer (D₀ = 868 cm⁻¹, C₄v) results mostly from the strong charge-quadrupole and charge-induced dipole interaction between Pym⁺ and N₂, along with minor dispersion forces involving the highly polarizable aromatic π electrons. The π-attachment negligibly affects the ring structure, and thus the ν₆ frequencies probed in this work remain nearly unchanged from those of bare Pym⁺ (Δν₆ ≤ 2 cm⁻¹, Table 1 and Fig. 3). The slight frequency increase arises from the small noncooperative effect induced by π-bonded N₂ and agrees with the minor computed reduction in the C–H bond lengths (∆R(CH) ≤ 0.2 mÅ). Among the three nonequivalent H-bonded isomers, the CH···N₂ H-bond is the strongest in the Pym⁺·N₂(C₄/π) dimer (D₀ = 784 cm⁻¹), which is rationalized by the highest acidity of the corresponding CH group, as is evidenced from its longest C–H bond and highest atomic charge (0.275 e) in bare Pym⁺ (Δν(CH) ≤ 2 cm⁻¹, Table 1 and Fig. 3). The relatively strong CH···N₂ H-bond lowers the bound ν(CH) stretch frequency of the C₄H donor (by 23 cm⁻¹) and enhances its IR intensity by a factor 7 to 200 km mol⁻¹ (Fig. 3), while the properties of the three remaining free CH groups remain nearly unaffected (∆ν(CH) ≤ 1 cm⁻¹). Similar results are also predicted.
Table 2: Positions, widths (fwhm in parentheses), and suggested vibrational and isomer assignments of the transitions observed in the IRPD spectra of C2H3N+ and C2H3N+(L = Ar/N2) (L = Ar/N2) compared to frequencies calculated at the B3LYP-D3/aug-cc-pVTZ level (Fig. 4–6). All values are given in cm⁻¹.

<table>
<thead>
<tr>
<th>Exp. (cm⁻¹)</th>
<th>Calc. (cm⁻¹)</th>
<th>Vibration</th>
<th>Isomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2H3N⁺</td>
<td>3160 (200)</td>
<td>ν(CH)</td>
<td>5</td>
</tr>
<tr>
<td>3229 (334, a')</td>
<td>ν(CH)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3155 (46, a')</td>
<td>ν(CH)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3040 (39, a')</td>
<td>ν(CH)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3231 (333, a')</td>
<td>ν(CH)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3149 (62, a')</td>
<td>ν(CH)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3000 (30, a')</td>
<td>ν(CH)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C2H3N⁺-Ar</td>
<td>E 3356 (61)</td>
<td>ν(CH)</td>
<td>1-Ar</td>
</tr>
<tr>
<td>3362 (2370, a')</td>
<td>ν(CH)</td>
<td>3-Ar</td>
<td></td>
</tr>
<tr>
<td>3347 (2119, a')</td>
<td>ν(CH)</td>
<td>3-Ar</td>
<td></td>
</tr>
<tr>
<td>3347 (2131, a')</td>
<td>ν(CH)</td>
<td>2-Ar</td>
<td></td>
</tr>
<tr>
<td>D1 3232 (16)</td>
<td>3235 (313, a')</td>
<td>ν(CH)</td>
<td>5-Ar(π)</td>
</tr>
<tr>
<td>D2 3170 (26)</td>
<td>3151 (785, a')</td>
<td>ν(CH)</td>
<td>4-Ar</td>
</tr>
<tr>
<td>3148 (768, a')</td>
<td>ν(CH)</td>
<td>5-Ar(H)</td>
<td></td>
</tr>
<tr>
<td>3150 (53, a')</td>
<td>ν(CH)</td>
<td>5-Ar</td>
<td></td>
</tr>
<tr>
<td>3156 (47, a')</td>
<td>ν(CH)</td>
<td>5-Ar(π)</td>
<td></td>
</tr>
<tr>
<td>3157 (43, a')</td>
<td>ν(CH)</td>
<td>5-Ar(π)</td>
<td></td>
</tr>
<tr>
<td>C2H3N⁺-(N2)</td>
<td>D3 3170 (40)</td>
<td>3156 (61, a')</td>
<td>4-N2</td>
</tr>
<tr>
<td>3156 (43, a')</td>
<td>ν(CH)</td>
<td>5-N2</td>
<td></td>
</tr>
<tr>
<td>E 3118 (60)</td>
<td>3144 (3357, a')</td>
<td>ν(CH)</td>
<td>1-N2</td>
</tr>
<tr>
<td>3133 (652, a')</td>
<td>ν(CH)</td>
<td>3-N2</td>
<td></td>
</tr>
<tr>
<td>3131 (2348, a')</td>
<td>ν(CH)</td>
<td>3-N2</td>
<td></td>
</tr>
<tr>
<td>3132 (2415, a')</td>
<td>ν(CH)</td>
<td>2-N2</td>
<td></td>
</tr>
<tr>
<td>3128 (626, a')</td>
<td>ν(CH)</td>
<td>2-N2</td>
<td></td>
</tr>
<tr>
<td>D2 3090 (55)</td>
<td>3055 (1076, a')</td>
<td>ν(CH)</td>
<td>4-N2</td>
</tr>
<tr>
<td>3053 (959, a')</td>
<td>ν(CH)</td>
<td>5-N2</td>
<td></td>
</tr>
<tr>
<td>C2H3N⁺-(N2)2</td>
<td>D3 3171 (13)</td>
<td>ν(CH)</td>
<td>4-(N2)₂</td>
</tr>
<tr>
<td>3184 (202, a')</td>
<td>ν(CH)</td>
<td>5-(N2)₂</td>
<td></td>
</tr>
<tr>
<td>3065 (47, a')</td>
<td>ν(CH)</td>
<td>5-(N2)₂</td>
<td></td>
</tr>
<tr>
<td>E 3132 (30)</td>
<td>3131 (2348, a')</td>
<td>ν(CH)</td>
<td>3-(N2)₂</td>
</tr>
<tr>
<td>3132 (2415, a')</td>
<td>ν(CH)</td>
<td>3-(N2)₂</td>
<td></td>
</tr>
<tr>
<td>D2 3110 (25)</td>
<td>3156 (43, a')</td>
<td>ν(CH)</td>
<td>2-(N2)₂</td>
</tr>
<tr>
<td>3153 (30, a')</td>
<td>ν(CH)</td>
<td>2-(N2)₂</td>
<td></td>
</tr>
<tr>
<td>C2H3N⁺-(N2)₃</td>
<td>D3 3172 (14)</td>
<td>ν(CH)</td>
<td>4-(N2)₃</td>
</tr>
<tr>
<td>3184 (202, a')</td>
<td>ν(CH)</td>
<td>5-(N2)₃</td>
<td></td>
</tr>
<tr>
<td>3065 (47, a')</td>
<td>ν(CH)</td>
<td>5-(N2)₃</td>
<td></td>
</tr>
<tr>
<td>E 3141 (16)</td>
<td>3131 (2348, a')</td>
<td>ν(CH)</td>
<td>3-(N2)₃</td>
</tr>
<tr>
<td>3132 (2415, a')</td>
<td>ν(CH)</td>
<td>3-(N2)₃</td>
<td></td>
</tr>
<tr>
<td>D2 3131 (24)</td>
<td>3156 (43, a')</td>
<td>ν(CH)</td>
<td>2-(N2)₃</td>
</tr>
<tr>
<td>3153 (30, a')</td>
<td>ν(CH)</td>
<td>2-(N2)₃</td>
<td></td>
</tr>
</tbody>
</table>
| a Vibrational symmetry species and IR intensities (in km mol⁻¹) are listed in parentheses.

Table 3: Positions, widths (fwhm in parentheses), and suggested vibrational and isomer assignments of the transitions observed in the IRPD spectra of C2H3N⁺-(N2)2 (L = Ar/N2) compared to frequencies calculated at the B3LYP-D3/aug-cc-pVTZ level (Fig. 7). All values are given in cm⁻¹. For comparison, spectral data of HCCH⁺ are provided.

<table>
<thead>
<tr>
<th>Exp. (cm⁻¹)</th>
<th>Calc. (cm⁻¹)</th>
<th>Vibration</th>
<th>Isomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2H2⁺</td>
<td>~3234</td>
<td>3225 (8, σ_g)</td>
<td>ν₁</td>
</tr>
<tr>
<td>3136</td>
<td>3123 (433, σ_u)</td>
<td>ν₂</td>
<td></td>
</tr>
<tr>
<td>C2H2⁺-Ar</td>
<td>F1 3234 (15)</td>
<td>3258 (2, a')</td>
<td>ν₁</td>
</tr>
<tr>
<td>3215 (77)</td>
<td>3160 (373, a')</td>
<td>ν₂</td>
<td></td>
</tr>
<tr>
<td>C2H2⁺-N2</td>
<td>F2 3165 (30)</td>
<td>3166 (358, a')</td>
<td>ν₁</td>
</tr>
<tr>
<td>F3 3035 (68)</td>
<td>2962 (1063, c)</td>
<td>ν(CH)</td>
<td>HCCH⁺-N₂(π)</td>
</tr>
<tr>
<td>3151 (47, a')</td>
<td>ν(CH)</td>
<td>5-Ar(π)</td>
<td></td>
</tr>
<tr>
<td>3157 (43, a')</td>
<td>ν(CH)</td>
<td>5-Ar(π)</td>
<td></td>
</tr>
</tbody>
</table>

For the other two less stable H-bonded isomers, Pym⁻-N₂(C2) and Pym⁻-N₂(C5), with D₀ = 775 and 690 cm⁻¹ (Fig. 2 and 3). For each of the two isomers, the frequency of the intense ν(CH) mode is calculated near 3100 cm⁻¹ (ν(CH) = 3100/3097 cm⁻¹, −Δν(CH) = 17/6 cm⁻¹) because of its higher intrinsic frequency, resulting from its inherently weaker acidic nature (ν(CH) = 3117/3103 cm⁻¹ for Pym⁻).

The experimental Pym⁻-N₂ spectrum in Fig. 3 features a clear doublet A1 and A2 at 3125 and 3111 cm⁻¹, along with an intense band B at 3046 cm⁻¹ and a weak transition C at 3001 cm⁻¹. The relative intensities and positions of the first three bands show good correspondence with the spectrum computed for the most stable Pym⁻-N₂(π) isomer (3119, 3103, 3032 cm⁻¹), with deviations of less than 15 cm⁻¹ (which is of the order of the widths of the bands). The relative intensities of the bands A1, A2, and B bands quantitatively match the predicted pattern, indicating a dominant contribution of the most stable π-bonded isomer. Similar agreement is not observed for the two H-bound Pym⁻-N₂(C5) and Pym⁻-N₂(C2) local minima. Particularly, their predicted intense b(CH) modes near 3100 cm⁻¹ are not consistent with the intensity observed for band A2, suggesting no (or at most very low) population of these two isomers. This is further corroborated by their smaller binding energies (D₀ = 775 and 690 cm⁻¹). Therefore, we will not consider these two structures for further cluster growth. The remaining small band C at 3001 cm⁻¹ agrees well with the b(CH) mode of Pym⁻-N₂(C4) calculated at 3008 cm⁻¹, the unique spectroscopic signature of this most stable H-bonded isomer. Its other predicted modes overlap with the CH stretch bands A1, A2, and B predominantly assigned to the π-bonded global minimum. The substantial discrepancy between the experimental and calculated intensity ratios of the CH stretch bands demonstrates the significantly smaller population of Pym⁻-N₂(C4) compared to Pym⁻-N₂(π), which is in line with their thermochemical data (D₀ = 784 vs. 868 cm⁻¹). Taking the relative intensity of bands B and C (1:6) along with the computed IR oscillator strengths (4:1) yields a crude estimate for the abundance ratio of 1:24 (or 4%) for the C4 and π isomers.

Attachment of a second N₂ ligand to Pym⁻-N₂(π) on the opposite side of the aromatic ring leads to the most stable Pym⁻-(N₂)₂(π/π) trimer (C₆₃) with D₀ = 1724 cm⁻¹ (Fig. 2). The two N₂ ligands are equivalent and their bonding is only slightly weaker than in the dimer, because effective shielding of the aromatic ring causes only small nonadditive noncooperative effects. Similar to the n = 1 case, the second π-addition has a negligible influence on the C-H bond properties of Pym⁻. The ν(CH) modes and their IR intensity remain almost unchanged (Δν(CH) ≤ 3 cm⁻¹). We consider in Fig. 2 two further isomers resulting from attachment of the second N₂ ligand to the much less abundant Pym⁻-N₂(C4) dimer, namely Pym⁻-(N₂)(C4/π) and Pym⁻-(N₂)(C4/C6). The π-bonded N₂ in the first isomer...
does not perturb the Pym\(^{-}\)\(\text{N}_2\)(C4) dimer (\(\Delta \nu_{\text{CH}} \leq 3 \text{ cm}^{-1}\)). On the other hand, in Pym\(^{-}\)\(\text{N}_2\)(C4/C6) the C6–H bond slightly elongates upon H-bonding (\(\Delta r_{\text{CH}} = 1.3 \text{ mÅ}\)). The corresponding symmetric and antisymmetric \(\nu_{\text{CH}}\) modes are calculated at 3011 and 3010 cm\(^{-1}\), respectively, with the latter being more intense (\(I_{\text{CH}} = 79 \text{ vs. } 301 \text{ km mol}^{-1}\)). This trimer with two CH\(-\text{N}_2\) H-bonds is slightly less stable than Pym\(^{-}\)\(\text{N}_2\)(C4/C6) by \(\Delta D_0 = 98 \text{ cm}^{-1}\), resulting from the higher \(\pi\)-affinity of the \(\text{N}_2\) ligand (as compared to H-bonding).

The appearance of the \(n = 2\) spectrum is very similar to the dimer spectrum with respect to both frequency and relative intensity of the four bands A–C, with frequency shifts of less than 3 cm\(^{-1}\) upon attachment of the second \(\text{N}_2\) ligand (Fig. 3). However, the doublet structure now appears as two clearly separated peaks at 3128 (A1) and 3112 (A2) cm\(^{-1}\), due to colder clusters and smaller rotational constants leading to narrower transitions for the larger cluster. The intense band B at 3048 cm\(^{-1}\) and the weak transition C at 3003 cm\(^{-1}\) remain almost unshifted. Similar to the dimer case, the predicted \(\nu_{\text{CH}}\) modes of the Pym\(^{-}\)\(\text{N}_2\)(π/π) trimer at 3120, 3103, and 3033 cm\(^{-1}\) nicely agree with the three dominant bands A1, A2, and B, respectively. The calculation satisfactorily reproduces the slight experimental blue shifts of 1–3 cm\(^{-1}\) (Table 1), which originate from the noncooperativity induced by the π-bound \(\text{N}_2\) ligand. Thus, the most stable Pym\(^{-}\)\(\text{N}_2\)(π/π) isomer dominates the experimental spectrum. In analogy to the dimer spectrum, band C (3003 cm\(^{-1}\)) in the trimer spectrum is explained by the \(\nu_{\text{CH}}\) mode(s) of both the (C4/π) and (C4/C6) isomers. From the relative intensities of bands B and C, the contribution of these two local minima is estimated to be below 5% of the abundance of the most stable calculated Pym\(^{-}\)\(\text{N}_2\)(π/π) global minimum. From the π-bonded isomers of Pym\(^{-}\)\(\text{N}_2\)\(_n\), we can reliably and accurately estimate the four CH stretch frequencies of bare Pym\(^{\ast}\) as 3124 \(\pm 2 \text{ (C4/π)}\), 3112 \(\pm 2 \text{ (C4/π)}\), 3045 \(\pm 2 \text{ (C4/6H(s))}\), and 3045 \(\pm 2 \text{ cm}^{-1} \text{ (C4/6H(a))}\) by taking into account the predicted small complexation shifts.
The IRPD signal of Pym−·(N2)2 is observed exclusively in the Pym− fragment channel. This result is consistent with the total binding energy of $D_0 = 1724$ cm$^{-1}$, which is much smaller than the energy of a single photon absorbed in the CH stretch range ($\nu_{IR} > 3000$ cm$^{-1}$).

4.2 C$_3$H$_3$N$^+$ monomer (m/z = 53)

In our EI source, Pym− mainly disintegrates into the C$_3$H$_3$N$^+$ fragment (m/z 53), which further dissociates into the smaller C$_2$H$_2$ fragment (m/z 26). This is demonstrated by the mass spectrum of the EI source, as well as CID spectra of the mass-selected Pym− and C$_3$H$_3$N$^+$ radical cations, both of which show exclusive loss of HCN (Fig. S1 and S2, ESIFT). Mass spectrometric studies on isotopically-labelled Pym indicate that H4C4N3 is the by far dominant neutral fragment. We consider all conceivable isomers and IR spectra of the C$_3$H$_3$N$^+$ ion in Fig. 4 and Fig. S5 (1–13) (ESIFT), which were suggested as the most probable isomers by previous computational and thermochemical studies. These show a considerable structural variety and spread in energy. For example, a systematic global optimization search yielded 17 isomers within 200 kJ mol$^{-1}$. Consistent with the previous reports, the H$_2$CCCNH$^+$ isomer (1, H$_2$C=C= C=N$^+$H, C$_{2v}$, 2B_2) with a linear CCCN backbone is calculated to be by far the most stable C$_3$H$_3$N$^+$ structure, with an energy gap of ~ 50 kJ mol$^{-1}$ to the other isomers. This ion features a free NH group and its characteristic ν_{NH} mode calculated at 3545 cm$^{-1}$ dominates its IR spectrum in the CH and NH stretch ranges ($I_{NH} = 1022$ km mol$^{-1}$). The next stable C$_4$H$_4$N$^+$ monomers are the cis/trans isomers of HCCCHN$^+$ (3/2, HC=HC(H)=C=N$^+$H, C$_{a}$, $^3A'$) at $E_0 = 53$/49 kJ mol$^{-1}$, which also have a CCCN backbone and a terminal NH group with similar NH stretch properties ($\nu_{NH} = 3538$ cm$^{-1}$). Further isomers with a CCCN backbone and terminal NH group are rather unstable (11/12, cis-trans-HCCCHNH$^+$, H=C=C=C[H]=N$^+$H, E$_0$ > 130 kJ mol$^{-1}$, C$_{a}$, $^2A'$, Fig. S3, ESIFT), and were not considered in all previous systematic calculations. Acrylonitrile (6, H$_2$CCCHN$^+$, H$_2$C=C(H)=C≡N$^+$H, C$_{a}$, $^2A'$, E_0 = 74 kJ mol$^{-1}$), the initially proposed candidate of the elusive C$_3$H$_3$N$^+$ structure, also exhibits a bent CCCN backbone but lacks a NH group. Its characteristic CH stretch bands appear as three weak transitions between 3000 and 3140 cm$^{-1}$ (I_{CH} \sim 30 km mol$^{-1}$). Two further high-energy nonplanar structures with a cyclic CCC ring and a NH group are also computed, namely HCCCHNH$^+$ (9, C$_1$, $^1A'$) and HCCCHNH$^+$ (13, C$_2$, $^2A'$) at 83 and 299 kJ mol$^{-1}$. The IR spectrum of a cyclic CCC structure with a NH$_2$ group (10, CCHCHNH$_2^+$, C$_{a}$, $^2A'$) at 103 kJ mol$^{-1}$ is characterized by two NH stretch modes at 3335 and 3395 cm$^{-1}$, respectively. Two isomers with a (nearly) linear CCNC backbone, H$_2$NCCHN$^+$ (7, H$_2$C= N$^+$= CH, C$_{2v}$, 2B_2) and H$_2$CCNCH$^+$ (8, H$_2$C= C= N$^+$= CH, C$_{2v}$, $^2A'$), are calculated at relatively low energy ($E_0 = 61$ and 67 kJ mol$^{-1}$). Each of them exhibits a characteristic intense ν_{CH} mode at 3246 (I$_{CH}$ = 187 km mol$^{-1}$) and 3138 cm$^{-1}$ (I$_{CH}$ = 269 km mol$^{-1}$), respectively. We further calculate the cis and trans forms of the kinetically favored HCCCHNH$^+$ isomer (5 and 4, HC=HC(H)= N= C$^+$H; $E_0 = 107$ and 102 kJ mol$^{-1}$, C$_{a}$, $^2A'$). Unlike all other isomers, which demand a significant activation barrier for their formation, 4 and 5 exhibit a suitable CCNC backbone that facilitates fragmentation of the Pym$^-$ ring via simple neutral HCN elimination. Their intense ν_{CH} modes are predicted around 3230 cm$^{-1}$ ($I_{CH} \sim 330$ km mol$^{-1}$).

The IRPD spectrum of bare C$_3$H$_3$N$^+$ recorded in the C$_2$H$_2$ fragment ion channel (HCN loss, Fig. 4) is dominated by a broad transition (D) ranging from 2950 to 3290 cm$^{-1}$ and peaking near 3160 cm$^{-1}$ (FWHM \sim 200 cm$^{-1}$). The signal to noise ratio is limited because of the large background arising from metastable decay of hot ions, which keep high internal energy after Pym$^-$→C$_3$H$_3$N$^+$ fragmentation due to insufficient cooling in the supersonic expansion after HCN elimination. The broad and unstructured spectrum results from the substantial internal energy of the bare C$_3$H$_3$N$^+$ ion, which becomes substantial after Pym$^-$−→C$_3$H$_3$N$^+$ ion. The unfocussed IR laser beam allows only for single-photon absorption processes, so that only ions with energy around 3000 cm$^{-1}$ below the dissociation threshold can be detected upon IRPD. Because HCN loss requires typically much higher energies for all C$_4$H$_4$N$^+$ ions considered, only ions with very high internal energy are probed in the recorded IRPD spectrum, leading to the observation of hot bands and sequence transitions giving rise to the broad band contour. The calculated free
\(\nu_{\text{NH}} \) frequencies of all isomers with a NH group (\(>3300 \text{ cm}^{-1} \)) for 1-3 and 9-13 appear to be too high to explain the observed hot band transitions contributing to band D, suggesting their absence and/or inefficient photofragmentation resulting from high dissociation thresholds. However, the intense \(\nu_{\text{CH}} \) modes predicted at 3230 \text{ cm}^{-1} for the isomers 4 and 5 are within the experimental absorption range of band D centered around 3160 \text{ cm}^{-1}. The difference in frequency (\(~70 \text{ cm}^{-1}\)) can readily be rationalized by anharmonic coupling typical for hot band transitions, which arises from the elevated internal energy of the C\(_3\)H\(_3\)N\(^+\) fragments populating vibrational excited states with high quantum numbers. Such anharmonic coupling (diagonal and off-diagonal) results in red shifts of the transitions compared to the fundamentals predicted by the calculations. Thus, isomers 4 and 5 are plausible candidates to explain the experimental C\(_3\)H\(_3\)N\(^+\) spectrum despite their relatively high \(E_0 \) values (\(>100 \text{ kJ mol}^{-1} \)). Similarly, the intense \(\nu_{\text{CH}} \) modes of 7 and 8 predicted at 3246 and 3138 \text{ cm}^{-1} match the measured IRPD spectrum. The computed \(\nu_{\text{CH}} \) modes of 6 also lie within the observed spectral range, which suggests that acrylonitrile could also contribute to the monomer spectrum, although their fundamentals are calculated close to the red edge of transition D and their IR oscillator strengths are weaker by one order of magnitude than those of the other potential candidates. Thus, from the warm C\(_3\)H\(_3\)N\(^+\) spectrum it is rather difficult to unambiguously determine the dominant contribution of the observed isomers that do not have a NH group. The approach of inert gas tagging discussed in the next section reduces the temperature of the probed ions, and thus increases the spectral resolution of the IRPD spectrum and reduces the effective dissociation threshold, which is required for a more reliable and more definitive identification of the contributing isomers.

4.3 C\(_3\)H\(_3\)N\(^+\)-L (L = Ar/N\(_2\)) dimers

Various Ar and N\(_2\) ligand binding motifs of the C\(_3\)H\(_3\)N\(^+\) mono-
mers identified as potential candidates in Section 4.2 are displayed in Fig.
5 and 6 (along with their IR spectra), while others are presented in Fig.
S6 and S7 (ESI). The isomers with a NH group (1-3, 9-13) strongly
prefer the formation of a NH\(-\cdot\cdot\cdot\)L H-bond of L to the acidic NH group
because of the high partial charge on the NH proton (e.g., \(q = 0.498 \) e for 1,
Fig. S4, ESI\(^\dagger\)). In contrast, in the 4-L and 5-L dimers, the ligand
forms a CH\(-\cdot\cdot\cdot\)L ionic H-bond to the strongly positively charged
proton of the terminal CH group adjacent to N (e.g., \(q = 0.718 \) e for 4).
For 5-Ar, a \(\pi \)-bound structure is also calculated, in which the Ar
ligand interacts weakly with both the C\(=\text{N} \) \(\pi \)-cloud and the adjacent
CH group (as evidenced from the NBO calculations, Fig. S8, ESI\(^\dagger\)). At
this binding site, the Ar ligand has no significant influence on the monomer
geometry. Thus, its predicted intense \(\nu_{\text{CH}} \) frequency at 3235 \text{ cm}^{-1}
remains comparable to that of bare 5. A similar \(\pi \)-bonding motif is also
obtained for 6-Ar. However, attempts to optimize such a \(\pi \)-bound structure
with N\(_2\) fail because of the strong preference of N\(_2\) for H-bonding to acidic
CH/NH protons over \(\pi \)-bonding. The XH\(-\cdot\cdot\cdot\)L ionic H-bonds (X = N/C, L = Ar/N\(_2\)) significantly perturb the XH proton donor groups and leads to an elongation
of the X-H bond along with a reduction of the corresponding \(\nu^b_{\text{H}} \) frequency. For the most stable H-bonded 1-Ar/N\(_2\) clusters
with a linear NH\(-\cdot\cdot\cdot\)L H-bond (\(C_{\text{\parallel}} \)), the red shift is predicted as
\(-\Delta\nu_{\text{NH}} = 183/401 \text{ cm}^{-1} \). The higher proton affinity of N\(_2\) as
compared to Ar (PA = 494 vs. 369 \text{ kJ mol}^{-1}\(^\dagger\)) causes a larger red
shift resulting from the stronger and shorter NH\(-\cdot\cdot\cdot\)L H-bond
(\(D_0 = 1950 \text{ vs. 928 cm}^{-1}, R_{\text{NH}} \cdot\cdot\cdot\cdot L = 1.849 \text{ vs. 2.259 } \AA \) for L = N\(_2\)
and Ar). This view is further corroborated by the higher $E^{(2)}$ energy
of the NH\(-\cdot\cdot\cdot\)N\(_2\) H-bond as compared to the NH\(-\cdot\cdot\cdot\)Ar bond ($E^{(2)} = 88.2 \text{ vs. 35.1 kJ mol}^{-1}\(^\dagger\), Fig. S8, ESI\(^\dagger\))
. The NH\(-\cdot\cdot\cdot\)L bonds in 2/3-L are similar to those in 1-L, because of
their similar N-H bond properties. Similar results are also obtained
for the CH\(-\cdot\cdot\cdot\)L H-bonds in 4/5-L(H) with L = Ar/N\(_2\). For these
C\(_3\)H\(_3\)N\(^+\) isomers, the Ar ligand again perturbs the H-bonded CH
group less strongly than N\(_2\), which results in a smaller D_0 value
for Ar as compared to N\(_2\) (e.g., $D_0 = 815 \text{ vs. 1500 cm}^{-1}\(^\dagger\) for 5)
and a longer H-bond ($R_{\text{CH}} \cdot\cdot\cdot\cdot L = 2.436 \text{ vs. 2.047 } \AA \) for 6-Ar) as a result.
The red shift of the Ar-bound \(\nu^b_{\text{CH}} \) mode is smaller than for N\(_2\)
(\(-\Delta\nu_{\text{CH}} = 81 \text{ vs. 176 cm}^{-1} \)). The $E^{(2)}$ values also support this
trend ($E^{(2)} = 26.2 \text{ vs. 52.0 kJ mol}^{-1}\(^\dagger\), Fig. S8, ESI\(^\dagger\))
. Analogous results are obtained for the H-bonded 4-L dimers with L = Ar/N\(_2\). However, in both cases, 4/5-L, the CH proton donor group is less strongly
perturbed by H-bonding than the more acidic NH groups in
isomers with NH\(-\cdot\cdot\cdot\)L H-bonds. The relatively low-energy
isomers 7/8-Ar (\(E_0 \sim 70 \text{ kJ mol}^{-1}\(^\dagger\)) have their intense \(\nu_{\text{CH}} \)
mode at 3211 and 3081 \text{ cm}^{-1}\(^\dagger\), respectively, and these frequencies are
further red shifted down to 3157 and 3015 \text{ cm}^{-1}\(^\dagger\) for the more
strongly bonded N\(_2\) clusters. As usual, the N\(_2\)-bound CH stretch
bare hypothesis of inefficient photofragmentation of the this band in the spectrum of the Ar-tagged ion reinforces the spectrum despite their superior stability. The appearance of involved in H-bonding, 30,79,96,97 while the rather symmetric and D2 are characteristic of proton donor stretch vibrations structures. The satellite bands to the blue of the transitions E and Fig. S6 (ESI†) band E agrees with the comparison with spectra computed for other C3H3N+-N2 isomers along with the corresponding optimized transition D1 at 3211 cm−1, its symmetric band contour typical for a free XH stretch band argues against this interpretation. Furthermore, the predicted \(\nu_{\text{NH}}\) modes of 11/12-Ar agree to some extent with the band D2. However, because the predicted 11/12-N2 spectra fail to explain the measured C3H3N+-N2 spectrum, we also exclude these isomers from the observed C3H3N+ ion population (Fig. S7, ESI†). There is no indication for the presence of 6-Ar, possibly due to its low Ar binding energy and the low computed IR cross sections. Thus, from the IRPD spectrum of C3H3N+-Ar, we infer a predominant population of 4/5, along with a minor contribution of 1–3. Using the observed intensity ratios of D2 and E (4:1) and the calculated IR cross sections (2:5), we can extract a crude estimate of 10:1 for the isomer population of 4/5 and 1–3 (assuming similar efficiencies for Ar tagging because of their similar Ar binding energies).

The IRPD spectrum of the N2-tagged dimers shown in Fig. 6 confirms the conclusions drawn from the spectrum of the Ar-tagged C3H3N+ ions, namely the predominant population of 4/5 and the minor abundance of 1–3. The C3H3N+-N2 spectrum also exhibits three main transitions at 3170 (D3), 3118 (E), and 3090 (D2) cm−1, which differ substantially from the C3H3N+-Ar spectrum, because of the stronger H-bonds of N2 causing larger red shifts in the proton-donor stretch modes (Fig. 1). Band E with its satellite bands to the blue is assigned to the \(\nu_{\text{NH}}\) mode of the most stable 1–3-N2 dimer predicted at 3131–3144 cm−1. Its somewhat enhanced IR intensity compared to the Ar spectrum originates from its increased oscillator strength (e.g., \(I_{\text{NH}} = 3354 \text{ vs.} 2370 \text{ km mol}^{-1}\) for 1-N2) resulting from the stronger NH···N2 H-bond, and the additional contribution of the sequence hot band transitions from the adjacent D2 band. The measured difference of the bands E (238 cm−1 for 1-L) agrees well with the difference in the predicted \(\nu_{\text{NH}}\) bands for the Ar and N2 clusters (218 cm−1) supporting this assignment. The blueshaded transition D2 is attributed to the \(\nu_{\text{CH}}\) mode of the 4/5-N2 isomers calculated near 3055 cm−1, whereas the symmetric D3 transition is attributed to their free \(\nu_{\text{CH}}\) mode predicted near 3155 cm−1. Again, good agreement between the difference of the bands D (80 cm−1) and the predicted \(\nu_{\text{NH}}\) bands for the Ar and N2 clusters (96 cm−1 for 1-N2) strengthens this assignment. Although the C3H3N+-N2 spectra computed for the two cyclic (9/13-N2) and 7-N2 isomers fit the experimental spectrum,
we exclude them because the spectra of their Ar-tagged clusters do not match with the experiment (Fig. S6 and S7, ESIF). Similarly, we can exclude 8/10/11/12-N₂ because of their mismatch with the recorded N₂ spectrum. In 6-N₂, the N₂ ligand prefers H-bonding to the acidic CH group (while a π-bonded structure to the CN group like in 6-Ar(π) does not converge to a local minimum), leading to a strong enhancement of the corresponding ν(CH) mode, which is however still absent in the IRPD spectrum of C₃H₃N⁻N₂. From this observation, we estimate an upper limit for the abundance of N₂ as 30% from the signal-to-noise ratio (≈ 45) and the IR cross section ratio (≈ 15). To this end, the broad spectrum of the C₃H₃N⁺ monomer is disentangled by tagging with Ar and N₂, and both cold IRPD spectra can simultaneously be explained only by the presence of the 4/5 (major) and 1–3 (minor) isomers.

4.4 C₃H₃N⁺-(N₂)ₙ (n > 1) clusters
The IRPD spectra recorded for C₃H₃N⁺-(N₂)₂–₃ in Fig. 6 further confirm the assignment of the C₃H₃N⁺ core ions. Efforts to record similar spectra for C₃H₃N⁺-Ar₂≥₂ failed due to inefficient cluster production, probably due to their low binding energy and insufficient cooling of the C₃H₃N⁺ ions produced by fragmentation of Pym⁺. No calculations are performed for the N₂ clusters with n ≥ 2. With increasing number of N₂ ligands the internal energy of the clusters decreases, which produces higher-resolution spectra with narrower bands. As a result, the shading of the proton-donor bands D₂ and E becomes less pronounced and band D₃ becomes better resolved. All three transitions D₃, E, and D₂ observed for n = 1 show small monotonic blue shifts as n increases to 3, which is typical for interior ion solvation.30,79,96 This noncooperative threobody effect is more pronounced for proton-donor stretch modes involved in H-bonds and relatively small for free XH stretch oscillators. In addition, the monotonic incremental blueshifts become smaller as the number of ligands increase. As a result, bands D₂ and E assigned to bound ν(CH) of 4/5-(N₂)ₙ, and bound ν(CH) of 1–3-(N₂)ₙ show larger incremental shifts (+20/+11 and +14/+9 cm⁻¹ for n = 2/3) than D₃ assigned to free ν(CH) of 4/5-(N₂)ₙ ([1+1/1 cm⁻¹]). Because the appearance of the C₃H₃N⁺-(N₂)ₙ spectra is similar for n = 1–3, the vibrational and isomer assignments are the same. The fact that the IRPD spectrum of C₃H₃N⁺-(N₂)ₙ is detected in the C₃H₃N⁺ channel implies that the total binding energy of the three N₂ ligands is below the IR photon energy (D₀ < ν₁₉ = 2900–3600 cm⁻¹) for all isomers, in line with the computed binding energies for the most strongly bound first N₂ ligands.

4.5 C₂H₂⁻ ion (L = Ar/N₂)
The C₂H₂⁺ ion (m/z 53) further dissociates into the lighter C₂H⁺ ion (m/z 26) by HCN elimination (Fig. S2, ESIF). We probe the structure of the C₂H₂⁺ product ion by IRPD of its Ar/N₂-tagged dimer (Fig. 7), which confirms it as the acetylene cation HCC⁺ (H−C=⁻C−H⁺). Out of the two possible ν(CH) normal modes of linear HCC⁺ (D₆ᵥ), its Π₁₂ ground electronic state, the symmetric one computed at ν₁ = 3225 cm⁻¹ is IR forbidden, while the lower-frequency antisymmetric mode at ν₂ = 3124 cm⁻¹ has high IR activity (I(CH) = 443 km mol⁻¹). Tagging with the inert gas ligand reduces the symmetry which makes the dark ν₁ mode weakly IR allowed. The ligand may either form a π-bond to the C=⁻C group, HCC⁺-L(π), or a linear CH−L ionic H-bond to one of available CH groups, HCC⁺-L(H).

In the more stable HCC⁺-L(π) global minima, the ligand is slightly displaced toward one of the CH groups, which becomes weakly distorted (Fig. 7 and Table 3). The structure computed for HCC⁺-Ar(π) agrees with previous high level CCSD(T) calculations.98,99 The magnitude of this distortion is stronger for N₂ than for Ar because of its higher binding energy (D₀ = 2720 vs. 2338 cm⁻¹). The predicted ν₁₉ modes shift slightly to the blue by +30/+41 (N₂) and +28/+36 cm⁻¹ (Ar) due to modest charge transfer from HCC⁺ to L leading to C−H bond contractions (ΔCH ≤ −5.2 mÅ). IR activation of ν₁ upon π-bonding is rather minor (I(CH) = 2.6 km mol⁻¹ for Ar/N₂). In the less stable linear HCC⁺-L(H) local minima (D₀ = 910 vs. 1635 cm⁻¹ and R_C−H−L = 2.341 vs. 2.026 Å for Ar and N₂ with C−H−L symmetry, the CH proton donor group experiences a substantial elongation by H-bonding. As a result, unlike the π-bound minima, the CH stretch local modes become largely decoupled. While the free ν₁ (ν₁₁) modes at 3202 and 3195 cm⁻¹ for Ar and N₂ become weakly IR active (I₁ = 19 and 57 km mol⁻¹), the strongly allowed H-bonded ν₁ (ν₁₁₁) modes at 3057 and 2962 cm⁻¹ are substantially redshifted and further enhanced in IR intensity (I₁ = 791 vs. 1063 km mol⁻¹). The measured C₂H₂⁺-Ar spectrum reported in Fig. 7 features a strong transition F₂ centered at 3153 cm⁻¹ and a very weak
band F1 at 3234 cm⁻¹. Although recorded at lower resolution, this spectrum perfectly reproduces the previously published high-resolution spectrum of C₂H₂••Ar assigned to π-bound HCCH••Ar(π), ⁹⁸ as illustrated in Fig. S9 (ESI†). In the previous studies, C₂H₂••Ar was prepared in a supersonic expansion of acetylene so that it is unambiguous that the C₂H₂⁺ ion in the Ar cluster is indeed HCCH⁺. This is further confirmed by the analysis of the fully rotationally resolved IR spectrum of the v₂ band. ⁹⁸ In agreement with the past result, band F2 is assigned to v₁ of HCCH••Ar(π) predicted at 3160 cm⁻¹ (and it displays the weakly-resolved Y-branches associated with this vibrational transition, Fig. S9, ESI†), while the weak band F1 corresponds to v₁ computed at 3258 cm⁻¹. The C₂H₂••Ar spectrum lacks any feature near 3050 cm⁻¹, which indicates the absence of the less stable HCCH••Ar(H) isomer (v₁ = 3057 cm⁻¹). The C₂H₂••N₂ spectrum is reported herein for the first time. Its strong transition F2 at 3165 cm⁻¹ matches the v₁ mode of HCCH••N₂(π) calculated at 3166 cm⁻¹. Unlike the Ar case, the two orders of magnitude weaker v₁ mode calculated at 3260 cm⁻¹ is not observed and below the detection limit. Instead, the C₂H₂••N₂ spectrum exhibits a relatively broad transition F3 peaking near 3035 cm⁻¹, which is assigned to the v₁ mode (v₁CH) of the less stable H-bonded HCCH••N₂ dimer predicted at 2962 cm⁻¹. Apparently, the B3LYP-D3 calculations somewhat overestimate the shift for this transition. Our anharmonic calculations reveal that the difference does not result from anharmonicity but from an underestimated force constant. A similar effect is also observed in our unpublished spectra of larger C₂H₂••Ar_n clusters, in which Ar ligands start to form H-bonds to HCCH⁺ for cluster sizes n ≥ 3. Analysis of the observed band intensities along with computed IR cross sections yields a population of ~10% for the H-bonded local minimum, in line with its smaller binding energy (Δ₀ = 1635 vs. 2720 cm⁻¹). We can safely exclude the H₂CC⁺ ion both from energetics¹⁰¹,¹⁰² and its IR spectrum (Fig. S10, ESI†).

4.6 Further discussion

The 3 μm spectra of Pym⁺(N₂)ᵣ₊₁/₂ provide the first experimental information about the properties of the C–H bonds of the radical cation of the fundamental Pym molecule, a basic heterocyclic building block of nucleobases. The N₂ ligands prefer π-bonding at the aromatic ring to H-bonding with the weakly acidic CH protons. This binding motif hardly influences the C–H bond parameters, with very minor changes due to noncooperative effects. Thus, the ν₁CH frequencies of Pym⁺(N₂)(π) and Pym⁺(N₂)ᵣ(π/π) provide an accurate estimate of the four IR active ν₁CH frequencies of bare Pym⁺ as 3124 ± 2, 3112 ± 2, 3045 ± 2, and 3045 ± 2 cm⁻¹. These are substantially higher than those measured for neutral Pym (3074, 3050, 3039, and 3002 cm⁻¹)¹⁰³,⁹⁸,⁹¹ indicating that the C–H bonds become on average stronger and less acidic upon ionization. Among the CH groups in Pym⁺, the acidity increases in the order C₂H < C₃H < C₅H in line with the C–H bond lengths and the H-bond energy with N₂ (and also HCN). ⁹⁸ This is the reason, why a minor population of the observed Pym⁺(N₂)ᵣ cluster cations have a C₄H•••N₂ ionic H-bond.

Previous information about the interaction of Pym⁺ with nonpolar and polar ligands comes from photoelectron and photoionization spectra of Pym·Ar₁/₂ and Pym·N₂ clusters⁹¹,¹⁰³ and mass spectrometric studies of Pym⁺(H₂O)ᵣ clusters. ¹⁰⁴ It was found that Pym⁺·Ar₁/₂ clusters have a (π) and (ππ) configurations, similar to the structures found here for the most stable structures of Pym·(N₂)₁/₂. No conclusion was presented for the structure of Pym⁺·N₂. ⁹¹ The most stable structures computed for Pym⁺(H₂O)ᵣ clusters have linear or bifurcated CH·••O ionic H-bonds with computed and measured binding energies of ~10 kcal mol⁻¹ (~3500 cm⁻¹)¹⁰⁴ indicating that the interaction of Pym⁺ with dipolar ligands is not only much stronger than with N₂ (because of the additional charge-dipole forces) but also via a different binding motif. Results for the related imidazole·••N₂ or pyrrole·••N₂ cations show that N₂ strongly prefers H-bonding to an acidic NH group of heterocyclic cations (if available) over π or CH bonding.¹⁰⁵,¹⁰⁶

All previous studies about the primary C₃H₃N⁺ fragment of Pym⁺ have been based on mass spectrometry, thermochemistry, and quantum chemistry, and no definitive conclusion has been derived about its structure. All probable isomers of the primary C₃H₃N⁺ fragment of Pym⁺ produced through elimination of HCN are considered herein to decipher its so far controversial structure by spectroscopy. By comparing the IRPD spectra of the bare hot monomer and its much colder Ar/N₂-tagged clusters, the major contributions of HCCCHN⁺(c/d) (4/5) and the minor population of H₂CCCN⁺ and HCCCHN⁺(c/d) (1–3) are clearly established. In contrast, all other conceivable isomers do not agree with the measured IR spectra and are thus concluded to be below the detection limit. The minor fragment ions, 1–3, are in fact the most stable C₃H₃N⁺ isomers (E₀ = 0, 49, 53 kJ mol⁻¹), and thus their production may be expected for thermodynamic reasons. On the other hand, the predominant fragment ions, 4/5, are much higher in relative energy (E₀ = 102 and 107 kJ mol⁻¹) but their production is strongly favored for kinetic reasons. They can be formed by simple HCN elimination without any other structural rearrangement. The production of the other isomers at lower energies is strongly hindered by high activation barriers en route from the parent Pym⁺ monomer to the product ions. Although some of the conclusions drawn here have previously been put forward based on mass spectrometry and quantum chemistry, the approach of IR spectroscopy used herein provides for the first time an unequivocal determination of the structures of the detected C₃H₃N⁺ fragment ions, along with a crude estimate of the branching ratios. Of particular importance has been the tagging approach with weakly bonded inert ligands. First, tagging reduces the temperature leading to higher resolution IR spectra with resolved vibrational structure, which is sufficient to identify all present isomers by their fingerprints. A further effect of tagging is the reduction of the effective dissociation energy, which guarantees that all isomers can be detected by single-photon IRPD, independent of their monomer dissociation energy. This has been vital in the detection of the most stable but minor 1–3 ions. Second, recording IRPD spectra of fragment ions with different tags (here Ar and N₂) further increases the selectivity of this spectroscopic approach.
approach because H-bonding of the tag modifies the IR spectrum depending on its binding affinity, and the identification of the fragment ion should be independent of the tag leading to a multiple test for cases with similar spectra for a single tag. In this way, we can exclude here the isomers 7, 9, and 11–13, because their IRPD spectra fit the IR spectra computed for either the Ar-tagged or N₂-tagged clusters but not both of them. Finally, the IR spectra reported for the 4/5 and 1–3 isomers correspond to the first (IR) spectroscopic detection of these radical cations and thus provide a useful probe of the acidity of their CH and NH groups and ability to form H-bonds with (nonpolar) ligands.

The C₂H₂N⁺ ion further disintegrates by elimination of a second HCN molecule into C₂H₃⁺ (m/z 26), which was previously established as the acetylene cation (HCCH⁺) from thermochemical analysis. We successfully tag this product ion with Ar and N₂, and the resulting IRPD spectra indeed confirm this fragment as HCCH⁺ for the first time by spectroscopic means. The IR spectrum of the alternative high-energy H₂CC⁺ ion does not match. The C₂H₃⁺-Ar spectrum reproduces the HCCH⁺-Ar spectrum recorded previously, in which the cluster was prepared in an EI plasma expansion of HCCH. The Ar ligand binds to HCCH⁺ solely through π-bonding. In contrast, the HCCH⁺-N₂ spectrum is presented for the first time and reveals also a H-bound local minimum in addition to the π-bound structure, thus directly probing the acidity of the acetylenic CH groups. The higher H-bond affinity of N₂ is explained by its higher proton affinity compared to Ar (PA = 494 vs. 369 kJ mol⁻¹) leading to a stronger CH···L ionic H-bond (D₀ = 1635 vs. 910 cm⁻¹). However, the population of HCCH⁺-N₂(H) is only ~10% of the HCCH⁺-N₂(π) global minimum, in line with the computed binding energies.

5. Conclusions

We apply herein a combined IR spectroscopic and quantum chemical approach to characterize the structures and bonding of tagged clusters of Pym⁺ and its two most prominent fragment ions, C₅H₆N⁰ and C₅H₆⁺. The most salient results may be summarized as follows.

The 3 μm spectra of Pym⁺-(N₂)ₙ yield the first experimental information about the frequency and thus acidity of the CH groups of this fundamental building block for nucleobases in its radical cation ground electronic state. In general, removal of the b₂ electron of Pym results in an overall contraction of the C-H bonds, as illustrated by the increase in CH stretch frequencies upon ionization used as a sensitive probe of the C-H bond strength. The C₄H group is the most acidic one and serves as preferred proton donor in CH···N₂ ionic H-bonding. As a result of the reduced acidity of the CH groups, the inert N₂ ligands strongly prefer π-bonding to the aromatic ring over H-bonding to the CH groups.

The controversial structures and branching ratios of the primary elusive C₅H₆N⁺ fragments (m/z 53) of Pym⁺ produced by elimination of HCN upon EI are unambiguously identified by spectroscopic means as HCCHNCH⁺(c/t) (4/5, major, kinetically favoured) and H₂CCCNH⁺/HCCHCNH⁺ (1–3, minor, thermodynamically favoured) by the tagging approach. All other conceivable isomers are below the detection limit. It is demonstrated that the IRPD approach of clusters with different tags is a generally applicable approach for fragment identification, providing high resolution IR spectra with high sensitivity and selectivity. The minor 1–3 fragment ions are the most stable C₅H₆N⁺ isomers and thus expected from thermochemical arguments. The predominant 4/5 fragment ions are high in energy (E₀ ~ 100 kJ mol⁻¹) but strongly favored by kinetic arguments because they can be formed by simple HCN elimination involving no or low barriers. Clearly, the spectroscopic approach used herein is superior compared to all previous efforts using mass spectrometry, quantum chemistry, and thermochemistry, and provides for the first time an unequivocal determination of the structures of the detected C₅H₆N⁺ fragment ions, along with a crude estimate of their branching ratio. As a further result, the first IR spectra reported for the 4/5 and 1–3 radical cations provide a direct probe of the acidity of their C-H and N-H bonds and their ability to form H-bonds with neutral ligands.

Finally, the secondary C₃H₃⁺ fragment ion (m/z 26) resulting from further HCN loss of C₅H₆N⁺ is clearly identified as HCCH⁺ ion by spectroscopic means, confirming previous less certain mass spectrometric and thermochemical analysis. While Ar exclusively binds to the C≡C triple bond, N₂ shows some weaker tendency to form a CH···N₂ ionic H-bond, thereby probing the acidity of the CH groups of the HCCH⁺ radical in its cation ground electronic state. In conclusion, this spectroscopic study provides fundamental characterization of the Pym⁺ precursor and fragment ions of this important biomolecular building block and thus, in the reverse direction, paves the way for understanding the formation of large biomolecules from their smaller building blocks. In general, our spectroscopic results represent a qualitative step forward in the understanding of fragmentation of Pym⁺ and thus provide valuable input into astronomical models simulating the generation of precursor molecules of nucleobases in the interstellar medium. In that sense, it will be further intriguing to spectroscopically investigate similar backbone structures of other biomolecules that play a pivotal role to understand their prebiotic synthesis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This study was supported by Deutsche Forschungsgemeinschaft (DFG, project DO 729/3-3).

References

17. A. Zalar, D. Tepfer, S. V. Hoffmann, J. M. Kenney and S. Leach, Directed exospermia: I. Biological modes of resistance to UV light are implied through absorption spectroscopy of DNA and potential UV screens, Int. J. Astrobiol., 2007, 6, 229–240.

65 L. D. Fondren, J. McLain, D. M. Jackson, N. G. Adams and L. M. Babcock, Studies of reactions of a series of ions with...

78 O. Dopfer, Spectroscopic and Theoretical studies of CH3·−Rg+ clusters (Rg = He, Ne, Ar): From weak intermolecular forces to chemical reaction mechanisms, *Int. Rev. Phys. Chem.*, 2003, **22**, 437–495.

96 N. Solcà and O. Dopfer, Microsolvation of the Phenol Cation (Ph+) in Nonpolar Environments: Infrared Spectra
of Ph\(^+\)–L\(_n\) (L = He, Ne, Ar, N\(_2\), CH\(_4\)), *J. Phys. Chem. A*, 2001, 105, 5637–5645.

